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Let S be an integrable Pfaffian system. If it is invariant under a transversally free
infinitesimal action of a finite dimensional real Lie algebrag, we show that the
‘‘vertical’’ variational cohomology ofS is equal to the Lie algebra cohomology of
g with values in the space of the ‘‘horizontal’’ cohomology in a maximum dimen-
sion. This result, besides giving an effective algorithm for the computation of the
variational cohomology of an invariant Pfaffian system, provides a method for
detecting obstructions to the existence of infinitesimal actions leaving a given sys-
tem invariant. ©2003 American Institute of Physics.@DOI: 10.1063/1.1607513#

I. INTRODUCTION

We study here a problem that arises naturally in connection with the integration of differe
systems invariant under finite or infinitesimal group actions, the theory of such systems, a
ceived by Sophus Lie and later brought to its full light by E´ lie Cartan, being discussed in Ref. 7
Let D be such a differential system~viewed as a sub-manifold of some Jet or Grassmann
bundle! invariant under the action of a finite dimensional real Lie algebrag of infinitesimal
contact transformations and let us further assume thatD is integrable and of finite type~otherwise
we are led into the realm of infinite Lie pseudogroups! and that the infinitesimal action ofg
operates transitively in a direction transverse to each solution~Ref. 7, Sec. 13!. Then the integra-
tion of D can be reduced to the integration of a finite family of integrable Pfaffian systems
are invariant under the actions of Abelian or simple algebras, these infinitesimal actions
transversally free~Ref. 7, Sec. 4!.

The integration of differential equations, in the sense of devising methods that will even
lead to explicit solutions or at least that will contribute to simplify and reduce the integra
problem~e.g., reduce the order of the equations!, was a major theme in the second half of the la
century, as witnessed by Lie’s own writings~Refs. 8, 9, 11, 13!. It is therefore not surprising tha
Lie’s ultimate concern should have been precisely the search of such methods. Using the s
of continuous groups, he could easily say which, among the many integration methods kno
that time, were thebest~the sharpest, in the sense that they involved the least number of o
tions and the lowest orders for these operations! and would claim, with reason, that his were th
best~Refs. 8, 10, 11!. Inasmuch, he showed in Ref. 12 that ‘‘la méthode du dernier multiplicateur
de Jacobi’’ was the best on the grounds that the infinite continuous group of all volume prese
transformations is simple.

a!Electronic mail: rui@ime.usp.br
b!Electronic mail: kumpera@ufpa.br
c!Electronic mail: rubin@inln.cnrs.fr
47020022-2488/2003/44(10)/4702/11/$20.00 © 2003 American Institute of Physics
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Élie Cartan abandoned this pursuit, at least as a priority, since, as he claimed, in this en
we most often fail rather than succeed. He was the first to point out that we should actually
the structureunderlying an integration problem and, in understanding this structure, he cr
integration methods, for invariant differential systems, inconceivable at Lie’s time~Refs. 2–5!. For
such systems, this underlying structure has a very precise meaning and is a direct consequ
the structure ofg and of the prescribed invariant infinitesimal action~Refs. 1, 7, Secs. 5–6!.

If the differential systemD is invariant under the action of a contact Lie algebrag then its
associated Pfaffian systemS , obtained by restricting all the contact 1-forms to the underly
manifold R of D , is integrable and invariant by the restriction ofg . Conversely, if S is
invariant by the infinitesimal actionF of a Lie algebrag8 then we can extend each vector fie
F(v) , vPg8 , to an infinitesimal contact transformation so as to obtain a contact algebrag that
leaves D invariant and such thatF(g8)5guR . In general, the actions ofg and g8 are not
transversally free but, as evidenced in Ref. 7, Sec. 5, one can in many cases reach this app
setting essentially via restriction and prolongation operations. It therefore becomes relev
view of applying the Lie and Cartan theory, to know whether a given integrable Pfaffian systeS
admits a transversally free invariant infinitesimal action of a given Lie algebrag or, more gen-
erally, of some Lie algebrag . Showing the existence of such infinitesimal actions is a ra
delicate problem that has to be analyzed in each specific case since there does not seem
any general method. On the other hand, showing non-existence can be achieved by dis
some obstructions via cohomological methods and this is actually our main concern in this
One last word is due. Whereas the structure of a differential system is a global concep
integration of such a system can, in a first approach, be viewed as a local problem. Sin
integrable Pfaffian system admits locally many automorphisms, in fact, they form an infinit
pseudogroup of order one, there exist, in a neighborhood of each point, many transversa
infinitesimal actions leaving the system invariant and the Lie and Cartan theory can alwa
applied.

