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Let S be an integrable Pfaffian system. If it is invariant under a transversally free
infinitesimal action of a finite dimensional real Lie algelyawe show that the
“vertical” variational cohomology ofS is equal to the Lie algebra cohomology of

g with values in the space of the “horizontal” cohomology in a maximum dimen-
sion. This result, besides giving an effective algorithm for the computation of the
variational cohomology of an invariant Pfaffian system, provides a method for
detecting obstructions to the existence of infinitesimal actions leaving a given sys-
tem invariant. ©2003 American Institute of Physic§DOI: 10.1063/1.1607513

I. INTRODUCTION

We study here a problem that arises naturally in connection with the integration of differential
systems invariant under finite or infinitesimal group actions, the theory of such systems, as con-
ceived by Sophus Lie and later brought to its full light byeECartan, being discussed in Ref. 7.

Let D be such a differential systeltviewed as a sub-manifold of some Jet or Grassmannian
bundle invariant under the action of a finite dimensional real Lie algefreof infinitesimal
contact transformations and let us further assumeThas integrable and of finite typ@therwise

we are led into the realm of infinite Lie pseudogroupsd that the infinitesimal action of
operates transitively in a direction transverse to each solgRefn 7, Sec. 1B Then the integra-

tion of D can be reduced to the integration of a finite family of integrable Pfaffian systems that
are invariant under the actions of Abelian or simple algebras, these infinitesimal actions being
transversally fre¢Ref. 7, Sec. %

The integration of differential equations, in the sense of devising methods that will eventually
lead to explicit solutions or at least that will contribute to simplify and reduce the integration
problem(e.g., reduce the order of the equatipngas a major theme in the second half of the last
century, as witnessed by Lie’s own writingRefs. 8, 9, 11, 18 It is therefore not surprising that
Lie's ultimate concern should have been precisely the search of such methods. Using the structure
of continuous groups, he could easily say which, among the many integration methods known at
that time, were théest(the sharpest, in the sense that they involved the least number of opera-
tions and the lowest orders for these operati@msl would claim, with reason, that his were the
best(Refs. 8, 10, 11 Inasmuch, he showed in Ref. 12 thaa‘mahode du dernier multiplicateur
de Jacobiwas the best on the grounds that the infinite continuous group of all volume preserving
transformations is simple.
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Elie Cartan abandoned this pursuit, at least as a priority, since, as he claimed, in this endeavor
we most often fail rather than succeed. He was the first to point out that we should actually study
the structure underlying an integration problem and, in understanding this structure, he created
integration methods, for invariant differential systems, inconceivable at Lie's(fRats. 2—5. For
such systems, this underlying structure has a very precise meaning and is a direct consequence of
the structure ofg and of the prescribed invariant infinitesimal actidgefs. 1, 7, Secs. 536

If the differential systemD is invariant under the action of a contact Lie algelgrahen its
associated Pfaffian syste@, obtained by restricting all the contact 1-forms to the underlying
manifold R of D, is integrable and invariant by the restriction gf. Conversely, if S is
invariant by the infinitesimal actiob of a Lie algebrag’ then we can extend each vector field
®d(v), veg’, toaninfinitesimal contact transformation so as to obtain a contact algelinat
leaves D invariant and such thatb(g’)=g|R . In general, the actions off and g’ are not
transversally free but, as evidenced in Ref. 7, Sec. 5, one can in many cases reach this appropriate
setting essentially via restriction and prolongation operations. It therefore becomes relevant, in
view of applying the Lie and Cartan theory, to know whether a given integrable Pfaffian sgstem
admits a transversally free invariant infinitesimal action of a given Lie alggbi@, more gen-
erally, of some Lie algebray. Showing the existence of such infinitesimal actions is a rather
delicate problem that has to be analyzed in each specific case since there does not seem to exist
any general method. On the other hand, showing non-existence can be achieved by displaying
some obstructions via cohomological methods and this is actually our main concern in this paper.
One last word is due. Whereas the structure of a differential system is a global concept, the
integration of such a system can, in a first approach, be viewed as a local problem. Since any
integrable Pfaffian system admits locally many automorphisms, in fact, they form an infinite Lie
pseudogroup of order one, there exist, in a neighborhood of each point, many transversally free
infinitesimal actions leaving the system invariant and the Lie and Cartan theory can always be
applied.

