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Abstract. This paper deals with detectability for the class of discrete-time Markov jump
linear systems (MJLS) with the underlying Markov chain having countably infinite state space. The
formulation here relates the convergence of the output with that of the state variables, and due
to the rather general setting, a novel point of view toward detectability is required. Our approach
introduces invariant subspaces for the autonomous system and exhibits the role that they play. This
allows us to show that detectability can be written equivalently in term of two conditions: stability
of the autonomous system in a certain invariant space and convergence of general state trajectories
to this invariant space under convergence of input and output variables. This, in turn, provides
the tools to show that detectability here generalizes uniform observability ideas as well as previous
detectability notions for MJLS with finite state Markov chain, and allows us to solve the jump-
linear-quadratic control problem. In addition, it is shown for the MJLS with finite Markov state that
the second condition is redundant and that detectability retrieves previously well-known concepts in
their respective scenarios. Illustrative examples are included.
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1. Introduction. Structural concepts such as observability and detectability
have a solid ground in system theory, as the imposing literature for linear and linear-
Gaussian systems conveys (see, e.g., [15]). For instance, in control problems, de-
tectability firmly associates the solution for the optimal problems with stability of
the corresponding controlled system, whereas, for filtering, it makes the system ob-
servations meaningful for state estimates by connecting convergence of the output
with convergence of the state. Although the theory involving these concepts is quite
developed and a number of results are available in the context of linear deterministic
systems, there is still a great deal of research activity in this area (see, e.g., [13, 17]
and references therein).

Among the most important properties of detectability for the linear deterministic
scenario, we mention that

(i) detectability can be expressed in terms of the parameters of the autonomous
version of the system, e.g., by requiring that nonobserved modes of the autonomous
system are stable.

(ii) Detectability generalizes observability.
Another important but less acknowledged property is that
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2133

(iii) detectability is a necessary and sufficient condition to guarantee convergence
of the state from convergence of the output (under regular nonsingular linear state
feedback controls).

Property (iii) ensures that the optimal control solution is stabilizing and makes
output observations meaningful in filtering problems.

Due to its generic formulation, these properties constitute a paradigm for more
general contexts. The challenge then is how to devise a detectability concept for a
certain class of systems that allows one to employ the structure of the system to
retrieve properties (i)–(iii).

In this spirit, the authors have recently developed a notion of detectability (called
weak detectability) that generalizes previous detectability ideas for MJLS with finite
Markov chain state, retrieves the properties (i)–(iii), and allows an associate observ-
ability matrix, in an extension to the well-known deterministic concepts, see [1] and
[2]. In this process all but one1 of the linear deterministic concepts are retrieved.

However, as far as the authors are aware, these ideas have no parallel in more
complex scenarios such as the MJLS with countably infinite state space of the Markov
chain. This is a rather general class of systems that includes the classes of finite
MJLS and linear deterministic systems, as well as deterministic time varying systems.
Previous works dealing with infinite MJLS are [7, 8, 9, 10].For this class of systems, up
to this date there is no detectability concept that retrieves properties (i)–(iii) above.
For instance, the stochastic notion in [7] can be expressed in terms of the autonomous
system data, thus satisfying (i), but (ii) does not hold and only the sufficiency part of
(iii) holds; in [4] we derive a detectability notion in the perspective of (iii) for which
(ii) holds, but it does not satisfy (i).

These shortfalls come, in part, from the analytical complexity inherent to the
infinite many Markov state contexts, and the loss of some friendlier structures of the
simpler cases. In particular, the main difficulty arises from the fact demonstrated
in this paper that converging input and output do not ensure convergence of state
trajectory to the observed space; see Example 2 in connection. In the simpler case
of finitely many Markov states, the above convergence relation holds, and apart from
ensuring stability within the observed space, with detectability it guarantees conver-
gence of the state trajectory to the origin. This is the mechanism that fails here, and
in this regard we can conclude that any detectability concept with the perspective of
(i) (stable nonobserved modes) by itself cannot provide the property in (iii) and thus,
it cannot ensure that the optimal control is stabilizing.

In this paper, with the aim of studying detectability for MJLS with countably
infinite state space of the Markov chain and to retrieve (i)–(iii), we introduce a novel
point of view toward detectability by considering the paradigmatic property in (iii)
as a general, direct, and intuitive notion of detectability, which relates the conver-
gence of the input and output with that of the state variables. Then we introduce
certain invariant subspaces for the autonomous system, which play a key role to re-
late detectability with stability and convergence of the state trajectory; this allows
us to show that detectability here generalizes uniform observability ideas as well as
previous detectability notions for MJLS with finite state Markov chain, and to solve
the jump-linear-quadratic control problem. In order to show some nuances of the
approach developed here, and to clarify the role of some tools, we also analyze the
MJLS with finite state Markov chain and present illustrative examples.

1The observability idea that after a number of observations that equals the system dimension,
the initial state value can be precisely retrieved. This is inherently a nonstochastic idea.
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2134 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

An outline of the content of this paper is as follows. In section 2 we provide
the bare essential of notations, state the model, and discuss the general ideas of the
paper. Section 3 provides some preliminaries. Necessary and sufficient conditions for
detectability are treated in section 4, and some sufficient conditions are presented in
section 5. The finite MJLS is analyzed in section 6, and the control problem is studied
in section 7. Some illustrative examples are exhibited in section 8. Finally, section 9
presents some conclusions.

2. Problem formulation and general ideas. Let R
n represent the usual lin-

ear space of all n-dimensional vectors and Rr,n (respectively, Rn) the normed linear
space formed by all r×n real matrices (respectively, n×n). For V ∈ Rn,r, V ′ denotes
the transpose of V . σ+(V ) and σ−(V ) stand, respectively, for the largest and smallest
singular value of V and ‖V ‖ = σ+(V ). For V,W ∈ Rn, V > W (V ≥ W ) indicates
that V −W is positive definite (semidefinite).

Let Hr,n
∞ denote the linear space formed by sequences of matrices H = {Hi ∈

Rr,n; i ∈ Z} such that supi∈Z ||Hi|| < ∞; also, Hn
∞ ≡ Hn,n

∞ and ‖H‖∞ = supi∈Z ‖Hi‖.
For H,V ∈ Hn

∞, H ≥ V indicates that Hi ≥ Vi for each i ∈ Z; similarly, for H ∈ Hr,n
∞

and V ∈ Hn,s
∞ , the “product” HV indicates the element of Hr,s

∞ formed by the sequence
{HiVi, i ∈ Z}, and equivalent understanding should apply to any basic mathematical
operation involving elements of Hr,n

∞ . In what follows, capital letters denote elements
of Hr,n

∞ , and capital letters with an index denote elements of Rr,n.
The system we deal with is the discrete-time MJLS with infinite countably Markov

chain, defined in a fixed stochastic basis (Ω,F, (Fk),P) by

Ψ :

{
x(k + 1) = Aθ(k)x(k) + Bθ(k)u(k), k ≥ 0,

y(k) = Cθ(k)x(k) + Dθ(k)u(k), x(0) = x, θ(0) = θ,
(1)

where y is the output process and u is the input, an (Fk)-adapted process. The
mode θ is the state of an underlying discrete-time Markov chain Θ = {θ(k); k ≥ 0}
taking values in Z = {1, 2, . . . } and having a stationary transition probability matrix
P = [pij ], i, j ∈ Z. The state of the system is the compound variable (x(k), θ(k)). The
matrices Ai belong to the sequence of matrices A ∈ Hn

∞, and similarly for B ∈ Hn,r
∞ ,

C ∈ Hq,n
∞ , and D ∈ Hq,r

∞ . In addition, without loss of generality, we also assume that
C ′D = 0.

In this paper we deal with detectability for systems described by (1). The depar-
ture point is the following concept of detectability that follows from property (iii) of
section 1. We emphasize that the specific notion of convergence is not relevant; the
essence of the concept is the relation among convergence of state, input and output,
and a particular sense of convergence is adopted later in connection with the choice
of the cost functional.

Definition 1 (detectability). The system Ψ is detectable if the state converges
provided that the output and the input converge.

With the detectability concept above at hands, which trivially embraces property
(iii) in the introduction, the issues pursued here are primarily summarized as follows:

(I) Relate the concept with the autonomous version of the system, aiming at
mimicking item (i) mentioned in the introduction.

(II) Show that it retrieves property (ii) mentioned in the introduction.
(III) Investigate the extent to which the above concept is related to the weak

detectability concept in [1] and [2] for MJLS, and the usual concept for deterministic
linear systems.
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2135

We consider a cost functional that is an �2-measurement of the output (the ex-
pected accumulated energy in the output process path),

Yu(x, θ) = Ex,θ

{ ∞∑
k=0

|y(k)|2
}
,(2)

defined for an admissible control u whenever x(0) = x and θ(0) = θ. We also denote
for the autonomous system obtained from Ψ with u ≡ 0,

Y0(x, θ) = Yu≡0(x, θ).(3)

In agreement with (2), we adopt the corresponding �2-convergence notion for
each Ψ-processes, namely, we say that the output y converges whenever Yu(·, ·) < ∞;
similar notion holds for u and x.