The Euler–Lagrange~variational! complex associated to an integrable Pfaffian systemS is
finite. As is usual, we callhorizontalthat part of the complex preceding the Euler operatorE and
vertical that part subsequent to this operator. The horizontal part is a finite augmentation ofE and
the vertical part a finite resolution. We show, in Sec. V~Theorem 1!, that if S is invariant under
a transversally free infinitesimal action of the Lie algebrag then the above finite resolution i
equivalent, in positive dimensions, to the Lie algebra complex ofg taking values in the horizonta
cohomology of maximum dimension. In particular, the resulting cohomology spaces are
whereupon any discrepancy between the two cohomologies will put in evidence an obstruc
the existence of such an infinitesimal action. The above equivalence also provides an ef
method for the computation of the vertical variational cohomology of an invariant Pfaffian sy

Throughout the years, several authors have given distinct though essentially equivale
mulations to the variational complex. We adopt here the approach described in Ref. 6 s
emphasizes the relationship of this complex with the algebra of generalized symmetries. Ina
as the usual de Rham complex on a manifoldM is the differential complex associated to th
algebra of all the vector fields onM , the horizontal part of the variational complex is a de Rh
complex associated to the algebra of all trivial symmetries~total derivatives! and the vertical part
is a de Rham complex associated to the algebra of all generalized symmetries. Our first t
this paper, consists in writing down explicitly the complex we shall be dealing with, namely
restriction of the general complex defined in Ref. 6 to an integrable Pfaffian system. This,
tunately, is a rather long and boring task hence we only state, in Sec. II , a well known lemm
provides all the necessary technical information relevant to the restriction procedure and the
construct directly, in Secs. III and IV , the desired complex. It turns out that the trivial symme
become simply the vector fields annihilated byS and the generalized symmetries become
equivalence classes of the infinitesimal automorphisms ofS modulo the trivial symmetries. Ther
is of course nothing new about this restricted complex, just a different make-up. Invariant sy
are examined in Sec. V and some examples are discussed in Sec. VI .

For simplicity, we assume that all the data areC` smooth though, in each specific case,Ck
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.108.110 On: Mon, 21 Jul 2014 12:25:47



and
ctions,
other-

ions.

viate

fiber

r that
ally
ume
ssoci-
ne the

n

nts

o

d
by

of

4704 J. Math. Phys., Vol. 44, No. 10, October 2003 Almeida, Kumpera, and Rubin

 This article is copyrig
smoothness for somek will suffice. We also assume that all the manifolds are connected
second countable though not necessarily orientable and that all the objects such as fun
vector fields, differential forms, etc. are globally defined on these manifolds unless stated
wise ~e.g., local coordinates, local generators of Pfaffian systems and distributions!.

The second named author wishes to thank Piotr Mormul for some very helpful discuss

II. PFAFFIAN SYSTEMS AND THEIR PROLONGATIONS

Let S be a Pfaffian system, for the time being not necessarily integrable, andS5S' the
corresponding distribution, both defined on the manifoldM ~Ref. 7, Sec. 2!. In terms of partial
differential equations, it seems preferable to view the distributionS ~or the Pfaffian systemS) as
a section of the Grassmannian bundleG1

pM of linear contact elements of dimensionp
5rankS or, still better, as the submanifoldR of G1

pM , an image of this section~Ref. 6, p. 614!.
Since the dimensionp will remain unchanged throughout the present discussion, we abbre
Gk

pM by Gk , where k is the order of the contact elements under consideration. LetR1,G2

denote the first prolongation ofR .
Lemma 1: The distributionS is integrable (involutive) if and only ifR1 projects ontoR .

