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. We consider

∆u = 0 inΩ,
∂u
∂ν
= λ f (u) onΓ1, u = 0 onΓ2

whereλ > 0, f (u) = eu or f (u) = (1+ u)p andΓ1, Γ2 is a partition of∂Ω andΩ ⊂ RN. We
determine sharp conditions on the dimensionN andp > 1 such that the extremal solution
is bounded, where the extremal solution refers to the one associated to the largestλ for
which a solution exists.
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1. I

We study the semilinear boundary value problem
∆u = 0 inΩ

∂u
∂ν
= λ f (u) onΓ1

u = 0 onΓ2

(1)

whereλ > 0 is a parameter,f (u) is a nonlinear smooth function ofu, Ω ⊂ RN is a smooth,
bounded domain andΓ1, Γ2 is a partition of∂Ω into surfaces separated by a smooth inter-
face. We will assume that

f is smooth, nondecreasing, convex andf (0) > 0,(2)

lim inf
t→+∞

f ′(t)t
f (t)

> 1.(3)

Assumption (3) is not essential, but it simplifies some of the arguments and holds for the
examplesf (u) = eu, f (u) = (1+ u)p, p > 1. In some related works the following weaker



condition is usually assumed:

lim
u→∞

f (u)
u
= ∞.(4)

We say thatu is a weak solution of (1) ifu ∈W1,1(Ω), f (u) ∈ L1(Γ1) and∫
Ω

u(−∆ϕ) =
∫
Γ1

λ f (u)ϕ for all ϕ ∈ C2(Ω̄) such thatϕ
∣∣∣∣
Γ2

≡ 0 and
∂ϕ

∂ν

∣∣∣∣
Γ1

≡ 0.

Problem (1) shares many properties with the following generalization of the so-called
Gelfand’s problem {

−∆u = λ f (u) in Ω

u = 0 on∂Ω
(5)

which has been widely considered [3, 4, 10, 11, 21, 22]. In particular, the following result
can be proved as in [3] (see Section 1.1 in [12] for further details).

Proposition 1.1. Assume that f satisfies(2) and (3). Then there existsλ∗ ∈ (0,∞) such
that

• (1) has a smooth solution for0 ≤ λ < λ∗,
• (1) has a weak solution forλ = λ∗,
• (1) has no solution forλ > λ∗ (even in the weak sense) .

Moreover, for0 ≤ λ < λ∗ there exists a minimal solution uλ which is bounded, positive and
stable, in the sense that the linearized operator at uλ is positive, i.e.

inf
ϕ∈C1(Ω),ϕ=0 onΓ2

∫
Ω
|∇ϕ|2 dx− λ

∫
Γ1

f ′(uλ)ϕ2 ds∫
Γ1
ϕ2 ds

> 0.(6)

The monotone limit u∗ := limλ↗λ∗ uλ is a weak solution forλ = λ∗ and satisfies

λ∗
∫
Γ1

f ′(u∗)ϕ2 ≤

∫
Ω

|∇ϕ|2 dx, ∀ϕ ∈ C1(Ω), ϕ = 0 onΓ2.(7)

We callu∗ the extremal solution of (1).

Remark 1.2. Under assumption(3) we have u∗ ∈ H1(Ω). The proof is analogous to the
argument for(5) in [4], so we skip it.

Proposition 1.1 suggests the following natural question : isu∗ a bounded solution?

In the context of (5), no complete answer has been given yet. For the casef (u) = eu, that
is the original Gelfand problem, it was shown by Joseph and Lundgren [21] that ifΩ is a
ball, thenu∗ is bounded if and only ifN < 10. Crandall and Rabinowitz [11] showed that
if f (u) = eu andN < 10 then foranysmooth and bounded domain,u∗ is bounded. Brezis
and V́azquez [4] provided a different proof of the unboundedness ofu∗ in the caseΩ = B1

andN ≥ 10 : they established in particular that a singular energy solution which is stable
must be the extremal one. In applying this criterion in dimensionN ≥ 10 they use Hardy’s
inequality valid forN ≥ 3 :

(8)
(N − 2)2

4

∫
RN

ϕ2

|x|2
≤

∫
RN
|∇ϕ|2, ∀ϕ ∈ C∞0 (RN)

Other explicit nonlinearities, for instancef (u) = (1 + u)p with p > 1, are considered in
these references, but in the general case, little is known. In this direction, we mention the
result of Nedev [23], which asserts that for any functionf satisfying (2) and (4), and any
smooth bounded domain inRN, N ≤ 3, u∗ is bounded. This result has been extended by



Cabŕe to the caseN = 4 andΩ strictly convex [5]. Finally, Cabŕe and Capella [6] showed
that if Ω is a ball andN ≤ 9 then for any nonlinearityf satisfying (2),(4) the extremal
solution is bounded.