Our approach starts from a novel point of view, which hinges on the following
steps. We first locate an invariant linear subspace for the autonomous system, in the
sense that the trajectories remain almost surely confined to it. Then we indicate the
role that the invariant space plays in the convergence of an arbitrary state trajectory,
showing that the existence of an invariant space for which the autonomous system is
stable, together with the convergence to this set of an arbitrary trajectory, is equiv-
alent to convergence to the origin of such a trajectory (see section 4 and Theorem
12).

Note that the announced result reduces to a tautology if the invariant space is
taken to be the origin, and to make the above result suitable to deal with (I), we
seek the largest of such an invariant space. It turns out to be the linear subspace
F = {(x, θ) : Y0(x, θ) < ∞}, and in Theorem 18 we state that detectability according
to Definition 1 is equivalent to requiring that

(A1) the autonomous system is stable in F ,
(A2) the state x converges to F provided that both y and u converge.
Notice that condition (A1) accounts for the autonomous version of system Ψ

only, and it is consistent with the notion of detectability for finite dimensional lin-
ear deterministic systems. Together with condition (A2) for system Ψ (not only the
autonomous version), they build the essentials to complete the aforementioned mech-
anism yielding (iii). Due to (A2), a complete counterpart for property (i) is not viable
in the present setup (see Example 3 in connection), and any attempt to enlarge F is
worthless, as we show in Lemma 17.

Section 5 addresses (II), where we show that detectability according to Definition
1 generalizes uniform observability as in [1, 3, 5, 12], which, by its turn, generalizes
previous observability concepts for MJLS, like those in [11]. We also show that an
earlier �2-detectability concept in [7] is stricter than detectability. Moreover, we in-
troduce a notion of uniform observability in the invariant space F that serves as a
sufficient condition for (A2). See Proposition 28 for a summary.

Regarding (III), in section 6 we show that F⊥ is uniformly observable in the finite
Markov chain case, which renders condition (A2) always true. Thus, we have that
detectability is equivalent to (A1) in the finite case, allowing us to show that the weak
detectability in [2] and the usual detectability concept in the deterministic linear case
are necessary and sufficient conditions (in their particular contexts) for detectability
according to Definition 1 (see Remark 3). The fact that (A2) holds true for the case
in which the Markov chain is finite explains why no such condition appears in those
simpler scenarios. By contrast, (A2) may fail in the infinite Markov chain case, as
illustrated in Example 2.
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2136 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

Another important feature of the setting and results here is that, unlike previous
ones, the focus is not constrained (i.e., is not ad hoc) to the optimal jump-linear-
quadratic (JLQ) control and/or controls in linear feedback form, where detectability
appears as a dual notion to stabilizability. It covers any (Fk)-adapted converging
control that induces a finite cost Yu for each initial state, assuring that it is stabilizing,
and clearly encompassing the optimal solution (see Remark 1). In particular for the
JLQ control, we show that the solution to the associated infinite coupled algebraic
Riccati equation is unique (see section 7).

3. Preliminaries. In this section we introduce some basic machinaries, which
will allow us to devise our approach toward detectability for (1). We consider the
autonomous version of (1), which will be essential to relate detectability with stability
and convergence of the state trajectory (see (A.1) and (A.2) in section 2). We define
the various essential elements such as invariant space, some notions of convergence,
some useful spaces, operators, and some preliminary results.

We consider the autonomous version of system (1):

Ψ0 :

{
x0(k + 1) = Aθ(k)x0(k), k ≥ 0,

y0(k) = Cθ(k)x0(k), x0(0) = x, θ(0) = θ.

Sometimes we refer to the autonomous system by the pair (A,P) or by the triplet
(A,C,P). In addition, in what follows, for each i ∈ Z, let Si ⊂ R

n stand for a vector
subspace and let S = {Si, i ∈ Z}.

Definition 2 (Ψ0-invariant space). Consider the autonomous system Ψ0. We
say that S is an invariant space if x0(k) ∈ Sθ(k) implies that x0(t) ∈ Sθ(t) almost
surely (a.s.) for each t ≥ k.

Definition 3 (projections onto S⊥
). For each i ∈ Z, let Pi ∈ Rn denote the

orthogonal projection onto S⊥
i . Clearly, P = {Pi, i ∈ Z} ∈ Hn

∞.
Definition 4 (Ψ0-convergence). We say that x(·) converges (in the �2 sense) to

the Ψ0-invariant space S if

∞∑
k=0

Ex,θ{|Pθ(k)x(k)|2} < ∞.

We say that x(·) converges if it converges to the trivial Ψ0-invariant space S = 0.
Definition 5 (�2-stability). Consider the autonomous system Ψ0. We say that

(A,P) is �2-stable in the invariant space S if x0(·) converges for each initial condition
θ ∈ Z and x ∈ Sθ. We say that (A,P) is �2-stable if it is �2-stable in S with Si = R

n,
i ∈ Z

Notice that x(·) converges if and only if
∑∞

k=0 E{|x(k)|2} < ∞, since P = I
whenever S is trivial. Also, �2-stability of (A,P) is equivalent to convergence of x0(·)
for each initial condition θ ∈ Z and x ∈ R

n.
We will need the following property related with the concept of �2-stability in S

and the projections P .
Lemma 6. Assume that (A,P) is �2-stable in S. Then, (A−AP,P) is �2-stable.
Proof. Consider the following version of system Ψ:

xP (k + 1) = (Aθ(k) −Aθ(k)Pθ(k))xP (k), xP (0) = x, θ(0) = θ.(4)

Let us employ the trajectory of system Ψ0, x0(k) = Aθ(k−1) · · ·Aθ(0)x0, with
initial condition x0 being the projection of x into Sθ, i.e., x0 = (I − Pθ)x. Since S is
a invariant space, we have that x0(k) ∈ Sθ(k), k ≥ 0.
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2137

We start by showing inductively that xP (·) evolves as an open-loop trajectory
according to xP (k) = x0(k), for k ≥ 1, for all x ∈ R

n. For k = 1 we have that

xP (1) = (Aθ −AθPθ)x = Aθ(I − Pθ)x = x0(1).

From the induction assumption, we have that xP (k) = x0(k) for k ≥ 1, and recalling
that x0(k) ∈ Sθ(k) we evaluate

xP (k + 1) = (Aθ(k) −Aθ(k)Pθ(k))x0(k) = Aθ(k)x0(k) = x0(k + 1)

and the induction is completed. Due to the facts that (i) (A,P) is �2-stable in S,
(ii) xP (1) = x0(1) ∈ Sθ(1) a.s., and (iii) xP (k), k ≥ 1 evolves as a trajectory of
the autonomous system for any xP (0) = x, θ(0) = θ, we have from the definition of
�2-stability in S that xP (·) converges and, thus, (A−AP,P) is �2-stable.

In what follows, we introduce a certain space Hn
F , an element X(k) related with

the second moment of the state, an operator L related with the evolution of X(k),
and some associated results which will be useful to present the results of the paper in
a concise manner.

Let Hn
1 denote the linear space formed by sequences of matrices H = {Hi = H ′

i ≥
0; i ∈ Z} such that

∑
i∈Z tr{Hi} < ∞. Let Hn

F ⊂ Hn
1 denote the closed cone formed

by sequences of symmetric positive semidefinite matrices H = {Hi = H ′
i ≥ 0; i ∈ Z}.

For H,V ∈ Hn
F we define the inner product

〈H,V 〉 =
∑
i∈Z

tr{H ′
iVi}

and the Frobenius norm

‖H‖F = 〈H, I〉.(5)

Recall from the definition of the Ψ0-invariant subspace S that Si = {x : Pix =
0}. In connection, we define the spaces S̄ = {H ∈ Hn

F : PHP ′ = 0} ⊂ Hn
F and

S̄⊥ = {H ∈ Hn
F : H − PHP ′ = 0}. PHP ′ is the orthogonal projection of H onto

S̄⊥; indeed, P inherits from Pi the property that P 2 = P , and it is easy to check that
〈PHP ′, H − PHP ′〉 = 〈H,PHP ′ − P 2HP 2′〉 = 0.

Definition 7 (convergence in Hn
F ). We refer to convergence of sequences in Hn

F

in the �1 sense: we say that a sequence H(·) ∈ Hn
F converges to the space S̄ whenever∑∞

k=0 ‖PH(k)P ′‖F < ∞; we say that H(·) converges if it converges to the trivial
space S̄ = 0.

We define X(·) ∈ Hn
F and U(·) ∈ Hr

F as

Xi(k) = E{x(k)x(k)′1{θ(k)=i}}
Ui(k) = E{u(k)u(k)′1{θ(k)=i}} ∀i ∈ Z, k ≥ 0,

(6)

where 1{·} is the Dirac indicator function. We write X0(·) when we refer to the
autonomous system. We define Yt,T

u similarly to the functional Y in (2) as follows:

Yt,T
u (x, θ) = Ex,θ

{
t+T−1∑
k=t

|y(k)|2
}

=

t+T−1∑
k=t

(
〈X(k), C ′C〉 + 〈U(k), D′D〉

)
(7)

whenever x(0) = x, θ(0) = θ; for simplicity we write Yt=0,T
u (x, θ) = YT

u (x, θ) and also
YT
u≡0(x, θ) = YT

0 (x, θ).
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2138 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

Using the notation above we can write Ex,θ{|x(k)|2} = ‖X(k)‖F and this provides
a connection between convergence in the �1 sense of X(·) ∈ Hn

F with the �2 convergence
of x(·). A further connection is presented in the next lemma; the proof is presented
in Appendix 9.