A proof of this result can be found in Ref. 7, Sec. 13 . This proof tells us, in particular, that a
(R1)X , XPR , is either empty or else contains a single element, sayY . The first order linear
holonomic contact elementSX

(1) associated toY is the unique holonomic element tangent toR
at the pointX . Since it does not make much sense to define the variational complex for othe
formally integrableequations~or at least equations that, after prolongation, become form
integrable at large enough orders!, we see that in the present situation it becomes natural to ass
that S is integrable. This does not mean, however, that variational complexes cannot be a
ated to nonintegrable Pfaffian systems. In this latter context, we ought to specify or determi
dimension q<p of linear contact elements for which asufficient numberof integral contact
elements do exist~e.g., Pfaffian systems that arein involution, in the sense of Cartan, at dimensio
q ) and consider the variational complex in the realm of the bundlesGk

qM . We shall nevertheless
restrict our attention to integrable systems.

When S ~or S ! is integrable, thenR1 is the set of all second order contact eleme
determined by the p -dimensional integral manifolds ofS and the assignementY
PR 1°SX

(1),TXR , X5r1,2(Y) , is an integrable distributionS (1) , defined on the manifoldR ,
equivalent to S via the diffeomorphismb15r0,1: R→M . In general, thek -th prolongation
Rk,Gk11 is the set of all (k11)-st order contact elements determined by thep-dimensional
integral manifolds ofS . Furthermore, the assignmentYPRk ° SX

(k),TXRk21 , X5rk,k11Y ,
where SX

(k) is the linear holonomic contact element at orderk associated toY , is an integrable
distribution S (k) , defined on the manifoldRk21 , equal to the annihilator of the restriction, t
Rk21 , of the canonical contact structureSk of Gk ( @S (k)#'5i* Sk , i:Rk21 � Gk ; cf. Ref. 6,
Sec. 2!. For any pair of integersh<k , the distributionsS (k) and S (h) are equivalent via the
diffeomorphismrh,k :Rk21→Rh21 ( R05R , S (0)5S ).

III. THE HORIZONTAL OPERATOR

We now construct directly the so calledhorizontalpart of the variational complex associate
to an integrable Pfaffian systemS , namely that part preceding the Euler operator. We denote
B the algebra of all the~globally defined! vector fields h tangent to the distributionS5S'

(hPG(S)) and by F the ring of all the~globally defined! C` functions on the underlying
manifold. The dual spaceH5B* , with respect to theF-module structure, is equal to the set
global sections of the dual bundleS* .T* M /S and, correspondingly,∧ H.G(∧S* ) . The
differential,

dH :∧sH → ∧s11H,

is defined by the usual formula:
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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dHm ~h1 , ...,hs11!5(
i

~21! i 11u~h i ! m~h1 , ...,h î , ...,hs11!

1(
i , j

~21! i 1 jm~@ h i , h j #,h1 , ...,h î , ...,h ĵ , ...,hs11! , ~1!

where theh i are vector fields tangent toS , u(h i) is the usual Lie derivative and@ h i , h j # the
usual Lie bracket. Let (U ; x1, ... ,xp, y1, ... ,yq) be a foliated chart ofS for which the integral
manifolds, in U , are given by the equationsyl5cl . Then an element of∧H has the local
expression

m5( ai 1¯ i s
dxi 1∧¯∧dxi s ,

the coefficientsai 1¯ i s
being C` functions onU , and

dHm5( ~dai 1¯ i s
uS!∧dxi 1∧¯∧dxi s5(

]ai 1¯ i s

]xi dxi∧dxi 1∧¯∧dxi s , ~2!

where dai 1¯ i s
uS ~resp.,dxi ) stands for the restriction of this differential to the integral ma

folds of S .
We now extend the differential~1! by adding, in the cochains, a term that corresponds in R

6 to the moduleC of all the contact 1-forms. Here we considerC5G(S) to be the module of all
the global sections ofS , take the cochain spaceF r ,s5(∧ rC) ^ (∧sH) and consider its element
as horizontal forms with values in∧ rC . The extended differential,

dH :~∧ rC! ^ ~∧sH!→~∧ rC! ^ ~∧s11H!,

is then defined by

dH~v ^ m!~h1 , ...,hs11!5(
i

~21! i 11 u~h i ! @ m~h1 , ...,h î , ...,hs11!v #

1(
i , j

~21! i 1 j m~@ h i , h j #,h1 , ...,h î , ...,h ĵ , ...,hs11!v , ~3!