The Euler—Lagrangévariationa) complex associated to an integrable Pfaffian syst&ns
finite. As is usual, we calorizontalthat part of the complex preceding the Euler operd&oand
vertical that part subsequent to this operator. The horizontal part is a finite augmentatoiod
the vertical part a finite resolution. We show, in Sec(TWeorem }, that if S is invariant under
a transversally free infinitesimal action of the Lie algelyrathen the above finite resolution is
equivalent, in positive dimensions, to the Lie algebra compleg aéking values in the horizontal
cohomology of maximum dimension. In particular, the resulting cohomology spaces are equal
whereupon any discrepancy between the two cohomologies will put in evidence an obstruction to
the existence of such an infinitesimal action. The above equivalence also provides an effective
method for the computation of the vertical variational cohomology of an invariant Pfaffian system.

Throughout the years, several authors have given distinct though essentially equivalent for-
mulations to the variational complex. We adopt here the approach described in Ref. 6 since it
emphasizes the relationship of this complex with the algebra of generalized symmetries. Inasmuch
as the usual de Rham complex on a manifdid is the differential complex associated to the
algebra of all the vector fields oM , the horizontal part of the variational complex is a de Rham
complex associated to the algebra of all trivial symmettietal derivative and the vertical part
is a de Rham complex associated to the algebra of all generalized symmetries. Our first task, in
this paper, consists in writing down explicitly the complex we shall be dealing with, namely the
restriction of the general complex defined in Ref. 6 to an integrable Pfaffian system. This, unfor-
tunately, is a rather long and boring task hence we only state, in Sec. I, a well known lemma that
provides all the necessary technical information relevant to the restriction procedure and thereafter
construct directly, in Secs. lll and 1V, the desired complex. It turns out that the trivial symmetries
become simply the vector fields annihilated 8y and the generalized symmetries become the
equivalence classes of the infinitesimal automorphismS ofiodulo the trivial symmetries. There
is of course nothing new about this restricted complex, just a different make-up. Invariant systems
are examined in Sec. V and some examples are discussed in Sec. VI.

For simplicity, we assume that all the data a&& smooth though, in each specific caseX
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smoothness for somé& will suffice. We also assume that all the manifolds are connected and
second countable though not necessarily orientable and that all the objects such as functions,
vector fields, differential forms, etc. are globally defined on these manifolds unless stated other-
wise (e.g., local coordinates, local generators of Pfaffian systems and distributions

The second named author wishes to thank Piotr Mormul for some very helpful discussions.

Il. PFAFFIAN SYSTEMS AND THEIR PROLONGATIONS

Let S be a Pfaffian system, for the time being not necessarily integrable Yan&" the
corresponding distribution, both defined on the maniftdd (Ref. 7, Sec. 2 In terms of partial
differential equations, it seems preferable to view the distribubofor the Pfaffian systen$8) as
a section of the Grassmannian bund@M of linear contact elements of dimensiop
=rankZ or, still better, as the submanifol® of GYM , an image of this sectiofRef. 6, p. 614.

Since the dimensiomp will remain unchanged throughout the present discussion, we abbreviate
GPM by Gy, where k is the order of the contact elements under consideration. ReL G,
denote the first prolongation oR .

Lemma 1: The distributior® is integrable (involutive) if and only ifR, projects ontoR .

A proof of this result can be found in Ref. 7, Sec. 13. This proof tells us, in particular, that a fiber
(R)x, XeR, is either empty or else contains a single element, ¥ayThe first order linear
holonomic contact eIemerE&l) associated tor is the unique holonomic element tangent7?o

at the pointX . Since it does not make much sense to define the variational complex for other that
formally integrableequations(or at least equations that, after prolongation, become formally
integrable at large enough ordgre see that in the present situation it becomes natural to assume
that X is integrable. This does not mean, however, that variational complexes cannot be associ-
ated to nonintegrable Pfaffian systems. In this latter context, we ought to specify or determine the
dimension g=p of linear contact elements for which sufficient numbeof integral contact
elements do exige.g., Pfaffian systems that areinvolution, in the sense of Cartan, at dimension

q) and consider the variational complex in the realm of the bun@@s! . We shall nevertheless
restrict our attention to integrable systems.

