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A generalized teleportation protocol �GTP� for N qubits is presented, where the teleportation channels are
nonmaximally entangled and all the free parameters of the protocol are considered: Alice’s measurement basis,
her sets of acceptable results, and Bob’s unitary operations. The full range of fidelity �F� of the teleported state
and the probability of success �Psuc� to obtain a given fidelity are achieved by changing these free parameters.
A channel efficiency bound is found, where one can determine how to divide it between F and Psuc. A
one-qubit formulation is presented and then expanded to N qubits. A proposed experimental setup that imple-
ments the GTP is given using linear optics.
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The concept of entanglement is central in quantum-
information processing. One major breakthrough was ob-
tained by Bennett et al. �1�, who created the quantum-
teleportation protocol. Right after its proposal, Bouwmeester
et al. �2� and Boschi et al. �3� experimentally implemented
the teleportation protocol. Interesting extensions were subse-
quently proposed, especially those regarding the teleporta-
tion of more than one qubit �4�. All the previous proposals
assume, nevertheless, that the quantum channels used to tele-
port the qubits are noiseless maximally entangled states. But
in a realistic scenario noisy effects and decoherence decrease
the entanglement of the channel. In this scenario, Agrawal
and Pati �5� constructed a protocol where it is possible to
achieve unity fidelity teleportation of one qubit using directly
nonmaximally entangled channels. The price to pay is that
the protocol is no longer deterministic.

This paper generalizes Agrawal and Pati’s �5� work and
expands it to teleport N qubits using directly N nonmaxi-
mally entangled channels. The two previous proposals,
namely, the standard protocol �1� and the probabilistic pro-
tocol �5�, are generalized and written in one single formal-
ism. In this generalization one can enhance Psuc, at the ex-
pense of F, by using a different measurement basis. The total
channel efficiency is bounded by the entanglement of the two
qubit channels, but one can decide how to “divide” this
bound between F and Psuc to obtain this fidelity, according to
the system requirements.

In general, Alice may wish to teleport N qubits. An
N-qubit state has 2N arbitrary unknown complex amplitudes.
Let �i, where i=1, . . . ,2N, represent these amplitudes. Alice
has one channel per qubit to be teleported. We assume
that each channel is composed of two entangled qubits,
one with Alice and one with Bob. The channels need not
be maximally entangled and their entanglement is param-
etrized by nk, where k=1, . . . ,N. The protocol involves mea-
surements by Alice, meaning that she uses a specific mea-
surement basis to project her 2N qubits �N qubits she wishes

to teleport plus N qubits from the N two-qubit channels�. The
measurement basis is characterized by the parameters ms,
where s=1, . . . ,N. The measurement yields different possible
results �Rj�, each with probability Pj, where j=1, . . . ,22N,
due to the fact that the measurement is performed jointly on
the qubits to be teleported and the channel qubits. Alice de-
cides, beforehand, which results are acceptable, i.e., the pro-
tocol has succeeded, and which results are not, meaning the
protocol has failed. The acceptable results �Rl�, where
�l�� �j�, she transmits to Bob via a classical channel. In
terms of the measurement basis, the total initial state can be
written as

�1�

where Pj = �� j�2. In this scenario, Alice has Psuc=	lPl prob-
ability of success, meaning one of the acceptable results has
been obtained. After measurement, the initial state collapses
to one of the �Rj

A���B� states and Alice transmits to Bob her
outcome, i.e., the value of j, conditioned on the restriction
j� �l�. Bob now performs a unitary transformation Ul on his
N qubits, which can be different for each one of Alice’s
measurement results. We assume Bob’s unitary operations
are local in his qubits: Ul=U1 � ¯ � UN. A general unitary
transformation on N qubits can be represented by 4N param-
eters �four parameters for each local unitary operation� and
Bob must decide beforehand what operations to do on his
qubits conditioned on the information received from Alice.
However, for each result Bob receives from Alice, he can
choose among the 4N parameters. �These parameters are part
of the protocol and cannot be changed during the teleporta-
tion.� After these transformations, Bob obtains the final state
��l

B�, with the accompanying fidelity Fl= 
��A ��l
B�
2.

The quantities of interest here, i.e., probability and
fidelity, are dependent on ��i�2 and ��i� j�2. However, we wish
to get �i-independent results for the protocol. Since the
input state is arbitrary and in general unknown, this is
achieved by averaging over these quantities with the*Electronic address: rigolin@ifi.unicamp.br
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appropriate distribution function. This is done by using
spherical coordinates in a 2N-dimensional real space, where
N is the number of qubits to be teleported. We thus find that
���i�2�=1/2N and ���i� j�2�= �2�ij−N� / �1+2N�, which is all that
is required in the following calculations. Here, �ij =1 if i= j
and zero otherwise.