where h iPG(S) and u(h i) is the Lie derivative. The second term on the right hand side belo
of course to∧ rC , the same being true for the first term sinceS is integrable and consequent
u(h i) C,C . Let

~U ; x1, ... ,xp, y1, ... ,yq!

be a foliated chart for the distributionS in which the integral manifolds are given by the slic
yl5cl . Then a typical element ofF r ,s is locally a sum of terms,

m5a dyj 1∧¯∧dyj r ^ dxi 1∧¯∧dxi s

and

dHm5(
i

]a

]xi dyj 1∧¯∧dyj r ^ dxi∧dxi 1∧¯∧dxi s , ~4!

where dxi stands for the restrictiondxi uS . The last formula as well as the formula~2!, though
helpful in theoretical considerations, is most often useless in practice since it requires the
integration of S . We can nevertheless remedy this situation as follows: We consider any co
nate system (U ; xi , yj ) with the sole requirement that the family$dxi uS% be free at every point
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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of U , thus providing a field of coframes forS* uU . Next, we consider the local basis$h i% of S
defined by ^h i ,dxj&5d i

j . Since S is integrable and since eachh i projects onto ]/]xi , it
follows that @ h i , h j #50 . A typical element ofF r ,s can now be written locally as a sum o
terms,

m5a v j 1∧¯∧v j r ^ dxi 1∧¯∧dxi s ,

where dxi stands fordxi uS and $vl5dyl2( iYi
l dxi% is a local basis ofS . The formula~3!

then reduces to

dHm5(
i

@u~h i !~a v j 1∧¯∧v j r !# ^ dxi∧dxi 1∧¯∧dxi s , ~5!

and a similar formula can replace~2!, the derivatives ]a... /]xi being then replaced by
u(h i)(a...) .

Let I r5I r(S) denote the module of all the~globally defined! invariant formsv of degreer
with respect to the Pfaffian systemS , namely those satisfying the following condition~Ref. 7,
Sec. 4!:

u~h!v50 , ; hPG~S'! .

Then, I 05I is the ring of all the~global! first integrals ofS , I r is a gradedI-sub-algebra of
A and the formula~3! shows that the sequence

0→I r→F r ,0→
dH

F r ,1 ~6!

is exact. We next show that the sequence

0→I→F0,0→
dH

F0,1→
dH

¯→
dH

F0,p→0 ~7!

is locally exact. In fact, let (U ; xi , yl) be a foliated chart forS . Then the formula~2! defines, for
each fixed set of valuesyl5cl , the differential of thede Rhamcomplex on the correspondin
slice, whereupon results the local exactness of~7! since the usual homotopy operators can
written incorporating the parametersyl . Let us finally show that

F r ,p21→
dH

F r ,p→0 ~8!

is locally exact. A typical element ofF r ,p is, locally, a sum,

v5( aj 1 , ¯ , j r
dyj 1∧¯∧dyj r ^ dx1∧¯∧dxp ,

hence, upon integrating for example alongx1 , we obtain the element

V5( Aj 1 , ¯ , j r
dyj 1∧¯∧dyj r ^ dx2∧¯∧dxp ,

]A[ j ]

]x1 5a[ j ] ,

such thatdH V5v .

IV. THE VERTICAL OPERATOR

Let us next construct the so calledvertical part of the Euler–Lagrange complex, namely th
part subsequent to the Euler operator. We denote byA the algebra of all the infinitesimal auto
morphisms ofS and by B the ideal of those vector fields that are tangent toS5S' . The system
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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S being integrable, any vector field tangent toS is an infinitesimal automorphism. Based on t
lemma 1 , it can be shown that the algebraS~R! of generalized symmetries of the equationR
associated toS (S(D) in the notations of Ref. 6, Sec. 9! identifies with A/B . The following
remarks will be used later.