When S (or ) is integrable, thenR, is the set of all second order contact elements
determined by the p-dimensional integral manifolds ofS and the assignementY
eR—->3IUCTAR, X=p, AY), is an integrable distributio ™, defined on the manifoldr ,
equivalent to % via the diffeomorphismB;=pg,: R—M . In general, thek -th prolongation
R«C Gy, 1 is the set of all k+1)-st order contact elements determined by theimensional
integral manifolds ofS. Furthermore, the assignmeite R, — S CT Ry 1, X=piri1Y,
where 3§ is the linear holonomic contact element at ordemssociated toY , is an integrable
distribution =® | defined on the manifold?,_; , equal to the annihilator of the restriction, to
Ry_1. of the canonical contact structu® of G, ([SW]*=u* S, 1:Ry_1— Gy; cf. Ref. 6,

Sec. 2. For any pair of integerhi<k, the distributions>® and 3 are equivalent via the
diffeomorphismpy, , 1R 1—Rp_1 (Rog=R, 20=3).

lll. THE HORIZONTAL OPERATOR

We now construct directly the so callédrizontal part of the variational complex associated
to an integrable Pfaffian syste®, namely that part preceding the Euler operator. We denote by
B the algebra of all theéglobally defined vector fields » tangent to the distributior®, = S*

(nel (X)) and by F the ring of all the(globally defineg C* functions on the underlying
manifold. The dual spacé&{=5*, with respect to theF-module structure, is equal to the set of
global sections of the dual bundlB2*=T*M/S and, correspondinglydH=I"(O%*). The
differential,

dy:O°H — O,

is defined by the usual formula:
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dupe (71, ---,775+1)=2i (=D 0(7) (71, - s oo D511
+ 2 (D, 7 L T T W) 1)

1<j

where the»; are vector fields tangent t8, 6(7;) is the usual Lie derivative anfl7; , 7; | the
usual Lie bracket. Let§ ; x%, ... ,xP, y, ... ,y9) be a foliated chart of, for which the integral
manifolds, in U, are given by the equationg*=c". Then an element of 1% has the local
expression

w=> ay...i dx10---Odx's,

the coefficientsail... i being C* functions onU , and

. . oy ...i. .
duu=2 (da.;|S)0dx10 - Odxis= 3 %dx‘ﬂdx‘lﬂ---Ddx'S, 2

where dail... iS|E (resp.,dx') stands for the restriction of this differential to the integral mani-

folds of X .

We now extend the differentidll) by adding, in the cochains, a term that corresponds in Ref.
6 to the moduleC of all the contact 1-forms. Here we considés1"(S) to be the module of all
the global sections of5, take the cochain spac®é’*=(0'C)® (I*H) and consider its elements
as horizontal forms with values ia'C. The extended differential,

dy (00 ®(CFH)—(O0'C) @ (05 1H),

is then defined by

dy(w®@u)(ny, ---v’73+1):§i: (D" 0(p) [ (1, s s )@ ]

+i§<)j D" wl i, Lomns oD s @, (3)

where ;e T'(2) and 6(7;) is the Lie derivative. The second term on the right hand side belongs
of course to0'C, the same being true for the first term sinSeis integrable and consequently
0(n;) CCC. Let

(U;xt ooxPoyl o y9)

be a foliated chart for the distributioR in which the integral manifolds are given by the slices
y*=c. Then a typical element ofo"* is locally a sum of terms,

w=ady1--Odyredx10 --Odx's

and
Ja . ) : . :
dup=2 5 dyil - Odyr@dx 0dx 10~ Odxs, 4)
I

where dx stands for the restrictiomx |3, . The last formula as well as the formu2), though
helpful in theoretical considerations, is most often useless in practice since it requires the local
integration of 2 . We can nevertheless remedy this situation as follows: We consider any coordi-
nate system  ; x', y!)) with the sole requirement that the fami{gix'|>} be free at every point
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of U, thus providing a field of coframes fa*|U . Next, we consider the local basfs;;} of %
defined by (7;,dx')=4. Since ¥ is integrable and since each; projects ontod/dx', it
follows that [ #;, 7, ]=0. A typical element of®"* can now be written locally as a sum of
terms,

p=a w1l -Dolr@dx10---0dxs,

where dx' stands fordx'|3 and {w*=dy*—=,Y} dx} is a local basis ofS. The formula(3)
then reduces to

dyu=>, [6(7m)(a w1l o) ]@dx Odx10 - OdX's, (5)
I

and a similar formula can replace), the derivatives da.../9x' being then replaced by

o(m)(a...).