Lemma 8. x(·) converges to S if and only if X(·) converges to S̄.

Now, let us define for V ∈ Hn,r
∞ the linear operator LV : Hr

F → Hn
F

LV i(H) =
∑
j∈Z

pjiVjHjV
′
j .(8)

It is shown in [7] that the limit in (8) is well defined. We denote L0(H) = H, and
for k ≥ 1, we can define Lk(H) recursively by Lk(H) = L(Lk−1(H)). Also, rσ(L)
denotes the spectral radius of L. Operator L is related to system Ψ as follows; the
result is adapted from [7].

Proposition 9. The following assertions hold:

(i) X0(k + 1) = LA(X0(k)), k ≥ 0;
(ii) (A,P) is �2-stable if and only if rσ(LA) < 1.

For the nonautonomous system Ψ, the evolution of X is still related to the oper-
ator L, as follows. See Appendix 9 for the proof.

Lemma 10. Let α �= 0. Then,

X(k + 1) ≤ (1 + α2)LA(X(k)) + (1 + 1/α2)LB(U(k)), k ≥ 0.

The following basic properties concerning the operator L, which are easy to check
by inspection, will be useful.

Proposition 11. The following properties hold, for V,W ∈ Hn
∞ and H,Y ∈ Hn

F :

(i) LVW (H) = LV (WHW ′);
(ii) LV +W (H) ≥ (1 − α2)LV (H) + (1 − 1/α2)LW (H) ∀α �= 0;
(iii) LV +W (H) ≤ (1 + α2)LV (H) + (1 + 1/α2)LW (H) ∀α �= 0;
(iv) LV (H) ≥ LV (Y ) whenever H ≥ Y ;
(v) ||LV (H)||F ≤ ||V ||2∞||H||F .

We finish the section with the following facts that we believe are worth mentioning.
S̄ inherits from S the property that it is a Ψ0-invariant subspace, that is, PX0(k)P ′ =
0, k ≥ 0, implies that PX0(t)P

′ = 0, t ≥ k. The notion of convergence in Hn
F is

usual, in the sense that a sequence H(·) ∈ Hn
F converges to the space S̄ if and only

if
∑∞

k=0 infV ∈S̄ ‖H(k) − V ‖F < ∞. Actually, the proof follows immediately from the
fact that for each H(k) there exists V ∈ S̄ for which ‖H(k) − V ‖F = ‖PH(k)P ′‖F
(indeed, V = H(k) − PH(k)P ′).

4. A necessary and sufficient condition for detectability. We show in
section 4.1 that a general state trajectory x(·) converges if and only if there exists an
invariant space S for which: (i) (A,P) is �2-stable in S and (ii) x(·) converges to S. In
section 4.2 we introduce the Ψ0-invariant space F and we show the appropriateness of
F to formulate the equivalence between detectability and conditions (A1) and (A2).

4.1. Conditions for state convergence. In this section we examine the state
convergence of system Ψ and its interplay with the Ψ0-invariant subspace S. The first
requirement is the existence of a Ψ0-invariant space S in which (A,P) is �2-stable,
namely, the condition (A1) holds.
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2139

Notice that (A1) does not impose any condition on the system Ψ (or, even on
Ψ0) in the subspaces orthogonal to S. From this perspective, one can infer that (A1)
can be employed only to establish the convergence of Ψ0-trajectories that remain a.s.
in S or, at most, of Ψ0-trajectories that converge to S. Surprisingly, the combination
of (A1) with convergence to S of Ψ-trajectories guarantee the convergence of any
trajectory of Ψ with converging inputs, as the next theorem shows. Clearly, if S is
trivial, Theorem 12 becomes a tautology.

Theorem 12. Consider system Ψ and assume that the input converges. The state
x(·) converges if and only if there exists an invariant space S such that the following
conditions hold:

(i) (A,P) is �2-stable in S;
(ii) x(·) converges to S.

Proof. (Necessity.) Since x(·) converges to the origin, S = 0 trivially satisfies (i)
and (ii).

(Sufficiency.) We show that x(·) converges provided (i) and (ii) hold and u(·)
converges. Recall from Lemma 6 that condition (i) provides that (A − AP,P) is �2-
stable for P the projection in S and from Proposition 9 (ii) we have that rσ(LA−AP ) <
1. Let α �= 0 be such that (1 + α2)2rσ (LA−AP ) < 1. For ease of notation, we define
the operators L̂, L̃, L̄ : Hn

F → Hn
F as

L̂(H) = (1 + α2)2LA−AP (H),

L̃(H) = (1 + α2)(1 + 1/α2)LAP (H), and

L̄(H) = (1 + 1/α2)LB(H)

for H ∈ Hn
F . We also define the series Z(·) with Z(k) ∈ Hn

F , k ≥ 0, by

{
Z(k + 1) = L̂(Z(k)) + L̃(X(k)) + L̄(U(k)), k ≥ 0,

Z(0) = X(0).

Noticing that

Z(m) = L̂m(X(0)) +

m−1∑
k=0

L̂k
(
L̃(X(−k + m− 1)) + L̄(U(−k + m− 1))

)
,

we write

∞∑
m=0

〈Z(m), I〉 =

∞∑
m=0

〈L̂m(X(0)), I〉

+

∞∑
m=0

m−1∑
k=0

〈
L̂k

(
L̃(X(−k + m− 1)) + L̄(U(−k + m− 1))

)
, I
〉
.

(9)

For the second term in the right-hand side of (9) we evaluate
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2140 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

∞∑
m=0

m−1∑
k=0

〈
L̂k

(
L̃(X(m− k − 1)) + L̄(U(m− k − 1))

)
, I
〉

=

∞∑
k=0

∞∑
m=k+1

〈L̂k
(
L̃(X(m− k − 1)) + L̄(U(m− k − 1))

)
, I
〉

=
∞∑
k=0

〈
L̂k

( ∞∑
m=0

L̃(X(m)) + L̄(U(m))

)
, I

〉

=

∞∑
k=0

〈L̂k(Υ), I〉,

(10)

where we set

Υ =

∞∑
m=0

L̃(X(m)) + L̂(U(m)) = (1 + α2)(1 + 1/α2)

∞∑
m=0

LAP (X(m))

+ (1 + 1/α2)

∞∑
m=0

LB(U(m)).

We need to show that Υ is well defined, i.e., that Υ ∈ Hn
F ; the result is presented in

the next lemma.
Lemma 13. ‖

∑∞
k=0 LB(U(k))‖

F
< ∞ if u(·) converges.

‖
∑∞

k=0 LAP (X(k))‖F < ∞ if condition (ii) in Theorem 12 holds.
Proof. From Proposition 11 (v), we obtain∥∥∥∥∥

∞∑
k=0

LB(U(k))

∥∥∥∥∥
F

≤
∞∑
k=0

‖LB(U(k))‖F ≤ ‖B‖2
∞

∞∑
k=0

‖U(k)‖F < ∞.(11)

For the second assertion, we employ Proposition 11 (i), (v), to evaluate∥∥∥∥∥
∞∑
k=0

LAP (X(k))

∥∥∥∥∥
F

≤
∞∑
k=0

‖LAP (X(k))‖F =

∞∑
k=0

‖LA(PX(k)P ′)‖F

≤ ||A||∞
∞∑
k=0

‖PX(k)P ′‖F .

(12)

Since from the assumption x(·) converges to S, we have that
∑∞

k=0 ‖PX(k)P ′‖F < ∞
from Lemma 8 and the result follows.

Proof of sufficiency of Theorem 12 continued. Lemma 13 provides, under
the assumptions of the theorem, that Υ is well defined, and from (9) and (10) we
obtain

∞∑
k=0

‖Z(k)‖F =

∞∑
k=0

〈L̂k(X(0) + Υ), I〉,(13)

and recalling that rσ(L̂) < 1, we have that

∞∑
k=0

‖Z(k)‖F < ∞.(14)D
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Now we show by induction that

X(k) ≤ Z(k) ∀k ≥ 0.(15)

For k = 0 we defined Z(0) = X(0); assuming X(k) ≤ Z(k) one can check employing
Lemma 10 and Proposition 11 (iii), (iv), that

X(k + 1) ≤ (1 + α2)LA+AP−AP (X(k)) + (1 + 1/α2)LB(U(k))

≤ (1 + α2)2LA−AP (X(k)) + (1 + α2)(1 + 1/α2)LAP (X(k))

+ (1 + 1/α2)LB(U(k))

= L̂(X(k)) + L̃(X(k)) + L̄(U(k))

≤ L̂(Z(k)) + L̃(X(k)) + L̄(U(k)) = Z(k + 1)

and the induction is complete. From (15) we obtain that for each k ≥ 0, Z(k)−X(k) ≥
0 in such a manner that Z(k) −X(k) ∈ Hn

F and 〈Z(k) −X(k), I〉 ≥ 0. This leads to
‖Z(k)‖F ≥ ‖X(k)‖F and from (14) we obtain

∞∑
k=0

||X(k)||F ≤
∞∑
k=0

||Z(k)||F < ∞,

and Lemma 8 with trivial S = 0 provides that x(·) converges.