~a! A is a module over the ringI , B is a module overF , henceS is a module overI .
~b! If jPA is tangent to a leaf ofS at a point x0 , then it is also tangent to this leaf at a

of its points.
We now define J r5F r ,p/dHF r ,p21 ( p5dimS ), denote by qr :F r ,p→J r the quotient

map and observe thatJ r is an I-module sincedH I50 . An elementv ^ mP(∧ r C) ^ (∧s H)
can also be considered as anI-multilinear form on S~R! with values in ∧s H by setting

~v ^ m!~@j1#, ...,@j r # !5v~j1 , ...,j r !m , j iPA ,

where each@j i # is the class ofj i modulo B . In fact, when hPB , then (v ^ m) ( ...,h , ...)
50 and consequently (v ^ m) (@j1#, ...,@j r #) is well defined onS~R! . Furthermore~Ref. 6,
Sec. 11!, since

@dH~v ^ m!#~j1 , ...,j r !5dH@ ~v ^ m! ~j1 , ...,j r ! # ,

the form dH(v ^ m) , v ^ mP(∧ r C) ^ (∧p21 H) , considered as a multilinear form onS~R! ,
takes values that vanish under the projectionq 0 :F0,p→J0 . Hence, to any elementsPJ r , we
can associate anI-multilinear form @s# , defined onS~R! and taking values inJ0 , as follows:
We take V5( v i ^ m iPF r ,p such thatqr(V)5s and set

@s# ~@j1#, ...,@j r # !5q 0 V ~@j1#, ...,@j r # ! .

The mappings°@s# being injective~Ref. 6, Sec. 11!, we are led to consider the formula

dV„qr~v ^ m!… ~@j1#, ...,@j r 11# !

5q 0H(
i

~21! i 11u~@j i # ! @ v~@j1#, ...,@j i #̂, ...,@j r 11# !m#J
1q 0H(

i , j
~21! i 1 jv~@ @j i # ,@j j # #,@j1#, ...,@j i #̂, ...,@j j #̂, ...,@j r 11# !mJ , ~9!

where v ^ mPF r ,p and j iPA . The second term on the right hand side clearly belongs toJ0 .
As for the first term, let us write

m i5v~@j1#, ...,@j i #̂, ...,@j r 11# !mPF0,p,

and let us assume that somej j5hPB . If j Þ i , then m i50 and if j 5 i then, sincedHm i

50 ,

u~h!m i5 i ~h!dHm i 1 dHi ~h!m i5dHi ~h!m i

and consequentlyq 0 u(h)m i50 . In any case,~9! provides a well defined multilinear form o
S~R! taking values inJ0 and it can be shown~e.g., in coordinates! that the multilinear form
dV„qr(v ^ m)… is the image of an elementsPJ r 11 .

The Euler–Lagrange~variational! complex associated to the integrable Pfaffian systemS is
the finite sequence,

0→I→F0,0→
dH

F0,1→
dH

¯→
dH

F0,p21→
dH

F0,p→
E

J1→
dV

¯→
dV

Jq21→
dV

Jq→0 ,

where E , theEuler operator, is the composite,
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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F0,p→
q 0

J0→
dV

J1 ,

and q5rank S . This complex is locally exact and reduces, locally, to~7! since J r vanishes on
account of~8!.

V. INVARIANT PFAFFIAN SYSTEMS

Let S be an integrable Pfaffian system invariant under the infinitesimal actionF:g
→x(M ) of the finite dimensional real Lie algebrag on the manifoldM ~Ref. 7, Sec. 3!. For
every vPg , F(v)PA , hence the action induces a Lie algebra morphismF:g→S(R) . If
further we assume that the actionF is transversally free~Ref. 7, Sec. 4!, i.e., if

~ i ! dimg5dimF~g!p , ; pPM ,

~ i i ! TpM5Sp% F~g!p , ; pPM ,

then the above morphism is injective and the following result holds.
Lemma 2: The algebraS~R! is generated byF(g) over the ring I of first integrals of S,

any R-basis of F(g) is an I-basis of S~R! and the I-dual S(R)* identifies withI 1 .
Let us next recall some properties of the invariant forms associated toS . By definition ~Ref.