Let Z'=Z"(S) denote the module of all thglobally defined invariant formsw of degreer
with respect to the Pfaffian syste®, namely those satisfying the following conditidRef. 7,
Sec. 4.

0(n)w=0, V nel(SH).

Then, Z°=17 is the ring of all the(global) first integrals of S, Z" is a gradedZ-sub-algebra of
A and the formula3) shows that the sequence

dy
OHIr*}q)r,OHq)r,l (6)
is exact. We next show that the sequence
dy dy  dy

0—-7—d%0-pOl,...PpOP_0 (7)

is locally exact. In fact, let { ; x', y*) be a foliated chart fo® . Then the formuld2) defines, for
each fixed set of valueg*=c", the differential of thede Rhamcomplex on the corresponding
slice, whereupon results the local exactnesg7fsince the usual homotopy operators can be
written incorporating the parametes? . Let us finally show that

dy
Pl LpNP0 (8)

is locally exact. A typical element of"P is, locally, a sum,
w=2 a .. ; dyi0--OdyredxC--Odx,

hence, upon integrating for example alorg, we obtain the element

. : IAT;
QIZ Ajl’”' ,jrdy11|]~--Ddy'f®dX2D---Ddxp, &X[JJ'] :a“] y
such thatdy Q=w .

IV. THE VERTICAL OPERATOR

Let us next construct the so callgdrtical part of the Euler—Lagrange complex, namely that
part subsequent to the Euler operator. We denotedbyhe algebra of all the infinitesimal auto-
morphisms ofS and by B the ideal of those vector fields that are tangenkte S* . The system
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S being integrable, any vector field tangentXois an infinitesimal automorphism. Based on the
lemma 1, it can be shown that the algel$éR) of generalized symmetries of the equatiéh
associated toS (S(D) in the notations of Ref. 6, Sec.) &dentifies with A/B. The following
remarks will be used later.

(@ A is a module over the ring@, B is a module overF, henceS is a module overz.

(b) If £ A is tangent to a leaf oS at a pointxy, then it is also tangent to this leaf at all
of its points.

We now defineE"'=®"P/d ®"P~1 (p=dim3), denote byq, :®"P—E" the quotient
map and observe thaE" is an Z-module sinced, Z=0. An elementw® u e (O C)® (O° H)
can also be considered as @mmultilinear form on S(R) with values in 0°H by setting

(0@u)([&a], - [&D=w(r, .6 )p, §ieA,

where each( &;] is the class of§; modulo B. In fact, when »e B, then @®wu) (...,7,...)
=0 and consequently (@ u) ([£1], ... [&]) is well defined onS(R). Furthermore(Ref. 6,
Sec. 1), since

[dH((l)@,LL)](gl, "'1§r):dH[ (w®lu') (é‘:ll ---:fr) ] ’

the form dy(w®u), e®ue(d'C)® (0P 1H), considered as a multilinear form of(R),
takes values that vanish under the projectipg: ®°P— Z°. Hence, to any elemenre Z", we
can associate afr-multilinear form [o], defined onS(R) and taking values irE°, as follows:
We take O=3 w;® u; e ®"P such thatq,(Q2)=0c and set

Lo]([€], .- L&D =00 Q ([£a], ... L&D -

The mappingo—[ o] being injective(Ref. 6, Sec. 1], we are led to consider the formula

dv(@(w®w)) ([€1], ... [&+1])

=00

> (~DTCED [ w4, TEL L& Du]

)

+do

; (D' o([[&].LE11ED, - L& - (&L - L& Dp

where w@u e ®"P and & e A. The second term on the right hand side clearly belongs Yo
As for the first term, let us write

wi= ([, . [E] o L& e PP,

and let us assume that somg=neB. If j#i, then u;=0 and if j=i then, sincedyu;
=0 ,

() mi=i(n)dyp; + dyi(n)pi=dyi(7) ki

and consequenthg, (%) u;=0. In any case(9) provides a well defined multilinear form on
S(R) taking values inZ° and it can be showfe.g., in coordinatdsthat the multilinear form
dy(g,(w® u)) is the image of an elemente Z*1.