4.2. The main result. The first result of this section follows in a straight-
forward manner from Theorem 12 and the definition of detectability. We omit the
proof.

Lemma 14. System Ψ is detectable if and only if there exists an invariant space
S such that the following conditions hold:

(i) (A,P) is �2-stable in S;
(ii) x(·) converges to S provided that y(·) and u(·) converge.
Notice that, for S trivial, Lemma 14 becomes a tautology; indeed, item (i) holds

trivially and item (ii) reduces to the definition of detectability. The larger the invariant
space S is, the more significant the result will be. Along this line, in this section we
introduce the set F = {Fi, i ∈ Z} as

Fi = {x ∈ R
n : Y0(x, i) < ∞} ∀i ∈ Z(16)

and we show that F is the largest of such Ψ0-invariant space.
The first step is to show that F is indeed a Ψ0-invariant space. We need the

following preliminary result, adapted from [7].
Proposition 15. For each t ≥ 0, there exists H ∈ Hn

F such that Yt
0(x, i) =

x′Hix.
Lemma 16. F is a Ψ0-invariant space.
Proof. (Fi is a vector subspace.) For x1, x2 ∈ Fi and α, β ∈ R, from Proposition

15 it is simple to check that

YT
0 (αx1 + βx2, i) = (αx1 + βx2)

′Hi(αx1 + βx2)

≤ 2α2x′
1Hix1 + 2β2x′

2Hix2

= 2α2YT
0 (x1, i) + 2β2YT

0 (x1, i) ∀T ≥ 0.
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2142 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

Taking limits, we obtain

Y0(αx1 + βx2, i) ≤ 2α2Y0(x2, i) + 2β2Y0(x2, i) < ∞

in such a manner that αx1 + βx2 ∈ Fi.
(F is invariant.) We set x0(k) ∈ Fθ(k) and assume without loss that k = 0. Let

us deny the assertion and assume that x0(s) /∈ Fθ(s) for some s > 0, with probability
(w.p.) ε > 0. In this situation, it is simple to check that

∀γ > 0,∃tγ > 0 :

s+tγ∑
k=s

‖y0(k)‖2 ≥ γ w.p. ε.(17)

Employing the Tchebychev inequality, we evaluate

E

{
s+tγ∑
k=s

‖y0(k)‖2

}
≥ γP

{
s+tγ∑
k=s

‖y0(k)‖2
> γ

}
= γε,(18)

and we conclude that Y0(x(0), θ(0)) ≥ γε for all γ > 0, which is a contradiction in
view of the fact that x0(0) ∈ Fθ(0).

Next we show that F is the largest Ψ0-invariant space that possibly meets the
condition (i) in Lemma 14.

Lemma 17. If S is such that (A,P) is �2-stable in S, then S ⊂ F .
Proof. Let us deny the assertion of the lemma and assume that there exists i ∈ Z

for which Fi ⊂ Si strictly. We have that there exists x ∈ Si with x /∈ Fi and from
the definition of F we conclude that Y0(x, i) = ∞, which provides that the associated
output does not converge. Then, (A,P) is not �2-stable in S.

Lemmas 14 and 17 allow us to derive the main result of the paper.
Theorem 18. System Ψ is detectable if and only if the following conditions hold:

(A1) (A,P) is �2-stable in F ;
(A2) x(·) converges to F provided y(·) and u(·) converge.

Proof. (Sufficiency.) (A1) and (A2) satisfy the conditions for detectability in
Lemma 14.

(Necessity.) Since (A,C,P) is detectable, from Lemma 14 we have that there
exists S for which (A,P) is �2-stable in S and Lemma 17 provides that S ⊂ F .
Lemma 14 also yields that x(·) converges to S provided y(·) and u(·) converges; this
fact together with the fact that S ⊂ F lead immediately to (A2).

Now, notice from the concept of detectability that, in particular for the au-
tonomous system Ψ0, x0(·) converges whenever the corresponding output y(·) con-
verges or, equivalently, whenever x(0) ∈ Fθ(0). This means that (A,P) is �2-stable in
F and (A1) holds.

5. Sufficient conditions for (A1) and (A2). In this section we deal with
other detectability and observability concepts that appear in the literature of MJLS
and we present the role that they play as sufficient conditions (expressed entirely in
terms of the autonomous version of the system) for (A1) and (A2), and therefore for
the detectability concept here.

Initially, we introduce a concept of uniform observability related to the Ψ0-
invariant space S. From (7), recall that we set YT

0 (x, θ) = E{
∑T−1

k=0 |y0(k)|2}, where
y0(·) denotes the output trajectory of the autonomous system Ψ0 with x0(0) = x.

Definition 19 (uniform observability w.r.t. S). Consider the autonomous sys-
tem Ψ0. We say that (A,C,P) is uniformly observable with respect to (w.r.t.) S if
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2143

there exists T, ε > 0 such that YT
0 (x, θ) ≥ ε‖x‖2 whenever x ∈ S⊥

θ . We say that
(A,C,P) is uniformly observable if it is uniformly observable w.r.t. 0.

A particular case of this concept with trivial S appears in [1, 3, 5, 12], and it
generalizes previous observability concepts for MJLS, like the ones appearing in [11].

In Lemma 22 in what follows, we show that uniform observability is a sufficient
condition for the state convergence to S and, in particular, for (A2) to hold when
S ⊂ F . For the proof, we need the next two lemmas; their proofs are presented in
Appendix 9. Recall that Pi denotes the orthogonal projection onto S⊥

i , i ∈ Z.
Lemma 20. If (A,C,P) is uniformly observable w.r.t. S, then there exist T, ε > 0

such that YT
0 (x, θ) ≥ ε|Pθx|2 for each x ∈ R

n and θ ∈ Z.
Lemma 21. There exist δ1, δ2 > 0 for which

Yt,T
u (x, θ) ≥ δ1E{YT

0 (x(t), θ(t))} − δ2

T+t−1∑
k=t

E{|u(k)|2} ∀x ∈ R
n and θ ∈ Z.

Lemma 22. If (A,C,P) is uniformly observable w.r.t. S, then x(·) converges to
S provided that y(·) and u(·) converge. In addition, if S ⊂ F , then (A2) holds.

Proof. Provided that u(·) and the output y(·) converge, i.e., E[
∑∞

k=0 ‖u(k)‖2] <
∞ and Yu(x, θ) < ∞, respectively, we show that (A,C,P) uniformly observable w.r.t.
S suffices for convergence of the state to S, namely, E[

∑∞
k=0 ‖Pθ(k)x(k)‖2] < ∞. For

each t ≥ 0, we employ Lemmas 20 and 21 to evaluate

(19) Yu(x, θ) ≥ Yt,∞
u (x, θ) =

∞∑
k=0

Yt+kT,T
u (x, θ)

≥
∞∑
k=0

⎛
⎝δ1E{YT

0 (x(t + kT ), θ(t + kT ))} − δ2

t+(k+1)T−1∑
�=t+kT

E{|u(k)|2}

⎞
⎠

≥ δ1ε

∞∑
k=0

E{|Pθ(t+kT )x(t + kT )|2} − δ2

∞∑
k=0

E{|u(k)|2}.

Summing (19) for t = 0, . . . , T − 1, we obtain

TYu(x, θ) ≥ δ1ε

∞∑
m=0

E{|Pθ(m)x(m)|2} − Tδ2

∞∑
k=0

E{|u(k)|2},

which leads to

∞∑
m=0

E{|Pθ(m)x(m)|2} ≤ T

δ1ε
Yu(x, θ) +

Tδ2
δ1ε

∞∑
k=0

E{|u(k)|2} < ∞

and the first assertion is proven.
Now, from Definition 19 we obtain that if (A,C,P) is uniformly observable w.r.t.

S ⊂ F , then it is uniformly observable w.r.t. F . The result then follows immediately
from the first assertion.

Notice from Lemma 22 with trivial S that, if (A,C,P) is uniformly observable,
then x(·) converges to S = 0, provided y(·) and u(·) converges, i.e., (A,C,P) is
detectable, which implies the following corollary.

Corollary 23. If (A,C,P) is uniformly observable, then Ψ is detectable.
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Next, we are concerned with an earlier �2-detectability sense; see [7] in a setting
similar to the one of this paper, or [8] in the continuous time case, or [6] and [12] in
the finite dimensional case.

Definition 24 (�2-detectability). Consider the autonomous system Ψ0. We
say that (A,C,P) is �2-detectable if there exists L ∈ Hq,n

∞ for which (A + LC,P) is
�2-stable.

