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whered > 0, f(u) = € or f(u) = (1 + u)P andI'y, T’z is a partition 0f9Q andQ c RN. We

determine sharp conditions on the dimengibandp > 1 such that the extremal solution

is bounded, where the extremal solution refers to the one associated to the lafgest
which a solution exists.

Au=0 inQ, = Af(u) onTy, u=0 onI,
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1. INTRODUCTION

We study the semilinear boundary value problem

Au=0 inQ

(1) u_ Af(u) onIy
v

u=0 onI’,

wherel > 0 is a parameterf,(u) is a nonlinear smooth function of Q c RN is a smooth,
bounded domain anidy, I'; is a partition ofdQ into surfaces separated by a smooth inter-
face. We will assume that

(2) f is smooth, nondecreasing, convex dtfd) > 0,

()t
) > 1.

©) lim inf

t—>+oc0

Assumption (3) is not essential, but it simplifies some of the arguments and holds for the
examplesf(u) = %, f(u) = (1 + U)®, p > 1. In some related works the following weaker



condition is usually assumed:

@) im 1Y _

u—oo u
We say thati is a weak solution of (1) il e W*(Q), f(u) € L*(I'y) and
f u(—Ay) = f Af(u)p forall ¢ € Cz(ﬁ) suchthaty| =0 anda—"o
Q r Iz dvlir,
Problem (1) shares many properties with the following generalization of the so-called
Gelfand’s problem
{—Au =Af(u) InQ

©) u=0 onoQ

which has been widely considered [3, 4, 10, 11, 21, 22]. In particular, the following result
can be proved as in [3] (see Section 1.1 in [12] for further details).

0.

Proposition 1.1. Assume that f satisfi€2) and (3). Then there existg* € (0, o) such
that

e (1) has a smooth solution f@r < A < 2%,
¢ (1) has a weak solution fot = A%,
¢ (1) has no solution fon > A* (even in the weak sense) .

Moreover, for0 < 1 < 2* there exists a minimal solution, which is bounded, positive and
stable, in the sense that the linearized operator aisipositive, i.e.

IVel?dx— A [, f(u)e?ds
©) inf Jo Jr, T >0

0eC1(Q).¢=00nT frl @2ds

The monotone limit'u:= lim, ;- u, is a weak solution for = A* and satisfies
7 A* f f/(u")p? < f IVel?dx, Ve e CHQ), ¢ =00nTy.
Fl Q

We callu* the extremal solution of (1).

Remark 1.2. Under assumptioii3) we have ti € H1(Q). The proof is analogous to the
argument for(5) in [4], so we skip it.

Proposition 1.1 suggests the following natural questioru: & bounded solution?

In the context of (5), no complete answer has been given yet. For thef @gse €', that

is the original Gelfand problem, it was shown by Joseph and Lundgren [21] thasif

ball, thenu* is bounded if and only iN < 10. Crandall and Rabinowitz [11] showed that

if f(u) = €' andN < 10 then forany smooth and bounded domain, is bounded. Brezis

and Vazquez [4] provided a fierent proof of the unboundednessaubin the case = B,

andN > 10 : they established in particular that a singular energy solution which is stable
must be the extremal one. In applying this criterion in dimension 10 they use Hardy’'s
inequality valid forN > 3 :

(N —2)2f ¢ f 2 o (N
(8) 4 RN |X|2 < RN |VSD| s v‘p € CO (R )

Other explicit nonlinearities, for instandgu) = (1 + u)P with p > 1, are considered in
these references, but in the general case, little is known. In this direction, we mention the
result of Nedev [23], which asserts that for any functfosatisfying (2) and (4), and any
smooth bounded domain RN, N < 3, u* is bounded. This result has been extended by



Cabe to the cas® = 4 andQ strictly convex [5]. Finally, Calir and Capella [6] showed
that if Q is a ball andN < 9 then for any nonlinearityf satisfying (2),(4) the extremal
solution is bounded.

Proving thatu* is unbounded seems to be much mofr@dilt. Besides the radial case
Davila and Dupaigne [14] have shown that in domains that are small perturbations of a
ball and for the nonlinearitieg" and (1+ u)P the extremal solution is singular for large

dimensionsil > 11 andN > 2+ =% + 4 | 2E; respectively).
Returning to (1), we are interested in determining whether the extremal solitien
bounded or singular in the casé@l) = € andf(u) = (1 + u)®, p> 1.

Theorem 1.3. Let f(u) = €. In any dimension N> 10there exists a domaif c RN and
a partition in smooth setB;, I'; of 9Q such that & ¢ L*(Q).

The proof is an adaptation of the argument of Brezis aadd¥iez [4], using a stability

criterion. In our case the singular solution has the foggx) = —log|x| for x € oRY and
its linearized stability in dimensioN > 10 is obtained thanks to :
2 PR
© [ mep=tin [ £ vpecr@ED
RN arN X
which holds forN > 3 and where the best constant
Je 1V
o RY Ve . 1N
(10) HN = inf {—";2 . Qe H (R+),¢|6R’f 0
(9RT X
is given by
r(?
(11) Hy =2 (N“Z VN> 3,
I(55%)?

wherel is the Gamma function. Inequality (9) is known as Kato’s inequality and a proof
of it was given by Herbst [20].