The Euler—Lagrangévariationa) complex associated to the integrable Pfaffian systns
the finite sequence,

dy dy  dy dy E dv dy dy
0—Z—®20 @0l ... ,@OP-1 0P 51 ,... ,=9-1 ;54,0

where E, the Euler operator, is the composite,
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do dy
q)O,pﬂgoﬂal

=r

and g=rank S. This complex is locally exact and reduces, locally(Zpsince Z" vanishes on

account of(8).

V. INVARIANT PFAFFIAN SYSTEMS

Let S be an integrable Pfaffian system invariant under the infinitesimal actiog
—x(M) of the finite dimensional real Lie algebrg on the manifoldM (Ref. 7, Sec. B For
every veg, ®(v)e.A, hence the action induces a Lie algebra morphidmg—S(R) . If
further we assume that the actiah is transversally fre¢éRef. 7, Sec. 4 i.e., if

(i) dimg=dim®(g),, V peM,
(i) T;M=X,8®(g),, VY peM,

then the above morphism is injective and the following result holds.

Lemma 2: The algebra&(R) is generated by®(g) over the ringZ of first integrals of S
any R-basis of ®(g) is an Z-basis of S(R) and the Z-dual S(R)* identifies withZ*.

Let us next recall some properties of the invariant forms associat&d By definition (Ref.
7, Sec. 4, the exterior forme is an invariant form ofS if 6(7) =0 for all nel'(S"). It
follows that 6(f ) =0 for any function f, hence o is an invariant if and only ifi(7) @
=i(7n) dw=0, forall neI'(S"). Consequentlyw is invariant if and only if it can be expressed
locally in terms of the first integrals o and their differentials. Whem is invariant then so are
the formsf w, dw and 6(¢) w, where f is a first integral and¢ an infinitesimal automorphism
of S, hence the set of all invariant forms is a differential algebra over the Fingvariant under
the infinitesimal action® via the Lie derivative. Let{v;} be a basis ofg. The linear forms
w' e C defined by the condition¢®(v;), )= 6! are a global basis of invariant forms &, a
so-called Cartan basi®ef. 7, Secs. 6)8 and

do'= E Ci]-k o Do,
<k
where {—c; k} is the set of structure constants gf with respect to the above basis. The real
subspaceﬂcI‘(T* M) generated by forms»' only depends onP and acts as aR-dual to the
spaceh=®d(g) . Let us denote byF be the ring of C* functions onM and by 0 the exterior
algebra of Q over the fieldR . Since {w'} is a global basis of the Pfaffian syste® it follows
that C=Q®RrF and, more generally, that

P"3=(0'C)® AP H)=(0'Q) @ (TP H)=(0'S(R)* )@ P H) . (10

Furthermore, sincalw(&,,&)=—o([ &,£ 1), for any e Q and & e ®(g), it also follows
that the formula(9) reduces, whenevew e ') and & e ®(g) CS(R), to the expression

[do®dout(—1)%9 wOdy (qom) 1 (&1, ... Ei1) (11)

where dy (g op)(€) is the Lie derivativeq o(0(¢) w) . We shall see later that the above formula
still holds for any invariant formw since dyw=0 implies dyo=dw .