Lemma 25. If (A,C,P) is �2-detectable, then system Ψ is detectable.
Proof. We assume that (A,C,P) is �2-detectable and y(·) and u(·) converge, and

we show that x(·) converges in a similar manner to the proof of sufficiency of Theorem
12. Here we only point out the differences. For L ∈ Hq,n

∞ as in the �2-detectability
definition, rσ(LA+LC) < 1, see Proposition 9 (ii) in connection. We chose α �= 0 in
such a way that (1 + α2)2rσ (LA+LC) < 1 holds. The operators L̂, L̃, L̄ : Hn

F → Hn
F

are defined as

L̂(H) = (1 + α2)2LA+LC(H),

L̃(H) = (1 + α2)(1 + 1/α2)LLC(H) and

L̄(H) = (1 + 1/α2)LB(H) for H ∈ Hn
F .

In parallel with Lemma 13, we also need to show that
∑∞

k=0 LLC(X(k)) < ∞. In fact,
since y(·) converges for the autonomous system (A+LC,P), we get that Y0(x, θ) < ∞
and from (7) we evaluate

∞ > Y0(x, θ) ≥
∞∑
k=0

〈X(k), C ′C〉 =

∞∑
k=0

‖C ′X(k)C‖F

and employ Proposition 11 (i), (v), to obtain∥∥∥∥∥
∞∑
k=0

LLC(X(k))

∥∥∥∥∥
F

≤
∞∑
k=0

‖LLC(X(k))‖F =

∞∑
k=0

‖LL(CX(k)C ′)‖F

≤ ||L||∞
∞∑
k=0

‖CX(k)C ′‖F < ∞.

(20)

Remark 1. In [7] it is shown that �2-detectability (together with �2-stabilizability)
ensures that the optimal linear state feedback control that arises in the JLQ problem
is �2-stabilizing, considering an additional assumption on matrices Di as in Lemma
35. Lemma 25 generalizes this result in the sense that x(·) converges provided that
the output and input converge; here, neither optimality nor linear state feedback is
required.

The next concept is named WS-detectability, and it was introduced in [5] as
an attempt to deal with detectability in the present context. It can be seen as a
particularization of detectability with u ≡ 0.

Definition 26 (WS-detectability). Consider the autonomous system Ψ0. We
say that (A,C,P) is WS-detectable provided that x0(·) converges whenever the output
y0(·) converges.

It follows directly from the definitions that the concept is equivalent to �2-stability
in F .

Proposition 27. (A,C,P) is WS-detectable if and only if (A,P) is �2-stable in
F ((A1) holds).
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We finish with a summary of the main results of this section. For ease of reference,
the relations are numbered. The relation (1) follows from Proposition 27, (2) follows
from Corollary 23 and Theorem 18, (3) and (5) follows from Lemma 25, (4) follows
immediately from definition, and (6) follows from Lemma 22.

Proposition 28. The following relations hold:

(A,C,P)WS-detect.
1⇐⇒ A1

2⇐= (A,C,P) unif. obs.

⇑3 ⇓4

(A,C,P) �2-detect.
5

=⇒ A2
6⇐= (A,C,P) unif. obs. w.r.t. F

Ψ detect.

Remark 2. In principle the detectability concept depends on the nonautonomous
system (made explicit by assumption (A2)). However, for systems that are �2-
detectable, uniformly observable, or uniformly observable w.r.t. F , (A2) always holds
true, as indicated in Proposition 28. In section 6 we show that this is also the situation
for MJLS with finite Markov state.

6. Finite MJLS. Recall from the main result of the paper, Theorem 18, that
the system is detectable if and only if (A1) and (A2) hold. In this section, we show
that (A2) is made redundant when the Markov state space is finite, Z = {1, . . . , N}.
This leads to the main result of the section: (A1) is a necessary and sufficient condition
for detectability, in parallel with detectability notions for linear deterministic systems
and previous concepts for MJLS [2]. The result here also generalizes previous results
in the literature, which require that the control is in the linear state feedback form.

We start showing that uniform observability w.r.t. S always holds with S = N ,
where the set N = {Ni, i ∈ Z} is defined as

Ni = {x ∈ R
n : Y0(x, i) = 0}, i ∈ Z.(21)

Notice by inspection of (16) and (21) that x ∈ F〉 whenever x ∈ N〉, thus yielding
that N ⊂ F . One can also check that N is an invariant space, in a similar manner to
the proof of Lemma 16. We state this property formally.

Proposition 29. N is an invariant space, N ⊂ F .
The preliminary results of Proposition 30 and Lemma 31 in what follows will be

needed. First, let us generalize the definition of the cost functional Y0, as follows. Sup-
pose that the initial conditions (x, θ) are random variables with x a second order ran-
dom variable. In this situation, we set X(0) ∈ Hn

F such that Xi(0) = E{xx′1{θ=i}}.
Conversely, given any X ∈ Hn

F , there exists a second order r.v. x and some distribu-
tion for θ in such a way that we can represent Xi = E{xx′1{θ=i}}. These considera-
tions allow us to generalize the definition of Y0 by writing, for each X ∈ Hn

F ,

YT
0 (X) =

T−1∑
k=0

〈X0(k), C ′C〉(22)

whenever X(0) = X. Notice that YT
0 (x, θ) = YT

0 (X) whenever X is defined as above
with Xθ = xx′ and Xi = 0, i �= θ.

The next preliminary result is adapted from [3, Prop. 1].

Proposition 30. Assume that Z = {1, . . . , N}. If Yn2N
0 (X) = 0, then Yt

0(X) =
0 for all t ≥ 0.

Lemma 31. Let P be the projection onto N⊥. The following assertions hold:
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2146 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

(i) Y0(X) = 0 if and only if P ′XP = 0;
(ii) (A,C,P) is uniformly observable w.r.t. N if there exists ε > 0 for which

YT
0 (X) ≥ ε ‖X‖F whenever X − PXP ′ = 0.

For the proof of Lemma 31, see Appendix 9.
Lemma 32. Assume that Z = {1, . . . , N}. Then, (A,C,P) is uniformly observ-

able w.r.t. N .
Proof. Let P be the projection onto N⊥ and recall that N̄ = {H ∈ Hn

F : PHP ′ =
0} and N̄⊥ = {H ∈ Hn

F : H − PHP ′ = 0}. Let us show that there exist ε > 0 such
that YT

0 (X) ≥ ε ‖X‖F whenever X ∈ N̄⊥. Let us deny this assertion and assume
that there exists a sequence Xm ∈ NC , m = 1, 2, . . . , for which

Yn2N
0 (Xm) ≤ m−1,(23)

where

NC = {X ∈ N̄⊥ : ‖X‖F = 1} ⊂ N̄⊥.

For the countably finite case, one can check that NC is a compact set and this leads
to the fact that there exists a subsequence Xmk

that converges to

X̄ ∈ NC ⊂ N̄⊥.(24)

Moreover, it is not difficult to check that Yn2N
0 (·) is continuous; this fact and (23)

allow us to write that Yn2N
0 (X̄) = limk→∞ Yn2N

0 (Xmk
) ≤ limk→∞ k−1 = 0. Then,

Proposition 30 yields that Y0(X̄) = 0 and from Lemma 31 (i) we conclude that
X̄ ∈ N̄ , which is a contradiction, in view of (24). We have shown that there exist
ε > 0 such that YT

0 (X) ≥ ε ‖X‖F whenever X ∈ N̄⊥; Lemma 31 (ii) completes the
proof.

The result of Lemma 32 cannot be extended to the countably infinite case, as we
show in the following counterexample. In connection, note that the set NC in the
proof of Lemma 32 is no longer compact.

Example 1. Let n = 1, pi i+1 = 1, Ai = 1, Ci = ri, |r| < 1. It is simple to check
that Y0(x, i) = ri(1− r)|x|2, in such a manner that for each γ > 0 there exists i such
that Y0(x, i) < γ|x|2, which implies that (A,C,P) is not uniformly observable w.r.t.
N .

The next result follows from Lemmas 22 and 32 and the fact that N ⊂ F (see
Proposition 29); the proof is omitted.

Lemma 33. Assume that Z = {1, . . . , N}. Then, (A2) holds.
The next result is immediate from Lemma 33 and Theorem 18. We state the

result in terms of the triplet (A,C,P) to emphasize that the detectability concept
depends only on the autonomous version Ψ0 of the system.

Theorem 34. Assume that Z = {1, . . . , N}. (A,C,P) is detectable if and only
if (A1) holds.

Remark 3. The relation between detectability and other detectability concepts
for finite scenarios is discussed here. The weak detectability concept for MJLS with
finite Markov state was introduced in [2]. It requires that x(·) converges provided
Y0(x, θ) = 0. In [5] it was shown that this concept is equivalent to WS-detectability
when reduced to the finite case. Assuming Z = {1, . . . , N}, Proposition 27, Theorem
34, and the aforementioned facts provide the following relations:

weak detectability ⇔ WS-detectability ⇔ A1 ⇔ detectability.(25)
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2147

For (finite dimensional) linear deterministic systems, it was shown in [2] that the
weak detectability concept retrieves the usual detectability concept. Then, from the
relations in (25) we conclude that, for linear deterministic systems,

usual detectability concept ⇔ detectability.