We will give here a dierent proof of this result whichfters a sharper version, anal-
ogous to improvements of (8) found by Brezis andzquez [4] or VAzquez and Zuazua
[24] (see also [2, 4, 13, 19, 24] for other improved versions of the Hardy inequality (8)) :

Theorem 1.4. Let B= B;(0) be the unit ball inRN, N > 3. Then for anyl < q < 2 there
exists c= ¢(N, g) > 0 such that

2
£ 2 o N
'VSDIZZHNf + il g Ve € CSEN N B),
»[REI’\B ARNNB [X| WLARNNB) 0 \'+

As a converse to Theorem 1.3 we prove :

Theorem 1.5. Let f(u) = €, N < 9 and suppos€ c R is open, bounded and satisfies:
e 0Q =T, UT,, wherel'; c RN andI', ¢ RY
e Qis symmetric with respect to the hyperplangs=x),..., xy-1 = 0, and
e Qs convex with respect to all directiong, x. ., Xn_1.

Then the extremal solutiori of (1) belongs to E°(Q).

Remark 1.6. In order to prove Theorem 1.5, one is at first tempted to imitate the classi-
cal argument of Crandall and Rabinowift1]: roughly speaking, one uses the stability
inequality(7) and the equatiofil) with test functions of the forga = elV, j > 1. This does

not lead to the optimal dimension N 9 but applies to general domains (see Proposition



1.7 below). We use instead test functignsvhich are not functions of u, but which have
the expected behavior of'enear a singular point, assuming it exists.

Proposition 1.7. Let f(u) = €' and assum& c RN is a smooth bounded domain such
thatdQ = I'y U 'y, wherel'; ¢ 9RY andI', ¢ RY. Assume further that Nc 6. Then the
extremal solution tiof (1) belongs to E°(Q).

This raises the following question

Open Problem 1. Does Theorem 1.5 hold in any smooth bounded doainR"Y such
thatoQ =T’y UT,, wherel'; C E)RT andI’; C RL\_‘ ?

Next we look at (1) in the casB(u) = (1 + u)P, p > 1. Given O< a < N — 1 define

(12) Wo(X) = f K(x, y)lyl®dy for xe RV,
ORN

whereK(x,y) = N%“‘le— y|™N is the Green’s function for the Dirichlet problemiit)l (see

e.g. [18]). Clearlyw, > O_in RN. Moreoverw, is harmonic inRY andw, extends to a
function belonging t€€*(RY \ {0}) with
(13) W, (X) = [X™ for all x e aRY \ {O}.
It is not difficult to verify that for some consta@(N, @) we have
ow,

dv
In Section 2 we shall show that

(X)) =C(N,@)[x™t  vxedRY\{0}.

1 N-1
G +ICF -5

O

A heuristic calculation shows that for (1) with nonlinearitgu) = (1 + u)®, the expected

behavior of a solutiom which is singular at G= 9Q should beu(x) ~ |x|ﬁ. The bound-

edness ofr is then related to the value @f(N, p%l). Observe thaC(N, pél) is defined

for p > 5. In the sequel, when writinG(N, ;) we will implicitly assume that this

p
condition holds.

(14) C(N,a) =2

Theorem 1.8. Consider(1) with f(u) = (1 +u)P. If pC(N, 717) < Hy and p> g, there
exists a domaif2 such that ti is singular.

Remark 1.9. The condition p QN, p%l) < Hy alone is not enough to guarantee that the

extremal solution is singular for some domain. Actually this condition can hold for some
values of p in the rang(ﬁ’\‘_—1 <p< Nl_z In this case a singular solution exists in some
domains, but it does not correspond to the extremal one. See Theorem[8]2fdn a

similar phenomenon.
As a partial converse, we obtain

Theorem 1.10. Consider(1) with f(u) = (1 + u)P. Assume c RY is a bounded domain
such thabQ = I'1UT,, wherel'; ¢ RN andI'; ¢ RY and such that the following condition
holds

e Qs convex with respect td and
e TIN(Q) = I'y, wherelly is the projection ordR".

If pC(N, 517) > Hn or 1 < p < % then u' is bounded.



In the above Q2 is said to be convex with respect ¥0if (tX', xn) + ((1 — )Y, Xn) €
Q whenevert € [0,1], x = (X,xy) € Q andy = (Y, xy) € Q. Iy is defined by
In(X, xn) = X forall x = (X, xy) € RY.

Remark 1.11. The interested reader can verify that Theorem 1.10 (and the same proof)
hold if

e Qs convex with respect to all directionsg,x. ., Xxy-1 and
e Qis symmetric with respect to the hyperplangs=, ..., xy-1 = 0.

The organization of the paper is as follows. In Section 2 we derive formula (14) and
we prove Theorem 1.4 in Section 3. In Section 4 we analyze the exponential case and
give a proof of Theorems 1.3 and 1.5. The proofs of Theorems 1.10 and 1.8 are given in
Section 5.

Throughoutwy denotes the area of the unit ballk and hence the area of the sphere
SN-1js Nown.

2. ComputarioN oF C(N, @)

We write x = (X, xn) € RY with X' € RN-1, xy > 0. It follows from (12) and a simple
change of variables that

W, (X', Xn) = Wa(e(X), Xn) for all rotationse € O(N - 1)

and similarly
(15) W, (RX, RXy) = RT¥W, (X, Xn).
Differentiating with respect try yields
ow, ow,
L(RX,Rxy) = R —2(X, xn).
axN( . RXv) axN( s XN)
Letx € R, x = (x',0) and plugR = ¢ = ; in the previous formula to find
6W0z _ 8Wa ’ _ —a-1 _% L/
5y 0= 5 (x.0) = ( aXN(|X,|,o)).
Define
ow, ; X
1 N — 2
(16) C(N,a) 3XN(|X,|, )

and observe that it is independentof RN-1,

Using (15) and the radial symmetry of in the variables<’, there exists a function
v [0, o) — R such that

_ X' XN —auy XN
17 W, (X', Xn) = IX[7"W, (—, —) = IX|*v(—).
(7) (. x0) (e il ()
Writing r = |X|,t = &—N‘ we have
rrov(t) = w(x,rt), vx eRNL [X|=r.