7, Sec. 4!, the exterior formv is an invariant form ofS if u(h) v50 for all hPG(S') . It
follows that u( f h) v50 for any function f , hence v is an invariant if and only if i (h)v
5 i (h) dv50 , for all hPG(S') . Consequently,v is invariant if and only if it can be expresse
locally in terms of the first integrals ofS and their differentials. Whenv is invariant then so are
the forms f v , dv and u~j! v , where f is a first integral andj an infinitesimal automorphism
of S , hence the set of all invariant forms is a differential algebra over the ringI invariant under
the infinitesimal actionF via the Lie derivative. Let$v i% be a basis ofg . The linear forms
v iPC defined by the conditionŝF(v i), v j&5d i

j are a global basis of invariant forms ofS , a
so-called Cartan basis~Ref. 7, Secs. 6,8!, and

dv i5(
j ,k

cjk
i v j∧vk ,

where $2cjk
i % is the set of structure constants ofg with respect to the above basis. The re

subspaceV,G(T* M ) generated by formsv i only depends onF and acts as anR-dual to the
spaceh5F(g) . Let us denote byF be the ring ofC` functions onM and by ∧ V the exterior
algebra ofV over the fieldR . Since $v i% is a global basis of the Pfaffian systemS , it follows
that C.V ^ RF and, more generally, that

F r ,s5~∧ rC! ^ F~∧s H!.~∧ rV! ^ R~∧s H!.„∧ rS~R!* …^ I~∧s H! . ~10!

Furthermore, sincedv(j1 ,j2)52v(@ j1 ,j2 #) , for any vPV and j iPF(g) , it also follows
that the formula~9! reduces, whenevervP∧ rV andj iPF(g),S(R) , to the expression

@ dv ^ q 0m1~21!degv v∧dV ~q 0m! # ~j1 , ... ,j r 11! , ~11!

where dV (q 0m)(j) is the Lie derivativeq 0„u(j)m… . We shall see later that the above formu
still holds for any invariant formv since dHv50 implies dVv5dv .

We next consider the elementssPJ r as i I-multilinear ~and skew-symmetric! forms @s#
defined on S~R! and taking values inJ0 ~cf. Sec. IV!. Each form @s# restricts to an
R-multilinear form t5@s#R defined on the real subspacehPS(R) and conversely, on accoun
of Lemma 2 , eachR-multilinear form t defined onh and taking values insPJ0 extends, by
I-multilinearity, to a form @s# defined onS~R! and such that@s#R5t . Furthermore, since in
the realm of real vector spaces the subspacedH(F0,p21) admits a complement inF0,p , the form
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t lifts to a real form t̄ defined on h and taking values inF0,p5∧p H . Finally, using
F-multilinearity on h , t̄ extends to anF-multilinear form t̃ defined onx(M ) with values in
∧p H by requiring thati (h) t̃50 , for all hPG(S) . We thus obtain an elementt̃PF r ,p such
that @ t̃ #R5t and consequently the assignments°@s# of Sec. IV becomes bijective whenS is
invariant under a transversally free infinitesimal action. Identifyingg with h and thereafterV
with g* , the expression~11! or equivalently the formula~9! shows that the cochain comple
defining the cohomology ofg with values in J0 and relative to the representatio
r(v) (q 0m)5q 0„u(j)m… , vPg , mPF0,p and j5F(v) , is equal to

J0→
dV

J1→
dV

J2→
dV

¯ . ~12!

Since q 0 is surjective, we can rewrite the above complex by

F0,p→
E

J1→
dV

J2→
dV

¯ , ~13!

without affecting the cohomology groups in positive dimensions, the latter being the vertica
of the Euler–Lagrange complex associated toS , namely the finite resolution ofE .

Theorem 1:Let S be an integrable Pfaffian system invariant under a transversally
infinitesimal action of the Lie algebra g. Then the finite resolution of the Euler operator E
equal, in positive dimensions, to the cochain complex of the Lie algebra g with values inJ0 .

Since E5dV+q 0 , we also infer that the space of cocycles inF0,p ~i.e., ker E ) is equal to
the inverse image, byq 0 , of the 0-dimensional cohomology ofg , namely the inverse image o
the subspace of theg-invariant elements ofJ0 (r(v) (q 0m)50 , ; vPg). Given an integrable
Pfaffian systemS , we can now confront its variational cohomology with the cohomology ofg
taking values inJ0 and eventually detect obstructions to the existence of a transversally
infinitesimal action ofg leaving S invariant. When dimR J0 , ` ~which is very seldom the
case!, we usually have more information on the cohomology ofg . For instance, ifg is semi-
simple then its cohomology vanishes in dimensions one and two~Whitehead’s lemmas! and
consequently the same must hold for the variational cohomology.