7. Detectability and the jump linear quadratic problem. In this section
we are concerned with the JLQ problem, which consists of obtaining the control u(·)
that minimizes the cost functional Yu(x, θ). We also consider the related infinite
coupled algebraic Riccati equations (ICARE).

We assume here with no loss of generality that the control is in linear state
feedback form, u(k) = Gθ(k)x(k), G ∈ Hr,n

∞ . Indeed, it is a well-known fact that the
optimal control is in this form; see, e.g., [7]. In connection, we denote YG(·) = Yu(·)
to emphasize the dependence on G.

Also a standard assumption in the JLQ problem, that infi∈Z σ−(D′
iDi) = ξ > 0,

is in force here. In this situation, the convergence of the input and the output are
directly connected and the condition in (A2) (e.g., in Theorem 18) related to the input
is not essential; the following lemma formalizes the result.

Lemma 35. If infi∈Z σ−(D′
iDi) = ξ > 0 and Yu(x, θ) < ∞, then u(·) converges.

Proof. Employing (7) and the assumptions in the lemma, we evaluate ∞ >
Yu(x, θ) ≥

∑∞
k=0〈U(k), D′D〉 ≥ ξ

∑∞
k=0 ‖U(k)‖F .

The next result establishes that a linear state feedback control is stabilizing when-
ever the associated cost is bounded.

Lemma 36. Assume that (A,C,P) is detectable. If G ∈ Hr,n
∞ is such that

YG(x, θ) < ∞ ∀x ∈ R
n, θ ∈ Z, then (A + BG,P) is �2-stable.

Proof. Consider the system Ψ in closed loop form with u(k) = Gθ(k)x(k),{
x(k + 1) = (Aθ(k) + Bθ(k)Gθ(k))x(k), k ≥ 0,

y(k) = (Cθ(k) + Dθ(k)Gθ(k))x(k).
(26)

For each initial condition x ∈ R
n and θ ∈ Z we have from the lemma that Yu(x, θ) =

YG(x, θ) < ∞, which means that the associated output y(·) converges; moreover,
Lemma 35 provides that u(·) converges. In this situation, detectability yields that
x(·) converges, and we conclude that (A + BG,P) is �2-stable.

In what follows, we consider the following ICARE in the unknown R ∈ Hn
F that

arises in the JLQ problem (see, e.g., [7]):

0 =
(
Ai + BiGi

)′ ∑
j∈Z

pijRj

(
Ai + BiGi

)
+ C ′

iCi + G′
iD

′
iDiGi,(27)

Gi = −

⎛
⎝D′

iDi + B′
i

∑
j∈Z

pijRjBi

⎞
⎠

−1

B′
i

∑
j∈Z

pijRjAi, i ∈ Z.(28)

The following results are adapted from [7].
Proposition 37. Assume that R ∈ Hn

F satisfies the ICARE (27)–(28). The
following assertions hold:

(i) YG(x, θ) ≤ x′Rθx;
(ii) If (A+BG,P) is �2-stable, then R ∈ Hn

∞ is the unique solution of the ICARE.
Moreover, the solution of the JLQ problem is u(k) = Gθ(k)x(k), where G is
given by (28).
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2148 E. F. COSTA, J. B. R. DO VAL, AND M. D. FRAGOSO

Theorem 38. Assume that (A,C,P) is detectable according to Definition 1.
Then, the ICARE has at most one solution. Moreover, if R ∈ Hn

F is the solution of
the ICARE, then (A + BG,P) is �2-stable with the optimal control (28).

Proof. Let R ∈ Hn
F be a solution of the ICARE. From Proposition 37 (i) we

have that YG(x, θ) ≤ x′Rθx, for each x, θ, and Lemma 36 provides that (A + BG,P)
is �2-stable. Hence, Proposition 37 (ii) yields that R is the unique solution of the
ICARE and the optimal control is given by (28).

Remark 4. The results in this section generalize previous result in [7] from the
fact that detectability here generalizes the �2-detectability notion employed there; see
Lemma 25.

8. Examples. We start this section with an example showing that (A2) does
not necessarily hold for MJLS with infinite countably Markov chain. Then Example 3
shows that the detectability notion according to Definition 1 depends on the collections
of matrices B and D, and thus it cannot be related to the autonomous version Ψ0

only.
We also show, via Example 4, that the detectability concept here generalizes

the earlier �2-detectability and uniform observability concepts, in the sense that the
converse relations of Proposition 28 involving those concepts does not hold.

Example 2. This example illustrates that (A2) does not necessarily hold true for
MJLS with infinite countably Markov chain. Indeed, we present a system for which
the state trajectory does not converge to F under converging input and output.

Assume that pi i+1 = 1, i ∈ Z, in such a manner that θ(k) = k + i a.s. whenever
θ(0) = i. Let n = 1, Ai = Bi = 1, Di = 0, i ∈ Z. As regards to C ∈ H1

F , we set
C1 = 0 and Ci = (i−1)−1/2, i ≥ 2, in order to get that Cθ(k) = (k+ i−1)−1/2, k ≥ 1.

It is simple to check for the autonomous system that Y0(x, θ) =
∑∞

k=0 x
2/(k +

i− 1), which converges if and only if x = 0, thus leading to

F = 0.

Now, for simplicity, we consider fixed initial conditions x = 1 and θ = 1. Consider
the control given by u(0) = 0 and u(k) = (k + 1)−1/2 − k−1/2, k ≥ 1. We get that
x(k) = k−1/2, k ≥ 1 is the corresponding trajectory. It is a simple matter to check
that (see [16, Chap. 2.6])

Ex,θ

{ ∞∑
k=0

|u(k)|2
}

=

∞∑
k=1

(k1/2 − (k + 1)1/2)2

k(k + 1)
≤

∞∑
k=1

1

k(k + 1)
= 1,(29)

and we have that the input converges. As regards to the output, we first evaluate

E

{ ∞∑
k=0

x(k)′C ′
θ(k)Cθ(k)x(k)|x = θ = 1

}
=

∞∑
k=1

1

k4×1/2
=

∞∑
k=1

1

k2
≤

∞∑
k=0

1

2k
≤ 2,

where, in the last inequality, we employed the evaluation in [16, Chap. 3.1]). Together
with (29), they provide that

Y(1, 1) ≤ 3,

which means that the output converges. However, we can also write that

Ex,θ

{ ∞∑
k=0

|x(k)|2
}

=

∞∑
k=0

1

k
= ∞,
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and the state does not converge to the trivial F . Thus, (A2) does not hold and the
system is not detectable. It is also interesting to mention that from Proposition 29 we
have that N = 0 and, thus, the example also illustrates that the state trajectory does
not converge to the nonobserved space, despite the fact that both input and output
converge.

Example 3. In the system of Example 2, let Bi = 0, i ∈ Z. In this case,
Y(x, i) = Y0(x, i) =

∑∞
k=0 x

2/(k + i − 1), and the output converges if and only if
x(0) = x = 0. Then, the system is trivially detectable in the sense of Definition 1.
On the other hand, recall that the system in Example 2 is not detectable. This makes
clear the dependence of the detectability concept on B ∈ Hn,r and D ∈ Hq,r and
not only on the parameters of the autonomous system, which shows that the class
of systems studied here share with general nonlinear systems the characteristic that
observability and detectability in general depends on features of the input class.

Example 4. Consider the following version of the JLQ problem of section 7:

min
u

Yk0
u (x, θ), where Yk0

u (x, θ) = E

{
k0∑
k=0

|y(k)|2
}
,(30)

y is the output of system Ψ defined in (1) and k0 is a Fk-stopping time defined as
the time that the Markov chain Γ = {γ(k), k ≥ 0} taking values on the set {n, f}
first enters the state f , i.e., k0 = inf{k : γ(k) = f}. We assume that the transition
probabilities are given by qnn ≥ 0, 0 ≤ qnf ≤ ν < 1 and qff = 1 (f is a cemetery
state).

A possible physical interpretation is that the cemetery state f represents a critical
failure of the system, which forces the system to stop for maintenance at time k0; n
and f stand for normal and failure, respectively.

We start showing that the problem (30) can be cast as the JLQ problem for the
MJLS defined as

Ψ̄ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ̄ takes values on Z̄ = {(f), (1, n), (2, n), . . . };
P̄ : p̄ff = qff = 1, p̄(i,n)(j,n) = (1 − qnf )pij , p̄(i,n)f = qnf ;

system matrices: Āf = 0, Ā(i,n) = Ai, i �= f, and similarly for B̄, C̄, D̄;

initial conditions:
x(0) = x;
θ̄(0) = f if γ(0) = f ; θ̄(0) = (θ(0), n) otherwise.

(31)

Lemma 39. The problem (30) is equivalent to the JLQ problem for system Ψ̄.
Proof. Let us define the Fk-stopping time t0 = inf{k : θ̄(k) = f}. It is a

simple matter to check that the random variables t0 and k0 have the same statistics
and similarly for the variables of system Ψ and Ψ̄ for k ≤ t0 (e.g., y(k) and ȳ(k)
are statistically identical for k ≤ t0). Let Ȳu(·) represent the cost functional in (2)
associated with system Ψ̄. Then, we can write

Ȳu(x, θ) =

∞∑
k=0

E{|ȳ(k)|21{k≤t0}} +

∞∑
k=0

E{|ȳ(k)|21{k>t0}}

=

∞∑
k=0

E{|ȳ(k)|21{k≤t0}} =

∞∑
k=0

E{|y(k)|21{k≤k0}} = Yk0
u (x, θ).