The equatiom\w = 0 is equivalent to
(18) L+ WV (1) + (2a + 4 — NV (1) + a(e — N + 3)v(t) = 0, t>0,
while (13) implies

v(0) = 1L



The initial condition forv' is related to (16)
V'(0) = —C(N, ).

In addition to these initial conditions we remark that, is a smooth function iR and
this together with (17) implies that

(29) tIim v(t)t* exists.

Using the change of variables= it with i the imaginary unit and defining the new
unknownh(2) := v(-iz) equation (18) becomes

(20) (1-A)h"(@ - (2a +4—-N)zH(2) — a(@ = N + 3)h(2) = 0,
with initial conditions
(21) t>I(irp_}o h(it) = 1, t>!)i’rp_)o i (it) = IC(N, @).
On the other hand (19) implies
(22) tengrtrl N h(it)t* exists.

The substitution
(23) 92 = (1-A)F%h(@)
transforms equation (20) into

2
(24) (1-2g'@ - 229 + 01 + D - 22 )a@ =
with
(25) y=a+2_2N, v=¥.

The general solution to (24) is well known. Indeed, equation (24) belongs to the class of
Legendre’s equations. Following [1], two linearly independent solutions of (24) are given
by the Legendre functionB,(2), Q,(2), which are defined irT \ {-1, 1} and analytic in
C\ (~o0,1] (see [1, Formulas 8.1.2 — 8.1.6]). Moreover the limit$)(z), Q. (2) on both
sides of 1, 1) exist and we shall use the notation

Po(x+i0)= lim P2, -l<x<1,
z—-x,Re@>0

Pi(x—i0)= lim P2, -1<x<1,
z-Xx,Re@)<0

(26)

and a similar notation fo®),.
The solutiong of (24) is therefore given by

92 = P2 + Q) (2.

for appropriate constantg, ¢c,. These constants are determined by the initial conditions
(21), which imply:

27) a1 Py(0+i0) +c,Q (0 +i0) = 1,
d _ d . .
(28) cld—ZP‘V‘(O+ |0)+czd—ZQfV‘(0+ i0) = iC(N, a).
In order to evaluat€(N, @), we use also condition (22), which is equivalent to
(29) lim_(eaPyGit) + coQ(it))t2 2 exists.



But according to [1, Formulas 8.1.3, 8.1.5]
P2~ 7 asl|g - o
Q@ ~z""tas|zd - «
This and (23),(29) imply that; = 0 and we obtain from (27),(28)
L (0+i0)
Q,(0+i0)

From the properties and formulas in [1] the following values can be deduced:

14 1
F(§+§+§)

(30) C(N,a) = —i

(31) Q(0+i0) = i Iptdurivi 2727 2)
I3-5+1)

d ; LT+ 5+ 1)

32 — QY0 +i0) = upzgrmvg 22 T2 7 7
(32) 5 0+i0)=2'r ot D

The relations (30),(31),(32) and the values (25) yield formula (14).

3. IMPROVED KATO INEQUALITY
We begin with some remarks on (9).

Remark 3.1. a) The singular Weigh%I in the right-hand side o{9) is optimal, in the
sense that it may not be replaced ﬁy with @ > 1. This can be easily seen by choosing
¢ € HY(RY) such thatp(X) = x|~z *“Z in a neighborhood of the origin.

Moreover, the infimum iiL0) is not achieved.

b) In dimension N= 2 the infimun(10) is zero, se¢l5]. Nonetheless, if the test-functions
¢ are required to vanish on the half ling % 0 then the infimum has been computed in
[15]:

; fRi Vel . 12 ; 1
(33)  inf o e HED.0w.0)=0 if x>0, 4,01% 20f =~
ORZ |X|
¢) Using Stirling’s formula we see that
(34) Hy = %3 +()(%) as N— oo.

Indeed, sinc&(2) = V2r/z (g)z (1+ 15 +0(3))forz>0,
re2  on-z (Y (1 & roan))

MR TN (2 (1 s o)

_ 2(1 _ %) (4e)"54 (NL_)N/Z (N - 2)(1+O(1/N?))

2
N 2\2N/2

= 5 (1 - N) (1+0(1/N?)

_ g (1 - % + 0(1/N2)) (1+0wNg) = 22 Lo,



d) The estimates

N-3 VIN=-32+1
(35) T <Hy < (—2)+
can be obtained in a more straightforward way using particular test functions. We give a

proof of this at the end of Section 3. Also observe {84) could be deduced froif35).