VI. EXAMPLES

Throughout this section, we replace integrable Pfaffian systems by the corresponding in
foliations. Though all the foliations are naive, the resulting homological calculations are
always so. For the sake of not being too omissive on these calculations, we outline a few in t
example.

A. Example 1: The torus

Let F be the the foliation on the 2-dimensional torusT whose leaves are the cosets of
1-dimensional sub-groupH . Then F is invariant under the infinitesimal action generated by a
element of the Lie algebra ofT ([R2) this action being transversally free as soon as this elem
does not belong to the Lie algebrah of H . The variational cohomology atJ1 is equal to R
and, using Green’s formula, one shows that the cohomology class of an element@v#PJ1 iden-
tifies with the real number*T v . When the slope of a generating element ofh is rational, the
calculations are very simple and both spacesJ0 and J1 identify with the set of all global first
integrals ofF . When this slope is irrational, the global first integrals ofF reduce to the constant
and it becomes more involved to describe the spacesJ0 and J1 and to calculate the cohomo
ogy. This is an example where the advantage of the Lie algebra cohomology calculations be
apparent.
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.108.110 On: Mon, 21 Jul 2014 12:25:47



pt

on
n-

ch an

ws
Lie
on-
tion
group

ct

us is

d at
sider
ent

e

d

l

at

4710 J. Math. Phys., Vol. 44, No. 10, October 2003 Almeida, Kumpera, and Rubin

 This article is copyrig
B. Example 2: The Mo¨ bius strip

Let F be the foliation on the Mo¨bius strip M whose leaves are the ‘‘double’’ circles, exce
for the central circle~under the usual identification (1,y)[(21,2y) , F is the foliation induced
by the segments parallel to thex-axis!. Both spacesJ0 and J1 identify again with the set of all
global first integrals ofF which in turn identifies with the set of all the even functions defined
the interval ]21 ,1@ . The variational cohomology atJ1 vanishes and, whatever the represe
tation r:g5R→Der J0 , the cohomology ofg in dimension one is nontrivial~the derivative of
an even function usually ceases to be even!. This disagreement shows thatF cannot be invariant
by any transversally free infinitesimal action, a fact that is geometrically obvious since su
action would provide an orientation toM .

C. Example 3: Foliation with a compact attractor

We consider, on the infinite cylinderC5R3S1 with coordinates (t ,u) , the foliation F
obtained by integrating the vector field,

h5t
]

]t
1

]

]u
.

The nature of the spacesJ0 and J1 is rather involved but a straightforward calculation sho
that the cohomology atJ1 is null. On the other hand, whatever the representation of the
algebrag5R into Der J0 , the Lie algebra cohomology in dimension one cannot vanish. C
sequently, the foliationF does not admit any 1-dimensional transversally free infinitesimal ac
that leaves it invariant. This fact is also geometrically obvious since the local 1-parameter
(fu) generated by any such infinitesimal action would be defined, for smallu , on a whole
neighborhood of the limit circle$0%3S1 and would transform this circle into open compa
subsets of the neighboring leaves, this being of course excluded.

An entirely similar situation arises in the double solid torus~two solid tori glued by their
boundaries! upon taking the Reeb foliation inside each of the tori. The common boundary tor
the unique compact leaf.