(32)

The next lemma establishes that system (Ā, C̄, P̄) is a counterexample for the
converse of Corollary 23; namely, it shows that the uniformly observable systems
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form a strictly subset of the set of detectable systems. The proof is presented in
Appendix 9.

Lemma 40. If (A,C,P) is uniformly observable, then system Ψ̄ is detectable.
(Ā, C̄, P̄) is not uniformly observable.

Example 5. Let us consider systems that present Markov chains with distinct
communicating classes Zj = {inj−1 , . . . , inj}, n0 = 1, j = 1, . . . , N , for which P{θ(k+
1) ∈ Zj |θ(k) ∈ Zi} = 0 for all i �= j. Let us denote such a system by Ψc; we also
denote Aj = (Ai), i ∈ Zj and similarly for Cj and P

j . We refer to the system
associated with a class Zj as a subsystem (Aj , Cj ,Pj).

The following result is adapted from [5].
Proposition 41. Consider system Ψc. Assumption (A1) holds for (A,C,P) if

and only if (A1) holds for each subsystem (Aj , Cj ,Pj), j = 1, . . . , N .
Let us construct in this example a system Ψc composed of one uniformly observ-

able subsystem plus one finite dimensional subsystem, composed by the two classes
Z1 = {1, 2} and Z2 = {3, 4, . . . }, and probability matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

p11 (1 − p11) 0 . . .
(1 − p22) p22 0 . . .

0 0 p33 p34 . . .
...

... p43 p44 . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and data A1 = a1, A2 = a2, C1 = 1, C2 = 0, p11 > 0, and p22a
2
2 > 1. We assume that

(A2, C2,P2) is uniformly observable.
It is shown in [1] that (A1, C1,P1) is uniformly observable. Since uniform observ-

ability implies (A1) (see Proposition 28), we have that (A1) holds for both (A1, C1,P1)
and (A2, C2,P2) and Proposition 41 yields that (A1) holds for the overall system Ψc.

Uniform observability also implies uniform observability w.r.t. F for each subsys-
tem (see Proposition 28), and it is simple to check that the overall system is uniformly
observable w.r.t. F . In this situation, Proposition 28 yields that (A2) holds for the
overall system.

Then, Theorem 18 implies that system Ψc is detectable. However, for this simple
example, it was shown in [5] that the overall system is not �2-detectable. This implies
that the converse of Lemma 25 does not hold, and we conclude that detectability here
generalizes �2-detectability.

9. Conclusions. This paper deals with detectability for discrete-time Markov
jump linear systems with countably infinite Markov state. Beginning with Definition
1, which expresses an idea that at same time is purposeful and captures the abstract
notion of detectability, we show that it can be written down in terms of conditions (A1)
and (A2). Condition (A1) alone refers to the autonomous systems and its behavior
within the invariant space F . It is reminiscent of detectability concepts related with
finite dimensional linear systems. Condition (A2) refers to the complete system Ψ
and its behavior within set F⊥. It comes as an essential condition, connected to the
fact that the observed part of the autonomous system, represented by F⊥, may not be
uniformly observable, contrary to the finite dimensional case. Example 2 shows that
(A2) may fail in the infinite Markov state case. This clarifies that, unlike the finite
dimensional contexts, the detectability notion yielding property (i) (stated in section
1) cannot be expressed in terms of the parameters of the autonomous version Ψ0;
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thus, (iii) cannot be completely reproduced. Exceptions are pointed out in Remark
2.

Regarding the issues (I)–(III), note that (I) is accomplished in the sense that
we show that F is the largest Ψ0 invariant space for which (A1) and (A2) together
possibly hold. Along this line, a remarkable feature is that (A2) is weaker than
the natural extension of the finite dimensional case, that the trajectories converge
to the nonobservable space N ⊂ F . In addition, (II) and (III) are accomplished by
showing that the notion of detectability generalizes previous notions of �2-detectability
and uniform observability, as well as detectability notions for the finite Markov state
case and the usual detectability concept for linear deterministic systems, in their
respective scenarios. Moreover, these relations provide a generalization for earlier
results concerning stability of trajectories with associated finite cost, in the sense that
here we are not constrained to linear feedback form nor optimal control; see Remark
1). A particularization of the results for the JLQ optimal control problem, which was
the initial motivation for this work, provides that the JLQ control is stabilizing and
the solution to the associated ICARE is unique.

Finally, although the analysis here concludes a circle of ideas toward detectability
of MJLS, which has began in [1, 3], we believe that the approach via invariant sub-
spaces proposed here may be useful elsewhere, in contexts such as nonlinear systems
or other infinite dimensional systems.

Appendix: Proof of Lemmas 8 and 10.

Proof of Lemma 8. It is simple to check that

E[|Pθ(k)x(k)|2] = tr{E[Pθ(k)x(k)x(k)′P ′
θ(k)]}

=
∑
i∈Z

tr{PiE[x(k)x(k)′1{θ(k)=i}]P
′
i}

=
∑
i∈Z

tr{PiXi(k)P ′
i} = ‖PX(k)P ′‖F ,

which provides that
∑∞

k=0 E[|Pθ(k)x(k)|2] < ∞ if and only if
∑∞

k=0 ‖PX(k)P ′‖F <
∞.

Proof of Lemma 10. For any scalar α �= 0, we have that

Xi(k + 1) = E{[Aθ(k)x(k) + Bθ(k)u(k)][Aθ(k)x(k) + Bθ(k)u(k)]′1{θ(k+1)=i}}
≤ E{[(1 + α2)(Aθ(k)x(k)x(k)′A′

θ(k))

+ (1 + 1/α2)(Bθ(k)u(k)u(k)′B′
θ(k))]1{θ(k+1)=i}}

=
∑
j∈Z

E{[(1 + α2)(Ajx(k)x(k)′A′
j)

+ (1 + 1/α2)(Bju(k)u(k)′B′
j)]1{θ(k+1)=i,θ(k)=j}}

= (1 + α2)
∑
j∈Z

pjiE{Ajx(k)x(k)′A′
j1{θ(k)=j}}

+ (1 + 1/α2)
∑
j∈Z

pjiE{Bju(k)u(k)′B′
j1{θ(k)=j}}

= (1 + α2)LA(X(k)) + (1 + 1/α2)LB(U(k)), k ≥ 0.D
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Appendix: Proofs of Lemmas 20 and 21.

Proof of Lemma 20. Since Pix is the projection of x onto S⊥
i , we have that

Pix ∈ S⊥
i and from the hypothesis of the lemma we have that there exists T, ε > 0

such that YT
0 (Pix, θ) > ε|Pix|2. Employing this fact and Proposition 15 we evaluate,

for α > 0,

YT
0 (x, i) = x′Hx = (x− Pix + Pix)′H(x− Pix + Pix)

≥ (1 − α2)(x− Pix)′H(x− Pix) + (1 − 1/α2)(Pix)′H(Pix)

≥ (1 − 1/α2)(Pix)′H(Pix) = (1 − 1/α2)YT
0 (Pix, i)

> (1 − 1/α2)ε|Pix|2.

The next results are needed for the proof of Lemma 21.
Lemma 42. Ex,θ{YT

0 (x(t), θ(t))} = YT
0 (X(t)).

Proof. Using (7) we can write that

Yt,T
0 (x, θ) =

t+T−1∑
k=t

〈X(k), C ′C〉 = Ex,θ{YT
0 (x(t), θ(t))}.

However,

t+T−1∑
k=t

〈X(k), C ′C〉 =

T−1∑
�=0

〈X̃(�), C ′C〉 = YT
0 (X̃(0)),

where X̃i(�) = Xi(t+�) = Ex,θ{x(t+�)x(t+�)′1{θ(t+�)=i}} for � = 0, . . . , T −1, which
shows the result.

Lemma 43. Let V ∈ Hn
∞. The following inequality holds:

〈LV (X(k)), C ′C〉 ≥(1 − α2)〈LV (LA(X(k − 1))), C ′C〉 − κ‖U(k − 1)‖F(33)

for some 0 < α < 1 and κ > 0.
Proof. From Lemma 10 we evaluate

〈LV (X(k)), C ′C〉 ≥ (1 − α2)〈LV (LA(X(k − 1))), C ′C〉
+ (1 − 1/α2)〈LV (LB(U(k − 1)), C ′C〉

(34)

and for the second term on the right-hand side of (34) we employ Proposition 11 (v)
to obtain, for 0 < α < 1,

(1 − 1/α2)〈LV (LB(U(k − 1))), C ′C〉
≥ (1 − 1/α2)‖C‖2

∞‖V ‖2
∞‖B‖2

∞〈U(k − 1), I〉
= −κ〈U(k − 1), I〉,

(35)

where κ = −(1 − 1/α2)‖C‖2
∞‖V ‖2

∞‖B‖2
∞ > 0. The result follows immediately from

(34) and (35).