Let us explain first informally the idea behind the proof of Theorem 1.4, assuming for

a moment that a minimizew € HX(RY) of (10) exists. W then satisfies the associated
Euler-Lagrange equation:

AW =0 inRY,
(36) oW W

— =Hny— ondRNY.

gy~ g OndRy
Elementary changes of variables show that giRr 0 and a rotatiore € O(N - 1),
WR = R%W(Rx) andwg := w(e(x’), xy) are also minimizers of (10). Thus it is natural to
assumév = Wr = We for all R > 0 ande € O(N - 1). In particular a constant multiple @f
solves

Aw =0 inRY,

w=|x"z ondRY.
Unfortunately, such a functiow does not belong tei*(RY). Letw = w, with @ = 832
as defined in (12). Observe tHa(N, N>2) = Hy by (16) and hencev is indeed a solution
of (36).
Following an idea of Brezis andazquez (equation (4.6) on page 453 of [4]), we restate

(9) in terms of the new variable= ¢/w.
Proof of Theorem 1.4. WhenN > 3, C3(RY \ {0}) is dense itH'(RY). So it sufices
to prove (9) forp € Cg"(RQ‘ \ {0}). Fix such ap # 0 and letw be the function defined
by (12). Notice that, on supp, w is smooth and bounded from above and from below
by some positive constants. Hengce= £ e C3(RY) is well defined. Nowy = vw,
Ve = vWw + wVv and

IVl = VVIVWP + WPVV2 + 20wV vV,

f IVl = f VYW + f WIVVP +2 | vwWWWWw
RN RN RN RN

and by Green’s formula

Integrating

VIVwW? = vzwalv - f WV (V2VW)
RN RN dv RN

ow
= VW— -2 | wwWw©y,
RN 14 RY

sincew is harmonic irRY. Thus,

0 25
(37) f IVgl? = f W Vv2 + w f WAV + f g ow
R} RY RN v RN orN W Oy

But by (16) 2% = M for x ¢ 9N and hence,

w(X) I

2
(38) f IVel? > Hy f LA f WAVVi2 Yo € HYRN).
RN bl RN

rY X




The second term in the right hand side of the above inequality yields the improvement of
Kato's inequality wherp has support in the unit ball.

Now we assume € Cg"(RT \ {0} N B) and, as before, set= £. Our aim is to prove
that given 1< g < 2 there exist€ > 0 such that

1
(39) = [ W92 > Sl
RY C
In spherical coordinates
1
sz rN’lf W2(r6)|Vv(r6)|?dé dr
0 St

whereS; = S; nRY andS; = {x € RN /|x = 1} is the sphere of radius 1. From (15) we
havew(x) > (—1:|x|‘¥ for someC > 0 and allx e BN RY. Hence

1 ! )
I > —= r [Vv(r6)|“do dr.
Clo Js;

Let us compute the Sobolev normpf

1
lllpzg = f [Vglidx = f rN-t f IVo(r6)|%d6 dr
RNNB 0 s;

+

1
=f rN‘lf IVV(r6) w(ré) + Yw(re) v(ro)|%de dr
0 St
1
<Cq f rN-1 f IVV(r6) 9 w(r6)|? + [YwW(r6)|%v(r6)|%d6 dr.
0 St

Define

1
I1:=f rN’lf [VV(r6)[w(re)|%de dr
0 s;

1
I, = f rN-1 f [VW(r6)|%v(r6)|%de dr.
0 St

-2

Sincew(x) < C|x|""z" we have by Hlder’s inequality

1
lL<C f NS [ 9y(re)9de dr
0 st

2q
B

1 q 1 N
(40) <C| f r [ 1vvre)Pdedr|’| f rN2 D% 7 = el
0 5 0

sinceq < 2.
Using|Vw(X)| < C|X"% we estimatd, :

1
IzsCf f rN-1-2 v(r6) (@ dr d.
s; Jo

From the classical Hardy inequality

1 p P 1
rf(r)Pdr < (—— f rY*PI/ ()P dr
[ erars (22 [Cemre



(p>1,y>-1,f e Cy(0,1)) we deduce

1
f ZMro)d dr < C f rN-1-5ayy(rg)|9 dr
0

1
l,<C f f rN-1-2+agy(r6)@ dr de.
T JO
1

Holder's inequality yields

_4a
(41) |2<c[ffr|w(re)|2drde] ffr(N - %ﬁdrde]“zcﬁ,

where we have useagl< 2. Gathering (40) and (41) we conclude that (39) holds. O
Now we pass to the proof of item (d) of Remark 3.1.

Proof of (35). We shall first show the inequality

and therefore

One may assume that= u(r, t) wherer = |(Xy, ..., Xn-1)| @ndt = xy. Then

2 0o
f Lo (N - Doy f u(r, 02rN-2dr,
amy 1X] 0

u(r,0)=-2 fm u(r, t) (r t) dt.
0

But

So,

u? f""f‘” au N_3
— = -2(N - Dwn- u(r,t)—(r,t)r = drdt
faRHX' N-Dows [ [ urnFe
o 0o > N4 1/2 00 du 2 No2 1/2
<2(N - D)wn-1 u(r, t)2rN-4dr (- (r.H) rN2dr] dt
0 0 o ‘ot

We use now the inequality

fo u(r 9 < 43)2 fm(g—‘:(r,t))zr“‘-zdr,

which is one of the classical version of Hardy’s inequality (in dimensienl). We obtain
u2
L
1
4 1 (N-2 2| (7 0u 2 N2 4 |°
3N - Don- 1[ U (—(r t)) dr] UO (—t(r,t))r dr| dt
2 N 2
= SN [ ]G+ (G 2are
_— Vul?.
=/ v

IA

IA



To prove
—_12)2
(42) Hy < YL
we consider, for fixeé > 0 ande | 0, the function

30 %) rF et frsg
P AN = g7 eanl/e ifr<e,

wherex = (X, xy) € RN x Ry, r = |X|. Lety € CP(RN), 0 <5 < 1,5 = 1inBy(0) and
n = 0 outside ofB,(0) and set

@® =1
Then
¢? 1
(43) f £ _ (N - s log) + O()
RN |X| &
and

f PIVEP = (N - Ljwons (i«N “3p 1)+ 2iog L + o)
REI 8a 2 E

whereO(1) is bounded as — 0. The value ofa that minimizes the expression above is

a=3+/[(N-3)2+1, and this yields
f Vel? = (N - 1)CUN—1% VIN-32+1 Iogé +0(1)
RY

which combined with (43) proves (42).