We next consider the elementse 2" asi Z-multilinear (and skew-symmetrjcforms [o]
defined on S(R) and taking values inE° (cf. Sec. IM). Each form [o] restricts to an
R-multilinear form 7=[o]r defined on the real subspabe= S(R) and conversely, on account
of Lemma 2, eachR-multilinear form 7 defined onh and taking values inrre Z° extends, by
Z-multilinearity, to a form[o] defined onS(R) and such thaf o]g= 7. Furthermore, since in
the realm of real vector spaces the subsphg@b®?~ 1) admits a complement i %", the form
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7 lifts to a real form 7 defined onh and taking values in®%=0P 7. Finally, using
F-multilinearity on h, 7 extends to anF-multilinear form™ defined ony(M) with values in
OP'H by requiring thati(%)7=0, for all eI'(2). We thus obtain an elemefite ®"P such
that [7]g= 7 and consequently the assignmernt>[ o] of Sec. IV becomes bijective whe8 is
invariant under a transversally free infinitesimal action. Identifymgvith h and thereafter)
with g*, the expressiorf1l) or equivalently the formuld9) shows that the cochain complex
defining the cohomology ofg with values in E° and relative to the representation

p(v) (Qom)=0o(A(E)n), veg, wed®® and é=d(v), is equal to

B> E-E2 . (12
Since q is surjective, we can rewrite the above complex by

E dy  dy
POP_F B2, .. (13
without affecting the cohomology groups in positive dimensions, the latter being the vertical part
of the Euler—Lagrange complex associatedp namely the finite resolution oE .

Theorem 1l:Let S be an integrable Pfaffian system invariant under a transversally free
infinitesimal action of the Lie algebra .gThen the finite resolution of the Euler operator E is
equal, in positive dimensions, to the cochain complex of the Lie algebra g with vali#8.in

Since E=dy°q,, we also infer that the space of cocyclesd?® (i.e., ker E) is equal to
the inverse image, by, of the 0-dimensional cohomology @, namely the inverse image of
the subspace of thg-invariant elements oE° (p(v) (qou)=0, Vv eg). Given an integrable
Pfaffian systemS, we can now confront its variational cohomology with the cohomology of
taking values inZ° and eventually detect obstructions to the existence of a transversally free
infinitesimal action ofg leaving S invariant. When dimE° <o (which is very seldom the
case, we usually have more information on the cohomologygof For instance, ifg is semi-
simple then its cohomology vanishes in dimensions one and (Wioitehead’s lemmasand
consequently the same must hold for the variational cohomology.

VI. EXAMPLES

Throughout this section, we replace integrable Pfaffian systems by the corresponding integral
foliations. Though all the foliations are naive, the resulting homological calculations are not
always so. For the sake of not being too omissive on these calculations, we outline a few in the last
example.

A. Example 1: The torus

Let F be the the foliation on the 2-dimensional torlis whose leaves are the cosets of a
1-dimensional sub-groupl . Then F is invariant under the infinitesimal action generated by any
element of the Lie algebra of (=R?) this action being transversally free as soon as this element
does not belong to the Lie algebta of H. The variational cohomology aE! is equal toR
and, using Green’s formula, one shows that the cohomology class of an elempats ! iden-
tifies with the real numbelrf+ . When the slope of a generating elementtofis rational, the
calculations are very simple and both spac$ and 2! identify with the set of all global first
integrals of 7. When this slope is irrational, the global first integrals®freduce to the constants
and it becomes more involved to describe the spgg@sand 2! and to calculate the cohomol-
ogy. This is an example where the advantage of the Lie algebra cohomology calculations becomes
apparent.
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B. Example 2: The Mo bius strip

Let F be the foliation on the Moius strip M whose leaves are the “double” circles, except
for the central circl€under the usual identification §0)=(—1,—y), F is the foliation induced
by the segments parallel to theaxis). Both spaces=° and ! identify again with the set of all
global first integrals of7 which in turn identifies with the set of all the even functions defined on
the interval 11 ,1[ . The variational cohomology aE® vanishes and, whatever the represen-
tation p:g=R—Der £°, the cohomology ofg in dimension one is nontrivigthe derivative of
an even function usually ceases to be gv&his disagreement shows th4t cannot be invariant
by any transversally free infinitesimal action, a fact that is geometrically obvious since such an
action would provide an orientation ta1 .

C. Example 3: Foliation with a compact attractor

We consider, on the infinite cylindeE=Rx S' with coordinates f(,6) , the foliation F
obtained by integrating the vector field,

J J
Tt Ger

The nature of the spaceS® and E* is rather involved but a straightforward calculation shows
that the cohomology aE?! is null. On the other hand, whatever the representation of the Lie
algebrag=R into Der E°, the Lie algebra cohomology in dimension one cannot vanish. Con-
sequently, the foliation” does not admit any 1-dimensional transversally free infinitesimal action
that leaves it invariant. This fact is also geometrically obvious since the local 1-parameter group
(¢y) generated by any such infinitesimal action would be defined, for smalbn a whole
neighborhood of the limit circle{0}x S' and would transform this circle into open compact
subsets of the neighboring leaves, this being of course excluded.