Proof of Lemma 21. From (33) with V = I, we get that

〈X(m), C ′C〉 ≥ (1 − α2)〈LA(X(m− 1)), C ′C〉 − κ‖U(m− 1)‖F .(36)
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DETECTABILITY OF INFINITE MARKOV JUMP LINEAR SYSTEMS 2153

For the first term on the right-hand side of (36), we employ (33) with V = A, and we
repeat this step recursively for m = k − 1, . . . , t + 1, to obtain

〈X(k), C ′C〉 ≥ (1 − α2)k−t〈Lk−t
A (X(t)), C ′C〉

− κ

k−1∑
�=t

(1 − α2)−�+k−1‖U(�)‖F .
(37)

Noticing that (1 − α2)k−t ≥ (1 − α2)T for k − t ≤ T and −(1 − α2)k ≥ −1 for all
k ≥ 0, we get that

〈X(k), C ′C〉 ≥ (1 − α2)T 〈Lk−t
A (X(t)), C ′C〉 − κ

k−1∑
�=t

‖U(�)‖F(38)

for t ≤ k ≤ T + t− 1. Then, from (7) and (38) we evaluate

Yt,T
u (x, θ) =

T+t−1∑
k=t

〈X(k), C ′C〉 + 〈U(k), D′D〉

≥ (1 − α2)T
T+t−1∑
k=t

〈Lk−t
A (X(t)), C ′C〉 − κ

T+t−1∑
k=t

k−1∑
�=t

‖U(�)‖F

≥ (1 − α2)T
T−1∑
k=0

〈Lk
A(X(t)), C ′C〉 − κT

T+t−1∑
k=t

‖U(k)‖F

or, equivalently,

Yt,T
u (x, θ) ≥ δ1YT

0 (X(t)) − δ2

T+t−1∑
k=t

‖U(k)‖,

where δ1 = (1 − α2)T and δ2 = κT . Lemma 42 completes the proof.

Appendix: Proof of Lemma 31. For the proof of Lemma 31, we write X in
the following form [14, Them. 7.5.2],

Xi = v1
i v

1′
i + · · · + vrii vri′i ,(39)

where vmi ∈ R
n,m = 1, . . . , r, and ri = rank(Xi) ≤ n, and we write the trajectory

X(k) as a linear combination of trajectories Xi,m(k) associated with initial condition
vmi , as follows.

Let xi,m(0) = vmi ∈ N (Oi). Let xi,m(k) ∈ R
n, m = 1, . . . , ri, be given by

the difference equation xi,m(k + 1) = Aθ(k)x
i,m(k), θ(0) = i. Let Xi,m(k) ∈ Hn0

F

be the second moment matrix Xi,m
j (k) = E{xi,m(k)xi,m(k)′1{θ(k)=j}}, j ∈ Z. No-

tice that Xi,m
i (0) = vmi vm′

i and Xi,m
j (0) = 0 for j �= i, and we can write Xi =∑

j∈Z
∑rj

m=1 X
j,m
i (0). Then, from the linearity of the operator L we have that, pro-

vided X(0) = X,

X0,i(k) =
∑
j∈Z

rj∑
m=1

Xj,m
i (k)D
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which leads to

Y0(X) =

∞∑
k=0

〈X0(k), C ′C〉 =

∞∑
k=0

〈∑
j∈Z

rj∑
m=1

Xj,m(k), C ′C

〉

=
∑
j∈Z

rj∑
m=1

∞∑
k=0

〈Xj,m(k), C ′C〉 =
∑
j∈Z

rj∑
m=1

Y0(v
m
j , j).

(40)

Proof of Lemma 31. (i) Notice that (39) provides that

PXP ′ = 0 ⇔ Piv
m
i vm′

i P ′
i = 0 ∀i,m

⇔ vmi ∈ Ni ∀i,m ⇔ Y0(v
m
i , i) = 0 ∀i,m.

(41)

From (40), Y0(X) = 0 is equivalent to Y0(v
m
i , i) = 0, for each i and m, and, from

(41), this is equivalent to PXP ′ = 0.
(ii) We shall show that Y0(x, i) ≥ ε|x|2 whenever x ∈ N⊥

i . Let X ∈ Hn
F be defined

as Xi = xx′ and Xj = 0, j �= i. Since x ∈ N⊥
i , we have that Pix = x and it is simple

to check that PXP ′ = X and X ∈ N̄⊥. Then, from the assumption in the lemma, we
obtain Y0(X) ≥ ε‖X‖F and it follows that Y0(x, i) = Y0(X) ≥ ε‖X‖F = ε|x|2.

Appendix: Proof of Lemma 40.

Proof of Lemma 40. First we show that (A2) holds for (Ā, C̄, P̄). Notice
that the requirements in Assumption (A2) hold trivially whenever θ̄(0) = f ; indeed,
x̄(k) = 0, k > 0, a.s..

Now consider θ̄(0) �= f . From the uniform observability of (A,C,P) we have that

there exists T, ε > 0 for which
∑T−1

k=0 E{|y(k)|2|T < k0} > ε|x0|2. Then, we define the
stopping time t0 = inf{k : θ̄(k) = f} and similarly to (32) we evaluate

YT
0 (x, θ) ≥

T−1∑
k=0

E{|ȳ(k)|21{t0≥T}} =

T−1∑
k=0

E{|y(k)|21{k0≥T}}

= P{k0 ≥ T}
T−1∑
k=0

E
{
|y(k)|2

∣∣k0 ≥ T
}
≥ P{k0 ≥ T}ε|x|2.

Since qθf ≤ ν < 1, we have that P{k0 ≥ T} > 0 whenever θ(0) = θ �= f (γ(0) �= f).
This allows us to write

YT
0 (x, θ) ≥ ε2|x|2, θ �= f,(42)

where ε2 = εP
{
k0 ≥ T

∣∣θ �= f
}
> 0.

Now we show that (A1) holds for (Ā, C̄, P̄), that is, we show that Y0(x, θ) = ∞
provided that

∑∞
k=0 E{|x̄(k)|2} = ∞. Note that we can assume that θ(0) �= f ,

otherwise we have that
∑∞

k=0 E{|x̄(k)|2} = |x|2 < ∞. We evaluate, for any � ≥ 0,

Y0(x, θ) ≥
∞∑
k=�

E{|ȳ(k)|2} =

∞∑
m=0

(m+1)T+�−1∑
k=mT+�

E{|ȳ(k)|2}

≥
∞∑

m=0

(m+1)T+�−1∑
k=mT+�

E{|ȳ(k)|21{t0>mT+�}}

=
∞∑

m=0

P (t0 > mT + �)

(m+1)T+�−1∑
k=mT+�

E
{
|ȳ(k)|2

∣∣ t0 > mT + �
}
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and since t0 > mT + � implies in particular that θ(mT + �) �= f , we get from (42) that

Y0(x, θ) ≥
∞∑

m=0

P (t0 > mT + �)ε2E
{
|x̄(mT + �)|2

∣∣ t0 > mT + �
}

= ε2

∞∑
m=0

E{|x̄(mT + �)|21{t0>mT+�}}.
(43)

Summing up (43) for � = 0, . . . , T − 1, we obtain

TY0(x, θ) ≥ ε2

∞∑
k=0

E{|x̄(k)|21{t0>k}}.(44)

Now, recalling that θ(0) �= f , we evaluate

E{|x̄(k)|21{t0>k}} = P{t0 > k}E
{
|x̄(k)|2

∣∣ t0 > k
}

= (1 − qnf )kE
{
|x̄(k)|2

∣∣ t0 > k
}

= (1 − qnf )kE
{
|x̄(k)|2

∣∣ t0 = k
}

=
(1 − qnf )

qnf
(1 − qnf )k−1qnfE

{
|x̄(k)|2

∣∣ t0 = k
}

=
(1 − qnf )

qnf
P{t0 = k}E

{
|x̄(k)|2

∣∣ t0 = k
}

=
(1 − qnf )

qnf
E
{
|x̄(k)|21{t0=k}

}
= ε3E{|x̄(k)|21{t0=k}},

(45)

where ε3 = (1 − qnf )/qnf . Finally, (44), (45), and the fact that x̄(k) = 0 a.s. for each
k > t0 lead to

TY0(x, θ) ≥ ε2

∞∑
k=0

E{|x̄(k)|21{t0>k}}

= ε2
ε3

1 + ε3

1 + ε3
ε3

∞∑
k=0

E{|x̄(k)|21{t0>k}}

= ε2
ε3

1 + ε3

( ∞∑
k=0

E{|x̄(k)|21{t0>k}} +

∞∑
k=0

E{|x̄(k)|21{t0=k}}
)

= ε2
ε3

1 + ε3

∞∑
k=0

E{|x̄(k)|2} = ∞.

We have shown that (A1) and (A2) holds for (Ā, C̄, P̄); Theorem 18 provides the first
assertion in the lemma. For the second assertion, note that Y0(x, θ) = 0 whenever
θ = f .
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