4. THE EXPONENTIAL CASE

We need the following result that characterizes extremal singular solutions belonging to
HY(Q).

Lemma 4.1. Assume that \« H(Q) is an unbounded solution dfL) for somea > 0.
Assume furthermore the stability condition

(44) A Fv)e? < f IVel> VYo e CHQ),¢ =0o0nTy.
Iy Q

ThenA = A* and v= u*.

Remark 4.2. The above lemma is an adaptation[df Theorem 3.1] The proof off4,
Theorem 3.1}elies on a result of Martel (se2]), stating that the extremal solution of

(5) is unique in the class of weak solutions. This uniqueness result is not known in our
context, unless we require in addition thatis smooth, sefl2, Theorem 3.11]Below we
bypass this dliculty and prove Lemma 4.1, everfdthas a corner at the interfade; N I',

(as is the case in Theorem 1.3).

Proof. The fact thatt = 2* can be proved exactly in the same way as in [4, Theorem 3.1].
Hence we have to show that= u*. Note thatv is a supersolution of (1), and therefore
u, <vforall0O< A< A* Thusu* <.



By density, (44) holds fop € H(Q) such thaty = 0 onTI',. By assumptiony € H(Q)
and sincef satisfies (3), we also have € H(Q). Thus we may choosg = v — u* in (44)
and obtain

f [fu)-f(V) - ' WU =Vv)](v-u’) <0

I
But the integrand is nonnegative since u* a.e. andf is convex. Therefore

fu)=~fv)+ 'V -v) a.e.om;.

It follows that f is linear in intervals of the form.f(x), v(x)] for a.e.x € T'y. If u* # vthen
the union of such intervals is an interval of the forapdo) for somea > 0, which can be
proved as in [17] or [12]. This is a contradiction with (3) and we concludethatv. O

To prove Theorems 1.3 and 1.5 it will be convenient to study the funcyatefined by

(45) Up(X) = f K(x,y) log 1 dy forxeRN,
oRN hY

where as befor&(x,y) = NZLw“Ux —yI™N. Thenug is harmonic inR" and

1
Uo(X) = log m for x e RN, x # 0.

Note that
1
Uo(RX) = up(X) + log R
Letr = |X|. Then

1
(46) Uo(X. xn) = V(M) +1og =,
for somev : [0, o) — R such thaw(0) = 0. We see that
OUg _ OUg _ 1
T = x0TV 0O
SO
OUp

= = one®  ondRY,
ov ' *

where we let
Aon = =V(0).
Let
Qo = {xeRY : up(x) > 0}
1 =0QnadRY  To=00Q\ RN,

The boundaryQg is not smooth itself bufy, I'; are, and it can be checked that Proposi-
tion 1.1 still holds in this case.
It can be verified tha®, can be written a8y = {(X, Xn) € RN1 xR, @ x| < e/0n/IXD),

Lemma 4.3. We have

V-3
o A N=D G Nz
’ ifN =3,



Proof. We give details folN > 4, the cas@ = 3 being similar. We need to computg0).
CalculatingAug in terms ofv (see (46)) we obtain thatsatisfies

QA+ Q) +@-NtV(E)+3-N=0
and thus/ is given by

V()= (N-3)(1+1)'% f(l + D)7 ds+ (1+1) 7 V(0).
0

Integrating and using(0) = 0 yields

@47)  v(t)=(N- 3)[(1” ) f(1+32)2 dsdr+\/(0)f(1+r )'7" dr.

We look at the asymptotics of the two integrals above, asco. For the second integral,
we have

AT e 1
toeo tN-3 (N-3)N4 - N-3
And for the first integral,
fo(1+72)N4f(1+32)2Ndsdr 1+ [+ DT

i tN-3 it (N = 3)tN-4
=—fw(1+sz)%ds
1 VA -3
CN-3 or(N -1y

Going back to (47), we obtain that

T N _
v(t) = ( VAT (3 ‘/(0)) 3+ o(tN-3).
21"(2
Now, recall that forxy > O, Iimr_>0v(xN/r) + Iog; = Up(0, xn) € R exists and is finite.
Hence, we must have
W@=4N—$V_“_'
2F( -1)

m]
Proof of Theorem 1.3. We have shown thaiy defined in (45) is a solution to (1) with
Q = Qp anda = Apn. This solution satisfies the stability condition (44) if and only if (by
scaling)

wa ¢ MR Vi € CHRY\ {0}).
oRY X
In the Appendix we prove that
(48) Hyn > Aon ifand only if N > 10
and this completes the proof of the theorem. O

Proof of Theorem 1.5.
We prove the theorem by contradiction, assuming thas unbounded. We use an idea
of Crandall and Rabinowitz [11], but with fierent test functions.