Proving thatu∗ is unbounded seems to be much more difficult. Besides the radial case
Dávila and Dupaigne [14] have shown that in domains that are small perturbations of a
ball and for the nonlinearitieseu and (1+ u)p the extremal solution is singular for large

dimensions (N ≥ 11 andN > 2+ 4p
p−1 + 4

√
p

p−1 respectively).

Returning to (1), we are interested in determining whether the extremal solutionu∗ is
bounded or singular in the casesf (u) = eu and f (u) = (1+ u)p, p > 1.

Theorem 1.3. Let f(u) = eu. In any dimension N≥ 10 there exists a domainΩ ⊂ RN and
a partition in smooth setsΓ1,Γ2 of ∂Ω such that u∗ < L∞(Ω).

The proof is an adaptation of the argument of Brezis and Vázquez [4], using a stability
criterion. In our case the singular solution has the formu0(x) = − log |x| for x ∈ ∂RN

+ and
its linearized stability in dimensionN ≥ 10 is obtained thanks to :

(9)
∫
RN
+

|∇ϕ|2 ≥ HN

∫
∂RN
+

ϕ2

|x|
, ∀ϕ ∈ C∞0 (RN

+ ),

which holds forN ≥ 3 and where the best constant

HN := inf


∫
RN
+

|∇ϕ|2∫
∂RN
+

ϕ2

|x|

: ϕ ∈ H1(RN
+ ), ϕ

∣∣∣∣
∂RN
+

. 0

(10)

is given by

HN = 2
Γ( N

4 )2

Γ( N−2
4 )2

∀N ≥ 3,(11)

whereΓ is the Gamma function. Inequality (9) is known as Kato’s inequality and a proof
of it was given by Herbst [20].

We will give here a different proof of this result which offers a sharper version, anal-
ogous to improvements of (8) found by Brezis and Vázquez [4] or V́azquez and Zuazua
[24] (see also [2, 4, 13, 19, 24] for other improved versions of the Hardy inequality (8)) :

Theorem 1.4. Let B= B1(0) be the unit ball inRN, N ≥ 3. Then for any1 ≤ q < 2 there
exists c= c(N,q) > 0 such that∫

RN
+∩B
|∇ϕ|2 ≥ HN

∫
∂RN
+∩B

ϕ2

|x|
+ c‖ϕ‖2

W1,q(RN
+∩B)

, ∀ϕ ∈ C∞0 (RN
+ ∩ B),

As a converse to Theorem 1.3 we prove :

Theorem 1.5. Let f(u) = eu, N ≤ 9 and supposeΩ ⊂ RN
+ is open, bounded and satisfies:

• ∂Ω = Γ1 ∪ Γ2, whereΓ1 ⊂ ∂R
N
+ andΓ2 ⊂ R

N
+

• Ω is symmetric with respect to the hyperplanes x1 = 0, . . . , xN−1 = 0, and
• Ω is convex with respect to all directions x1, . . . , xN−1.

Then the extremal solution u∗ of (1) belongs to L∞(Ω).

Remark 1.6. In order to prove Theorem 1.5, one is at first tempted to imitate the classi-
cal argument of Crandall and Rabinowitz[11]: roughly speaking, one uses the stability
inequality(7) and the equation(1) with test functions of the formϕ = eju, j ≥ 1. This does
not lead to the optimal dimension N= 9 but applies to general domains (see Proposition



1.7 below). We use instead test functionsϕ, which are not functions of u, but which have
the expected behavior of eju near a singular point, assuming it exists.

Proposition 1.7. Let f(u) = eu and assumeΩ ⊂ RN is a smooth bounded domain such
that ∂Ω = Γ1 ∪ Γ2, whereΓ1 ⊂ ∂R

N
+ andΓ2 ⊂ R

N
+ . Assume further that N< 6. Then the

extremal solution u∗ of (1) belongs to L∞(Ω).

This raises the following question

Open Problem 1. Does Theorem 1.5 hold in any smooth bounded domainΩ ⊂ RN
+ such

that∂Ω = Γ1 ∪ Γ2, whereΓ1 ⊂ ∂R
N
+ andΓ2 ⊂ R

N
+ ?

Next we look at (1) in the casef (u) = (1+ u)p, p > 1. Given 0< α < N − 1 define

(12) wα(x) =
∫
∂RN
+

K(x, y)|y|−αdy for x ∈ RN
+ ,

whereK(x, y) = 2xN

NωN
|x− y|−N is the Green’s function for the Dirichlet problem inRN

+ (see
e.g. [18]). Clearly,wα > 0 in RN

+ . Moreoverwα is harmonic inRN
+ andwα extends to a

function belonging toC∞(RN
+ \ {0}) with

wα(x) = |x|−α for all x ∈ ∂RN
+ \ {0}.(13)

It is not difficult to verify that for some constantC(N, α) we have

∂wα

∂ν
(x) = C(N, α)|x|−α−1 ∀x ∈ ∂RN

+ \ {0}.