An entirely similar situation arises in the double solid toftwo solid tori glued by their
boundariesupon taking the Reeb foliation inside each of the tori. The common boundary torus is
the unique compact leaf.

D. Example 4: Spheres and rays

On the spaceM =RP"1—-0, let F, be the foliation whose leaves are the spheres centered at
the origin andF, the foliation whose leaves are the rays issued from the origin. We first consider
the spherefoliation F; and calculate=°, one possible argument being as follows: Each element
we ®%9 identifies canonically with a differentiable 1-parameter family,X of differentiable
g-forms defined on the unit sphe® and, under this identificatiord,u € ®°9** also identifies
with (du,) . We next take a differentiable 1-parameter family,X, t >0, of p-forms on S
Then, upon choosing a fixed volume for@ on SP (e.g., the volume form associated to the
induced Euclidean metric we can determine, by integration, a differentiable functierR
—R such thatu;— ¢(t) Q is, for eacht, a coboundary. Restating the Lemma 402 123 of
Ref. 14 in its stronger versioas is proved in the subsequent two page® can use it to establish
a stronger l-parameter version of the Lemma @2 126 and prove in the aforementioned
context that there exists a differentiable 1-parameter famiy) ©f (p— 1)-forms defined ors?
such that u,—¢(t) Q=d7,. Returning to ®°° and taking the form Q=r*Q,
r:X—(1//X|) X, defined onM , we conclude that eachu e ®°P determines a differentiable
function ¢ such thatu—¢ Q=d, 7, where ne ®°°~1 and consequently thaE° is equal to
the set of all the real-valued differentiable functions definedoni.e., to the set of all the global
first integrals of 7 .

Let us now calculatéZ* . Observing thatdp is a global generator of the Pfaffian system that
annihilates F,, any element ;e ®9 writes 7,=70dp, with 7e®%, and dy7n,
=(dy»)0dp since dy(dp)=0. Consequently, the elemenk,=uldpe®P is equal to
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dy7y, with 7, e ®P~1 if and only if x=dy#n hence the present calculation reduces to the
previous one andE?! is again equal to the set of all the global first integrals7f.

It now becomes easy to show that the variational cohomolodgais null. The foliation F;
is of course invariant under many 1-dimensional transversally free infinitesimal actions and the
vanishing of the Lie algebra cohomology in dimension one is easily be checked.

We next take theadial foliation F, . Here we can proceed locally, on open sets saturated by
rays, and integration along these rays will show tE&t=0, O<q=<p . The variational as well as
the Lie algebra cohomologies vanish, their comparison not revealing the following geometrical
facts.

(a) When p is even, there cannot exist a transversally free infinitesimal action leaving the
radial foliation F, invariant. In fact, since the tangent spacesfip and F, are complementary,
any such infinitesimal action would project onto the spheres producing an infinitesimal action
operating tangentially to the spheres and, in restriction to these spheres, would be free. However,
even dimensional spheres do not admit nowhere vanishing vector fields.

(b) When p is odd, such transversally free infinitesimal actions do exist onlypferl ,3.
Their nonexistence fop=7 is essentially a consequence of the fact tBatis not a Lie group
manifold and, for all the other values @, that the corresponding spheres are not parallelizable.

We can enhance the variational cohomology by adding nontrivial cocycles to the kpace
For example, let us take for the manifold the portion of R°*1—0 in between the spheres
SP(1) and SP(2) and identify these two spheres by the radial map. THgninduces a foliation

F1 in spheres, 7, a foliation 7, in circles (in fact, M=SPxS!) and one shows, for the
foliation 7, , that 2° is equal to the set of all the differentiable functions defined on the sphere

SP(1) or, equivalently, to the set of all the global first integrals/f. Furthermore,=Z" is equal
to the product of ) copies of 2% and EP=Z=°. As for the variational cohomology, we can
again apply the 1-parameter version of the Lemmas 4.2 and conclude that it vanisBé$'at
wheneverr+1 < p and that it is equal taR at EP. Stokes’ formula will then show that the
cohomology class of an elemept»] € EP identifies with the real numbefy o .