Let¢(x) = [ KO Y)Y N"dyandy(x) = fov KO Y)lyI > dy. Then,
5_¢ _ 1-N+s 6_ _ Nee
(49) o = Kyl 5 = Kl

where the constants,, K, are given by
Ks = dlone +O(e%)  and K, = Hy + O(s).
Indeed, sincely and¢ are harmonic irf,

1) dUp
Up— = -
LQ OaV 6Q¢ v

Clearly, frz |#%2| < C, for some constar@ independent of. So

Ky folln (%) %rZ‘N”rN‘Zdr = lon fol %rZ‘N”rN‘Zdr +0(1) = /IOT’N +O(1).
Now, fol Inir-Y*¢dr = 5 so we end up with
Ky = done + O(&).
Similarly, sinceys andw (defined in (12)) are harmonic @, we have
0 ow
LQ Wa_lf - oQ WE

As before the boundary terms ©h are bounded independently ©80

1 1
K,,f r-itedr = HNf r=*edr + O(1).
0 0

Hence,
Kw = HN + 0(8)
For0< A < A%, letu, denote the minimal solution of (1). Integrating by parts twice against

¢ yields :
f uﬂ%z ¢%=/lf ¢e“4+f ¢%5/1 pe'.
o OV a0 OV Iy Iz dv Iy

Recall thatu,  u* ande" e L1(I'y). Furthermore¢ is bounded away from the origin :
givenR > 0, ¢ < R*Ndiam(;)® < RR"N(diam(1) + 1) inTy \ Br(0). So,

0 . . .
(50) f u*—¢ <A | ¢et < f ¢e" +C.
oQ 6V Iy FlnBR(O)

Letn € C*(RN) be such that = 1 in Bg(0) whereR > 0 is small and fixed, ang = 0 on
I',. Using the stability condition (7) withy yields

* u 2 2 ﬁ ~
g \fl:mBR(O)e s fg; |V(771ﬂ)| - j,;g C()V(mb)(mb) L(nw)A(UW)
1) < f 8_¢w +C

I'1NBRr(0) 61/

where the constai@ does not depend an Sincey? = ¢ ondRY combining (50) and (51)

we obtain
f u*a—¢ < a—l//w +C.
0 OV 7 Jrinee0) OV



Using (49) we arrive at

K¢f u*|X|l—N+8 < wa |X|1—N+S+C
I'1NBRr(0) I'1NBR(0)

Hy 1 1

f uXNE < (N = Dwy-1—— = + O(=).
T1NBr(0) AoN € &

and thus

This last equation can be rewritten as

(52) f 1f udwdr<m— 0()
gN-2 O,NS

Next we claim that for any given @ o~ < 1 there exists(o) > 0 such that

(53) u(x) > (1-o0)log ﬂ ¥x eIy, X <r(o).

Observe first that for all < 2 < A* the minimal solutioru, is symmetric in the vari-
ablesxy, ..., xy-1 by uniqueness of the minimal solution and symmetrfofUsing the
symmetry and convexity assumptions @rcombined with the moving plane method (see
Proposition 5.2 in [7]), we also have that achieves its maximum at the origin.

Assume by contradiction that (53) is false. Then there exists 0 and a sequence
Xk € T'1 with x¢ — 0 such that

(54) u'(x) < (1 - o) log ﬁ

Let s¢ = || and choose & A < A* such that

1
(55) maxu,, = U, (0) = log —.
[ S
Note thatly — A*, otherwiseu,, would remain bounded. Let
u X 1
Vi(X) = Ak(skl ) Xe Q= —Q.
log & S«
Then0< v <1, w(0)=1,Aw =0in Qk and
oV
2= § TSP (509)
S«
Ak
“log+

by (55). By elliptic regularityvy — v uniformly on compact sets d{_[:‘ to a functionv
satisfying 0< v < 1,v(0) = 1, Av = 0inRY, & = 0 ongR}. Extendingv evenly toRN we
deduce that = 1. Sincelx | = sc we deduce that

Uz, (%)

1
log s

-1,

which contradicts (54).
Going back to (52) and using (53) we find

Ky 1

r(o)
(56) (1- a’)f Iog— reldr< 2 < Hy 1 !

5 e +C = /IO’N 2 + O(;)



Integrating
1 1 1 Hy 1 1
_ - & - & < = ).
1-0) 82!‘(0’) + 8!‘(0’) log (@)= Ton 2 + O(g)

Lettinge — 0 yields

Hn
l-0)< —.
(1-0) Ton
As o is arbitrarily small we deducé™ > 1 which by (48) forced > 10, a contradiction.

]

Proof of Proposition 1.7.Let indeedu = u, be the minimal solution of (1). Working as in
[11] we takep = el — 1, j > 0 in (6) and multiply (1) byy = ¢! — 1. We obtain
. 2 A :
= | e'(e-1 dss—.f g'(e? - 1) ds
2 [ el -1 ass g [ eEr-1)
It follows that

(}—})f Pt ds < gf it ds
J 2 1"1 J r1

sgf e(j+1)“ds+—?f gli+ugg
J T'1NA J I'.nB

whereA = [(1/] — 1/2)el2i+v < ‘T‘e(i+1)“] andB = [(1/] — 1/2)e@i+1u > ‘T‘e(Hl)lJ]. Given
j € (0,2), we see that remains uniformly bounded of, while

gf e(j*l)“dss}(i—})fe(j*l)“ds
J JrinB 2\] 2)Jn

We conclude tha¢” is bounded inL2*1(9Q) independently oft. If 2j +1 > N -1 we
obtain by elliptic estimates a bound forin C*(Q), for somea € (0,1). Thus ifN < 6
we can choosg € (0,2) such thatN — 1 < 2j + 1 < 5 and obtain a bound fau in
C2(Q) independent oft. However, forN = 6,7, 8 or 9, this argument does not prove that
u* € L®(Q). O

5. THE POWER CASE

Proof of Theorem 1.10. We shall give here the proof of the cap€(N, pél) > Hy. If
p < Nl_z the boundedness af follows from standard techniques, using the Sobolev trace
2(N-1)

embedding theore(Q) — L7 = (0Q).
Letv = C(N, pél)ﬁw%. Thenv satisfies
.