Alice’s probabilities Pj may depend on the particular state
to be teleported ��i�; thus we use the average probability
�Pj�. Bob gets the fidelities Fl with probability Pl. Averaging
over many implementations of the protocol we obtain the
protocol efficiency Cpro, which can also be viewed from a
different perspective by defining the protocol fidelity Fpro.
The channel efficiency Cchannel is defined as the maximal
protocol efficiency, where the maximization is done over all
the free parameters �which exclude �nk��:

Cpro = 	
l

�PlFl� , �2�

Fpro =
Cpro

�Psuc�
=

�	
l

PlFl�

�	
l

Pl�
, �3�

Cchannel��nk�� = max
ms,�l�,Ul

Cpro. �4�

The protocol efficiency can be interpreted as the average
qubit transmission rate for a specific protocol choice and is
the product of the probability of its success and its fidelity.
For the specific case where Alice accepts all results, Psuc
=1 and Cpro=Fpro. Equation �3� shows that Alice and Bob
have the freedom to modify F and Psuc while maintaining the
same protocol efficiency. For a given Cpro, they can get
higher �lower� fidelity, lowering �increasing� Psuc. The chan-
nel efficiency gives the maximal qubit teleportation rate for a
given channel.

For the one-qubit case, a quantum channel which
is not maximally entangled �we consider pure states only�
is given as �5� ��n

+�= �1/�1+ �n�2���00�+n�11��. Here n is a
complex number in which 0� �n��1. The concurrence
for this state, a well-known entanglement monotone �6�, is
c�n�=2�n� / �1+ �n�2�, which is a monotonically increasing
function of �n�. �Throughout the paper when we talk
about the degree of entanglement of a state we are referring
to its concurrence.� Alice wishes to teleport the qubit
��A�=�1�0�+�2�1�, where ��1�2+ ��2�2=1. Alice’s arbitrary
Bell-measurement basis is ��Rj��= ���m

+ � , ��m
− � , ��m

+ � , ��m
− ��,

where ��m
+ �=M��00�+m�11��, ��m

− �=M�m*�00�− �11��,
��m

+ �=M��01�+m�10��, and ��m
− �=M�m*�01�− �10��. Here

M =1/�1+ �m�2 and m* is the complex conjugate of m.
The initial three-qubit state �Alice’s qubit and the channel

qubits� can be projected onto Alice’s two-qubit arbitrary Bell
basis, with the appropriate probabilities. Alice transmits the
result of her measurement via a classical channel to Bob,
who thereupon performs a unitary transformation on his qu-
bit. Bob has 16 free parameters, four for each of Alice’s
measurement results. We restrict ourselves, however, to only
one free parameter �	 j� for each result. The unitary opera-

tions are ��Rj��→exp�i
z	 j�Oj, where �Oj�= �I ,
z ,
x ,
z
x�.
I is the identity and 
 are the usual Pauli matrices.

Implementing the averaging procedure described above,
the averaged probabilities and fidelities are found to be

�P�m
+ � = �P�m

− � =
1 + �nm�2

2�1 + �n�2��1 + �m�2�
, �5�

�P�m
− � = �P�m

+ � =
�n�2 + �m�2

2�1 + �n�2��1 + �m�2�
, �6�

�F�m
+ ,�m

− P�m
+ ,�m

− � =
1 + �nm�2 + �mn�cos���+,�−�

3�1 + �n�2��1 + �m�2�
, �7�

�F�m
− ,�m

+ P�m
− ,�m

+ � =
�n�2 + �m�2 + �mn�cos���−,�+�

3�1 + �n�2��1 + �m�2�
, �8�

where, using that n= �n�ei	n and m= �m�ei	m, we have
��± =	n−	m−2	�± and ��± =	n+	m+2	�±.

For the special case where Alice accepts all possible re-
sults, i.e., the protocol always succeeds, Psuc=1 and the pro-
tocol efficiency is

Cpro =
2

3

1 +

�nm� 	
j=�±,�±

cos�� j�

2�1 + �n�2��1 + �m�2�� . �9�

Looking at Eq. �9� we see that Cpro is maximum if � j
=2�qj, qj integer. This can always be achieved if Bob prop-
erly adjusts his four free parameters 	 j, which depend on the
channel and measuring-basis entanglement �nk and ms, re-
spectively, assumed to be known by Bob�. This is equivalent
to working with real n and m, a scenario which, unless stated
otherwise, is assumed throughout the rest of this paper.
Therefore, Eq. �9� reads Cpro= �2/3��1+c�n�c�m� /2�, where
c is the concurrence. Note that Eq. �9� is invariant if we
interchange the parameters m and n. This remarkable result
shows that Cpro is the same if we exchange the channel en-
tanglement and the measuring-basis entanglement. We can
easily see that the channel efficiency, i.e., maximal protocol
efficiency when m and � j are the free parameters, is achieved
for all n at m=1 and all � j =0.