In Section 2 we shall show that

C(N, α) = 2
Γ(α2 +

1
2)Γ( N−1

2 −
α
2 )

Γ(α2 )Γ( N−2
2 −

α
2 )

.(14)

A heuristic calculation shows that for (1) with nonlinearityf (u) = (1+ u)p, the expected
behavior of a solutionu which is singular at 0∈ ∂Ω should beu(x) ∼ |x|

1
p−1 . The bound-

edness ofu∗ is then related to the value ofC(N, 1
p−1). Observe thatC(N, 1

p−1) is defined

for p > N
N−1. In the sequel, when writingC(N, 1

p−1) we will implicitly assume that this
condition holds.

Theorem 1.8. Consider(1) with f(u) = (1+ u)p. If p C(N, 1
p−1) ≤ HN and p≥ N

N−2 there
exists a domainΩ such that u∗ is singular.

Remark 1.9. The condition p C(N, 1
p−1) ≤ HN alone is not enough to guarantee that the

extremal solution is singular for some domain. Actually this condition can hold for some
values of p in the rangeN

N−1 < p < N
N−2. In this case a singular solution exists in some

domains, but it does not correspond to the extremal one. See Theorem 6.2 in[4] for a
similar phenomenon.

As a partial converse, we obtain

Theorem 1.10. Consider(1) with f(u) = (1+ u)p. AssumeΩ ⊂ RN
+ is a bounded domain

such that∂Ω = Γ1∪Γ2, whereΓ1 ⊂ ∂R
N
+ andΓ2 ⊂ R

N
+ and such that the following condition

holds

• Ω is convex with respect to x′ and
• ΠN(Ω) = Γ1, whereΠN is the projection on∂RN

+ .

If p C(N, 1
p−1) > HN or 1 < p < N

N−2 then u∗ is bounded.



In the above,Ω is said to be convex with respect tox′ if ( tx′, xN) + ((1 − t)y′, xN) ∈
Ω whenevert ∈ [0,1], x = (x′, xN) ∈ Ω and y = (y′, xN) ∈ Ω. ΠN is defined by
ΠN(x′, xN) = x′ for all x = (x′, xN) ∈ RN

+ .

Remark 1.11. The interested reader can verify that Theorem 1.10 (and the same proof)
hold if

• Ω is convex with respect to all directions x1, . . . , xN−1 and
• Ω is symmetric with respect to the hyperplanes x1 = 0, . . . , xN−1 = 0.

The organization of the paper is as follows. In Section 2 we derive formula (14) and
we prove Theorem 1.4 in Section 3. In Section 4 we analyze the exponential case and
give a proof of Theorems 1.3 and 1.5. The proofs of Theorems 1.10 and 1.8 are given in
Section 5.

ThroughoutωN denotes the area of the unit ball inRN and hence the area of the sphere
SN−1 is NωN.

2. C  C(N, α)

We write x = (x′, xN) ∈ RN
+ with x′ ∈ RN−1, xN > 0. It follows from (12) and a simple

change of variables that

wα(x′, xN) = wα(e(x′), xN) for all rotationse ∈ O(N − 1)

and similarly

wα(Rx′,RxN) = R−αwα(x′, xN).(15)

Differentiating with respect toxN yields

∂wα

∂xN
(Rx′,RxN) = R−α−1∂wα

∂xN
(x′, xN).

Let x ∈ ∂RN
+ , x = (x′,0) and plugR= 1

|x| =
1
|x′ | in the previous formula to find

∂wα

∂ν
(x) = −

∂wα

∂xN
(x′,0) = |x|−α−1

(
−
∂wα

∂xN

( x′

|x′|
,0

))
.

Define

C(N, α) = −
∂wα

∂xN

( x′

|x′|
,0

)
(16)

and observe that it is independent ofx′ ∈ RN−1.
Using (15) and the radial symmetry ofw in the variablesx′, there exists a function

v : [0,∞)→ R such that

wα(x′, xN) = |x′|−αwα(
x′

|x′|
,

xN

|x′|
) = |x′|−αv(

xN

|x′|
).(17)

Writing r = |x′|, t = xN

|x′ | , we have

r−αv(t) = wα(x′, rt), ∀x′ ∈ RN−1, |x′| = r.

The equation∆w = 0 is equivalent to

(1+ t2)v′′(t) + (2α + 4− N)tv′(t) + α(α − N + 3)v(t) = 0, t > 0,(18)

while (13) implies

v(0) = 1.