{Av:O in RN

ov
= = VP ondRY,
—1 _ DC(N,%I) H N
Observe thapv”* = T" > |_xT ondR} \ {0} and hence
IVl = p [0 VP 1P
(57) ot J2 Ut =~

faRt‘ 902

where the infimum is taken over the functiops Cg"(RE‘) that do not vanish identically
ondRY.



Assume that* is singular. FOR > 0 and O< A < 2* let
Ur(X) = AFIRF U (RX+ X3),
wherex, denotes a point of maximum af. Observe that sinag, is positive and harmonic
inQ, x; €I'y.
. 1 1
For 0 < A < A%, we chooseR such thatug(0) = 1 i.e. such thafl = R#1u,(x,) = 1.

Sinceu,(x,) — o asd T 1* we haveR — 0 asaA T A*.
Thenug verifies

Augr =0 in Qr

au

6_vR = (AF1R"T +ug)® onI®
Ur =0 onr%,

where
Qr=(Q-x)/R TIf=T1-x)/R T§=(2-x)/R
Furthermoreur satisfies the stability condition

Vel > pr(Aﬁ RT +UR)P? Yo eCT(QrUTR).
Qr 10}

Let
#(R) = sufr > 0/ B, N RN c TR

Using the convexity assumptions & the moving plane method implies that the distance
of the pointx, € I'; to I'; N I'; stays bounded away from zero, see [7] for this method in
the context of non-linear Neumann condition. This implies that

(58) #(R) - +00 asR— 0.

Step 1.We have
(59) Ur<V INTRNByg).
Proof of Step 1. Suppose not. Define
ro=sudr > 0|r < ¢(R), g < vin B, NI}

Sincev is singular at Org > 0 and we haveir < vin B, N Fi‘. Furthermore, there exists
Xo € IRY such thatxg| = ro andugr(Xo) = V(Xo)-

Let x = (X,0) € Fi‘ be such thatx| = ro. If ur(X,0) = v(x’,0) then g—‘v’(x’,O) =
V(X, 0)P < (ATFRPT + Ug(X, 0))P = %&(x', 0) and hence for somg > 0

6V 0UR "2 2 2
(60) X (y,t) > X (v, 1) ly — X'|° +t° < 6%
It follows that for somem, > 0 (and decreasing if necessary
(61) Ur(Y, t) < V(Y,1), i ly— X? + % < 6%, t > m(lyl - ro), t > O.

Indeed, because of (60) ang(y, 0) < v(y, 0) for |y| < ro we immediately obtain
UR(Y,t) < V(y,t)  forly— X +t* < 65,1y <o, t > 0.

If (61) is false, then there are sequenggs— X, tx — 0 with |yk| > rg andlyktka,| —

such thawv(yi, tk) < Ur(Yk, tk). Then by the mean value theorem there exists a ERiimt
the segment fromy, t) to (X', 0) such thav (v(&) — Ur(&k)) - Wk < 0 wherew is the unit



vector parallel toy — X', tk). Taking the limit we obtai%N(v(x’, 0) - ur(x’, 0)) < 0 which
contradicts (60) (recall thaf, = —;%-). This proves (61).

Supposex € Fi‘ is such thatx| = ro andur(x’, 0) < v(x’, 0). The by continuity there is
dx > 0 such that (61) still holds.

Then by compactness for soie- 0 andm > 0 we have

(62) UR(X,t) < V(X,1), if (IX]=rg)®+1t% <62 t>m(|X]|—-rg), t>0.
Now consider
(X, 1) = p*(sin(@(0 — 6o)) + b(6 - 6)°),
where p, 8) are polar coordinates aroung,(Q) i.e.
IX| =rg+pcos@), t=psin@).

We choosé), € (0, 3) is close enough t§ so that tap > m. The parameters, b are
chosen later on.

We shall use the maximum principle to prove that foffisiently smalls > 0, & > 0 we
have

v(X,0) — Ur(X,0) > ez(X,0), ro—6<|X]|<ro.

We have
a—2
_ P 2 _0\2 (N — ; _
Az= To 7 pC0S0) [Zbro + a?bro(6 — 60)? + p( — (N = 2)a sin(9) cos(6 — o))
— 2b(N — 2) sin@)(8 — o) + 2bcosPp) + (N — 2)a cosf) sin(a (6 — 6p))
+ ba(a + N - 2) cosg)(9 - 6o)°)
(63) = p"?(2b + a®b(0 - 60) + O(p)). asp — 0
and, observing that fat = = we are orgRY
oz = 1oz = p*L(a cos(r - 6p)) + 2b(m — 6p)).
v p0bly,

Butr—6p > 5. We fix 0< a < 1 close enough to 1 such that c@f - 6p)) < 0, and then
takeb > 0 small enough so thatcos@(r — 6p)) + 2b(r — 89) < 0. Thus, setting

= —(a cos@(r - 6)) + 2b(x — 65)) > O,

we have
9z _ —gp® !t forp > 0small
av

On the other hand, by (63)

(64) AZ>p®2(2b+O(p)) asp — 0

uniformly for 8y < 6 < n. Now consider the region
D={(X,0) | (IX|-ro)>+t2 <82 t>m(x|—rg), t>0}={(0,0) |0<p<6,6p<6<n}
and writedD = S; U S, U Awhere
S1={(,0)|0<p<6,0=60)} S,={(©0|0<p<d 0=nr}
and
A={(p,0)|p=6,00<0<m}.