We can consider the case of a dephased channel,
where the quantum state describing it accumulates a relative
phase. In the generalized teleportation protocol �GTP� nota-
tion, this amounts to n=ei	n. Assuming the dephasing rate is
known, this obstacle can be overcome by an appropriate uni-
tary operation performed by Bob. Let us assume, for ex-
ample, m=1. We see that by performing unitary transforma-
tions such that 	�± =	n /2 and 	�± =−	n /2, we eliminate the
dephasing and it results in a unity fidelity teleportation pro-
tocol �no averaging required�. This result shows that only the
entanglement of the channel is important for the teleportation
protocol to succeed and not which entangled state is used.

In the standard protocol �1�, Alice uses the standard
Bell basis �maximally entangled states� to implement
her joint measurements. In the GTP formulation, this
corresponds to m=1 and all � j =0. This results in Psuc=1,
Cstd=Fstd= �2/3��1+n / �1+n2��. In the probabilistic quantum
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teleportation �PQT� protocol �5� Alice uses a special mea-
surement basis, which in the GTP formalism corresponds to
real m=n and all � j =0. Also ��Rl��= ���n

−� , ��n
+�� which re-

sults in Psuc=2n2 / �1+n2�2, FPQT=1, and CPQT=2n2 / �1
+n2�2.

As seen from these examples, we can create a trade-off
between the fidelity of the protocol and the probability of its
success. �We assume all � j =0.� When Alice decides not to
accept all possible results, i.e., not to transmit all the results
to Bob, the protocol will have less than unity Psuc. However,
as shown in the probabilistic quantum protocol, we gain unit
fidelity when the teleportation does succeed under a special
circumstance �m=n�. It is noteworthy to consider the per-
turbed case of this protocol, i.e., m�n. This requires aver-
aging and results in less than unit fidelity. Figure 1 shows the
perturbation in protocol fidelity FPQT �Eq. �3��, probability of
success Psuc, and protocol efficiency CPQT �Eq. �2�� as func-
tions of n and the perturbation from the unity fidelity proto-
col �UFP�, i.e., n−m=0. As can be seen, we lose fidelity as
the perturbation grows �Fig. 1�a��, but Psuc is enhanced �Fig.
1�b��. The mean fidelity grows as m→1, as in the general
case. We should note that this scenario is more realistic since
the entanglement in the channel is not known completely,
implying that the measurement basis cannot be set to m=n,
but only as a close approximation.

The generalized teleportation protocol detailed above
will now be expanded to N qubits. �It can be seen as
N single-qubit protocols implemented at once or in sequence.
However, the overall fidelity and protocol efficiency are
not trivial extensions of previous results.� The state Alice
wants to teleport is the most general pure state for N qubits,

��A�=	i=1
2N

�i�B�i−1��, where B�i� is the binary representation
of the integer i with zeros padded to its left in order to leave
all binary numbers with the same amount of digits.
Now Alice needs N two-qubit channels, which is given by N
Bell states with different degrees of entanglement �in general
ni�nj, for i� j�: ��channel�= � i=1

N ��ni

+ �. For each Bell state,
one qubit is with Alice and the other one with Bob.

The rest of the protocol is similar to the one-qubit proto-
col. �a� Alice performs N Bell measurements. The states ex-
panding each basis she projects need not have the same de-
gree of entanglement �mi�mj in general�. �b� Alice informs
Bob of the acceptable results. At most she transmits 2N bits
of classical information to Bob, two bits for each Bell mea-
surement considered acceptable. �c� Bob performs unitary
operations on his qubits according to the classical informa-
tion received from Alice. Each qubit is subjected to one of
the four possible transformations mentioned above.