D. Example 4: Spheres and rays

On the spaceM5Rp1120 , let F1 be the foliation whose leaves are the spheres centere
the origin andF2 the foliation whose leaves are the rays issued from the origin. We first con
thespherefoliation F1 and calculateJ0 , one possible argument being as follows: Each elem
mPF0,q identifies canonically with a differentiable 1-parameter family (m̄r) of differentiable
q-forms defined on the unit sphereSp and, under this identification,dHmPF0,q11 also identifies
with (dm̄r) . We next take a differentiable 1-parameter family (m̄ t) , t . 0 , of p-forms on Sp .
Then, upon choosing a fixed volume formV on Sp ~e.g., the volume form associated to th
induced Euclidean metric!, we can determine, by integration, a differentiable functionw:R1

→R such thatm̄ t2w(t) V is, for each t , a coboundary. Restating the Lemma 4.2~p. 123! of
Ref. 14 in its stronger version~as is proved in the subsequent two pages!, we can use it to establish
a stronger 1-parameter version of the Lemma 4.2~p. 126! and prove in the aforementione
context that there exists a differentiable 1-parameter family (h̄ t) of (p21)-forms defined onSp

such that m̄ t2w(t) V5dh̄ t . Returning to F0,p and taking the form Ṽ5r * V ,
r :X°(1/iXi) X , defined onM , we conclude that eachmPF0,p determines a differentiable
function w such thatm2w Ṽ5dHh , where hPF0,p21 , and consequently thatJ0 is equal to
the set of all the real-valued differentiable functions defined onR1 i.e., to the set of all the globa
first integrals ofF1 .

Let us now calculateJ1 . Observing thatdr is a global generator of the Pfaffian system th
annihilates F1 , any element h1PF1,q writes h15h∧dr , with hPF0,q , and dHh1

5(dHh)∧dr since dH(dr)50 . Consequently, the elementm15m∧drPF1,p is equal to
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dHh1 , with h1PF1,p21 , if and only if m5dHh hence the present calculation reduces to
previous one andJ1 is again equal to the set of all the global first integrals ofF1 .

It now becomes easy to show that the variational cohomology atJ1 is null. The foliationF1

is of course invariant under many 1-dimensional transversally free infinitesimal actions an
vanishing of the Lie algebra cohomology in dimension one is easily be checked.

We next take theradial foliation F2 . Here we can proceed locally, on open sets saturate
rays, and integration along these rays will show thatJq50 , 0<q<p . The variational as well as
the Lie algebra cohomologies vanish, their comparison not revealing the following geome
facts.

(a) When p is even, there cannot exist a transversally free infinitesimal action leaving
radial foliation F2 invariant. In fact, since the tangent spaces toF1 and F2 are complementary
any such infinitesimal action would project onto the spheres producing an infinitesimal a
operating tangentially to the spheres and, in restriction to these spheres, would be free. Ho
even dimensional spheres do not admit nowhere vanishing vector fields.

(b) When p is odd, such transversally free infinitesimal actions do exist only forp51 ,3 .
Their nonexistence forp57 is essentially a consequence of the fact thatS7 is not a Lie group
manifold and, for all the other values ofp , that the corresponding spheres are not paralleliza

We can enhance the variational cohomology by adding nontrivial cocycles to the spacM .
For example, let us take for the manifoldM the portion of Rp1120 in between the sphere
Sp(1) and Sp(2) and identify these two spheres by the radial map. ThenF1 induces a foliation
F̄1 in spheres,F2 a foliation F̄2 in circles ~in fact, M.Sp3S1 ) and one shows, for the
foliation F̄2 , that J0 is equal to the set of all the differentiable functions defined on the sp
Sp(1) or, equivalently, to the set of all the global first integrals ofF̄2 . Furthermore,J r is equal
to the product of (r

p) copies of J0 and Jp5J0 . As for the variational cohomology, we ca
again apply the 1-parameter version of the Lemmas 4.2 and conclude that it vanishes atJ r 11

whenever r 11 , p and that it is equal toR at Jp . Stokes’ formula will then show that the
cohomology class of an element@v#PJp identifies with the real number*M v .

Returning to the geometric facts described earlier, we can retrace (a) by looking at the
variational cohomology. In fact, since any vector field on an even dimensional sphere
singularity, whatever the representationr of a Lie algebrag into Der J0.x(Sp) , the corre-
sponding Lie algebra cohomology cannot vanish in dimension one. As for the property (b), it
requires a deeper analysis that seems to be out of reach in the present context. Nevertheles
be shown that transversally free Abelian infinitesimal actions leavingF̄2 invariant cannot exist
since the corresponding Lie algebra cohomologies with values inJ0 would vanish in dimension
p thus contradicting the variational cohomology.
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