By (64) and choosing > 0 smaller if necessary we achie@ > 0 in D. OnS; we have
z=0andv - ur > 0. Now we seel¢ > 0,5 > 0 smaller than before such that

. ., 0V  OUR 0z 1
inf(=— — —) > esup— = —asd”
7] (61/ ov ) =€ Szpav

and
inf(v— Ug) > esupz = &67C,
A A
whereC; = sin(e(r — 6p)) + b(r — 6g)2. Writing K = —infs, giv’ - %) < oo andecy =
infa(v— Ug) > 0 we first choosé > 0 small such that
K ©
0— < —
a < C,

and there such tha* & <& < 267,

The calculations above and the maximum principle then weldir > ¢zin D, which
was the desired conclusion. Now this implies that ur is not diterentiable atxy, 0), a
contradiction.

Step 2. We leta T 2" and hencdk — 0. Since 0< ug < Ur(0) = 1, ur — u uniformly on
compact sets dkY andu satisfies

Au=0 inRN
(65) ou

— =u" ondRY

5, = U OndR,
and

u0) =1
Also, u satisfies
(66) f IVgl? > pf uP~1p? Yo e Cg"(@)
RY RN
By (58) and the previous step we deduce
us<v inaRY,
Let

u
(67) pu=sup- <1
arN v
We claim thaju = 1. Indeed, let
~ u(y)® N
i(x)=c ——d xe RY.
) me ooy xeR!
Thenu'is harmonic inRY and agrees withi on dRY. Sinceu is bounded by 1 and s
bounded, we see thatU must be a constant. But then, sing&’;0) — 0 andu(x’,0) — 0
as|x'| — oo we see thati = Q.
Thus
u(y)® v(y)® N
u(x) = —_— dy < cuP ——=—— dy = uPv(X X € oR}.
) faRy xoynz Vo oy Y= *
This impliesu < uP and since: # 0, we conclude: = 1.
Step 3.0bserve that the supremum in (67) is not attained. Othemwise would achieve
a minimum at a poink € dRY, where the normal derivative would be zero. By Hopf’s



lemma, we would have = v, which is impossible sinca is bounded and is not. Let
% € ORY be such thalx| — co and% — 1. Let

1
Uk(X) = [l P1u(1 Xl X).
Sincev is invariant under the above transformation we haye< v in 6RY. Thus, for
a subsequence we haug — ug andug solves (65). Sincelk(ﬁ) — V(y) wherey =
lim % again using Hopf’s lemma we see thgt= v. But uy satisfies the condition (66),
contradicting (57).

Proof of Theorem 1.8.Setu = Wi - 1 so that
L

(68) Au=0 in RN
ou 1 D N
(69) 5, = C(N.5(A+U) ondR\

LetQ = {xe RN |u(x) > 0}, ;1 = QN RN, ', = 9Q \ oRY. Thenu s a singular solution
to (68), (69) with

u=0 onI5.

To apply Lemma 4.1 we need to verify that H(Q). We are assuming thaC(N, p%l) <

Hn andp > . Actually we must havep > 5. For this it is convenient to observe that

(70) C(N,a)=C(N,N-2-0a) YO<a<N-2, and
(71) a+ C(N,a) isincreasing for &< a < N2,

Property (70) is direct from (16) and we leave (71) to the appendix. From these properties
we deduce thap > % and thereforau € HY(Q). This solution satisfies the stability
condition (44) if and only if (by scaling)

2
1 L 2 1N
PC(N, 27) fa S fR Vel Ve Gl 0]

which is guaranteed by Kato’s inequality (9). Thus we may apply Lemma 4.1 and conclude
thatu is the extremal solution.
m]

APPENDIX

N 2
Proof of (48). We haveHy = 2[—{(%)15] = 2f(N/4)? where

6
I'(2)
72 f(2 =
(72) @ D
and similarly we haveloy = vrt52 %%ﬁ = Vrs 5%1% = vrf (¥ - 1) Then

Hn _ 2f(N/4Y
Aon  Afrf (% - %)
SinceHio = ¥ > 910 = X it follows that

Hio
Ao,10

> 1.



On the other hand

Let us compute

d fR _3TOFEI(G-3) -3 (- 3)
iz -3) f(5-3)
G [f’(ﬁ) f’(%—%)]

)

AT 1G-Y)

N

Recall that
I'2) =yo(@l(2,  whereyo(2) = - [1 +y+ Z (_ _ })]

n+z n

In particular,yg is a positive increasing function o& Joo[ whereE ~ 1.4 is the unique
zero ofyg inR,, and

f'(2) = [wo(z) tﬁo( 1)} r(l;(_z) I >0 forze€]1/2, ool.

Calculating

d Py N 1
(73) &m—‘//o(x)—l//o(X—E)—;)(n+x)2 (n+x—%)2<0 forx>2.

x_1
So ff((x)) is decreasing fox > $ and it follows thatf(( )) %(%% > 0 for x> 2. Hence
2 2

Hn > don  Only for N > 10.

[}
Proof of (71). Using the notation (72) we see that
C(N.a) = f(5+3)F(%2-9).
Hence, for 0< o < %2 we have
d 1 f(s+3) (%5 -3
da S = 3C0N) aed) M
fg+3) f(%*-9)
by (73). O
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