Building on the case for one qubit �and also for two and
three qubits, which were analytically solved yet are too cum-
bersome to be detailed here�, we were able to induce the
channel efficiency for the N-qubit teleportation protocol:

CN
pro =

2

2N + 1
�1 + 	

i=1

N

2i−1Pi
N� , �10�

where Pi
N is the sum of all permutations of the product of i

variables out of all �
r�, where r=1, . . . ,N, and

r=c�nr�c�mr� /2. For example, the three qubit case gives
P1

3=
1+
2+
3, P2
3=
1
2+
1
3+
2
3, and P3

3=
1
2
3. We
can better understand Eq. �10� by analyzing specific qubits to
be teleported. The contributions from P1

N appear when we try
to teleport product states, without entanglement. When en-
tangled qubits are teleported, the terms Pi�2

N appear.
For the PQT of N qubits we see that Psuc and thus the

protocol efficiency are CN
PQT= Psuc=�i=1

N 2ni
2 / �1+ni

2�2. Note
that CN

PQT decreases rapidly for a large number of qubits.
This is due to the fact that only measurement results that
project Alice’s qubits on combinations of states given by
��mi

− � and ��mj

+ � yield unity fidelity. All the other possible
measurement outcomes are considered unacceptable in this
protocol and are discarded �they do not give unity fidelity�.

A proposed experimental setup follows, using photon po-
larization as the encoding medium. In this setup the horizon-
tal �H� and the vertical �V� polarizations of a photon encode
�0� and �1�, respectively. The features of the GTP are incor-
porated into current standard teleportation experiments by
addition of simple linear photonic devices. The setup �Fig. 2�
uses spontaneous parametric down-conversion �SPDC� �7�
which emits two polarization-entangled photon pairs. One
pair is used as the teleportation channel, which can be at an
arbitrary length and purity thus facilitating different channel
entanglement n. The other pair is used for the teleported
qubit. By using Faraday rotators �FRs� and single-photon
detectors �SPhDs� Victor can measure one of the photons
along a given polarization axis, thus ascertaining the other
photon polarization, and implement the averaging procedure.
One photon from the channel and the qubit to be teleported
arrive at Alice’s detector, which has a complete Bell-state
analyzer �BSA�. The latter was recently shown to be imple-
mented in several manners �8�. �Since it uses linear optics it
is a probabilistic BSA �9�.� To transform it into a rotated
BSA �measures arbitrary Bell basis� a FR is inserted in the
path of the qubit to be teleported, introducing the free param-
eter m. The result of the BSA is then transferred classically
to Bob, who operates unitarily on his qubit. This can be done
by using polarization beam splitters �PBSs� and phase retar-

FIG. 1. �Color online� PQT attributes as a function of the di-
mensionless parameter n and the perturbation from UFP, i.e.,
n−m=0. �a� FPQT; �b� Psuc; �c� CPQT.
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dation �birefringent� wave plates �PRWs�. By using a PBS
and two PRWs at the path of Bob’s photon we add another
degree of freedom, namely, 	�±

=	�±
=	B. By measuring the

resulting photon polarization via a SPhD Bob ends the tele-
portation protocol.

The generalized teleportation protocol developed here
shows that the protocol efficiency depends solely on the
channel and measuring-basis entanglement in a quite inter-
esting way: interchanging the channel entanglement with the
measurement-basis entanglement leaves the protocol effi-

ciency unchanged �see Eq. �9��. This result is also valid for
the N-qubit protocol. The reason for this behavior is unclear
but we suspect that it is related to an unknown information
conservation law. Furthermore, the protocol efficiency in-
creases if either the channel entanglement or the
measurement-basis entanglement is enhanced and a deter-
ministically unity fidelity protocol occurs only if both quan-
tities are maximum. We can understand this fact by noting
that quantum teleportation is a genuine quantum task relying
on entanglement. Therefore, as the availability of quantum
resources �entanglement� is increased, a better performance
of the protocol �higher output fidelity� is expected. On top of
that, since the protocol efficiency is given as a function of
the concurrences of the channels and of the measuring basis,
we have provided an operational physical interpretation for
the concurrence, relating it to the efficiency of the teleporta-
tion protocol. Another result showed that for a dephased
channel we can overcome the dephasing easily by selecting
the proper unitary operation to counter it, implying that only
the entanglement of the channel is important to achieve a
given output fidelity and not which entangled state is used.
Also, the generalization of the probabilistic quantum-
teleportation protocol showed that for a given channel en-
tanglement, one can choose between different measurement
bases in order to divide the channel efficiency between fidel-
ity and probability of success. Finally, the extension of the
protocol to N qubits gave insights into the understanding of
quantum teleportation: the channel efficiency depends on the
possible states to be teleported. For an unentangled state, it
only depends on the individual channel concurrences,
whereas for an entangled state it depends on the product of
the concurrences of the channels used in the “entanglement
teleportation.”
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FIG. 2. �Color online� Scheme for experimental setup of the
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