Returning to the geometric facts described earlier, we can retracey looking at the
variational cohomology. In fact, since any vector field on an even dimensional sphere has a
singularity, whatever the representatipnof a Lie algebrag into Der Z°%=y(SP), the corre-
sponding Lie algebra cohomology cannot vanish in dimension one. As for the propértyt (
requires a deeper analysis that seems to be out of reach in the present context. Nevertheless, it can

be shown that transversally free Abelian infinitesimal actions Iea\ﬁ@ginvariam cannot exist
since the corresponding Lie algebra cohomologies with valuég4mwould vanish in dimension
p thus contradicting the variational cohomology.

ACKNOWLEDGMENTS

A.K. thanks Piotr Mormul for some very helpful discussions.

LCartan , E., “Sur la rduction asa forme canonique de la structure d’un groupe de transformations fini et continu,” Am.
J. Math.18, 1-61(1896; Oeuvres Comptes (Gauthier-Villars, Paris, 1952Part. |, Vol. 1, pp. 293—353.

2Cartan, E., “Sur l'infgration de certains systees de Pfaff de caracte deux,” Bull. Soc. Math. Franc29, 233—-302
(1901); Oeuvres Comptes (Gauthier-Villars, Paris, 1954Part. Il, Vol. 1, pp. 483-553.

SCartan, E., “Les systmes de Pfaff @ing variables et leScpiations aux derives partielles du second ordre,” Ann. Sci.
Ec. Normale Supe7, 109-192(1910; Oeuvresin Ref. 2, pp. 927-1010.

4Cartan, E., “Sur les systees en involution d'quations aux devées partielles du second ordreiae fonction inconnue

de trois variables ingeendantes,” Bull. Soc. Math. Fran@9, 352—-443(1911); Oeuvresin Ref. 2, pp. 1035-1125.

SCartan, E., “La geometria de las ecuaciones diferenciales de tercer orden,” Rev. Mat. Hisg.-Am31 (1941);
Oeuvres Comptes (Gauthier-Villars, Paris, 1954Part. Ill, Vol. 2, pp. 1535—1565.

SKumpera, A., “Les symties gmeralisees et le complexe d’Euler—Lagrange,” J. Fac. Sci., Univ. Tokyo, Se@8,1
589-622(199).

"Kumpera, A., “On the Lie and Cartan theory of invariant differential systems,” J. Math. Sci. Univ. T6kg@9-314
(1999.

8Lie, S., “Diskussion aller Integrationsmethoden der partiellen Differential-gleichungen erster ordnung,” Christ. Forh.
16-48(1875; Gesamm. Abh., Vol. lll, 221-251.



4712 J. Math. Phys., Vol. 44, No. 10, October 2003 Almeida, Kumpera, and Rubin

%Lie, S., “Resumeeiner neuen Integrationstheorie,” Arch. Math.335-340, 341-3661876; Gesamm. Abh., Vol. Il
260-284.

0L je, S., “Allgemeine theorie der partiellen differentialgleichungen erster ordnung. Zweite ab-handlung,” MathL1Ann.
464-557(1877; Gesamm. Abh., Vol. IV, 163-262.

Hlie, S., “Zur allgemeinen Theorie der partiellen differentialgleichungen beliebiger ordnung,” Ber. Ges. Leipzig, Math.-
Phys. 53—-1281895; Gesamm. Abh., Vol. 1V, 320—-384.

21je, S., “Verwertung des gruppenbegriffesrfdifferentialgleichungen. I,” Ber. Ges. Leipzig, Math.-Phys. 261-322
(1895; Gesamm. Abh., \ol. VI, 539-591.

BLie, S., “Geschichtliche bemerkungen zur allgemeine theorie der partiellen differentialgle-ichungen erster ordnung,”
Gesamm. Abh., Vol. VII, 175-2161895.

Hsternberg, S.ectures on Differential Geomet(Prentice—Hall, Englewood Cliffs, NJ, 1954