The initial condition forv′ is related to (16)

v′(0) = −C(N, α).

In addition to these initial conditions we remark thatwα is a smooth function inRN
+ and

this together with (17) implies that

lim
t→∞

v(t)tα exists.(19)

Using the change of variablesz = it with i the imaginary unit and defining the new
unknownh(z) := v(−iz) equation (18) becomes

(1− z2)h′′(z) − (2α + 4− N)zh′(z) − α(α − N + 3)h(z) = 0,(20)

with initial conditions

lim
t>0, t→0

h(it) = 1, lim
t>0, t→0

h′(it) = iC(N, α).(21)

On the other hand (19) implies

lim
t∈R, t→∞

h(it)tα exists.(22)

The substitution

g(z) = (1− z2)
α
2+

1
2−

N
4 h(z)(23)

transforms equation (20) into

(1− z2)g′′(z) − 2zg′(z) +
(
ν(ν + 1)−

µ2

1− z2

)
g(z) = 0,(24)

with

µ = α +
2− N

2
, ν =

N − 4
2

.(25)

The general solution to (24) is well known. Indeed, equation (24) belongs to the class of
Legendre’s equations. Following [1], two linearly independent solutions of (24) are given
by the Legendre functionsPµ

ν (z), Qµ
ν (z), which are defined inC \ {−1,1} and analytic in

C \ (−∞,1] (see [1, Formulas 8.1.2 – 8.1.6]). Moreover the limits ofPµ
ν (z), Qµ

ν (z) on both
sides of (−1,1) exist and we shall use the notation

Pµ
ν (x+ i0) = lim

z→x,Re(z)>0
Pµ
ν (z), −1 < x < 1,

Pµ
ν (x− i0) = lim

z→x,Re(z)<0
Pµ
ν (z), −1 < x < 1,

(26)

and a similar notation forQµ
ν .

The solutiong of (24) is therefore given by

g(z) = c1Pµ
ν (z) + c2Qµ

ν (z),

for appropriate constantsc1, c2. These constants are determined by the initial conditions
(21), which imply:

(27) c1Pµ
ν (0+ i0)+ c2Qµ

ν (0+ i0) = 1,

(28) c1
d
dz

Pµ
ν (0+ i0)+ c2

d
dz

Qµ
ν (0+ i0) = iC(N, α).

In order to evaluateC(N, α), we use also condition (22), which is equivalent to

lim
t→∞, t∈R

(c1Pµ
ν (it) + c2Qµ

ν (it))t
N
2 −1 exists.(29)



But according to [1, Formulas 8.1.3, 8.1.5]

Pµ
ν (z) ∼ zν as|z| → ∞

Qµ
ν (z) ∼ z−ν−1 as|z| → ∞

This and (23),(29) imply thatc1 = 0 and we obtain from (27),(28)

C(N, α) = −i
d
dzQ

µ
ν (0+ i0)

Qµ
ν (0+ i0)

(30)

From the properties and formulas in [1] the following values can be deduced:

(31) Qµ
ν (0+ i0) = −i2µ−1π

1
2 eiµπ−iν π2

Γ( ν2 +
µ
2 +

1
2)

Γ( ν2 −
µ
2 + 1)

(32)
d
dz

Qµ
ν (0+ i0) = 2µπ

1
2 eiµπ−iν π2

Γ( ν2 +
µ
2 + 1)

Γ( ν2 −
µ
2 +

1
2)

The relations (30),(31),(32) and the values (25) yield formula (14).
�

3. I K 

We begin with some remarks on (9).

Remark 3.1. a) The singular weight1
|x| in the right-hand side of(9) is optimal, in the

sense that it may not be replaced by1
|x|α with α > 1. This can be easily seen by choosing

ϕ ∈ H1(RN
+ ) such thatϕ(x) = |x|−

N−2
2 +

α−1
2 in a neighborhood of the origin.

Moreover, the infimum in(10) is not achieved.

b) In dimension N= 2 the infimum(10) is zero, see[15]. Nonetheless, if the test-functions
ϕ are required to vanish on the half line x1 > 0 then the infimum has been computed in
[15] :

inf


∫
R2
+

|∇ϕ|2∫
∂R2
+

ϕ2

|x|

: ϕ ∈ H1(R2
+), ϕ(x1,0) = 0 if x1 > 0, ϕ

∣∣∣∣
∂R2
+

. 0

 = 1
π

(33)

c) Using Stirling’s formula we see that

HN =
N − 3

2
+ O(

1
N

) as N→ ∞.(34)

Indeed, sinceΓ(z) =
√

2π/z
(

z
e

)z (
1+ 1

12z + O
(

1
z2

))
for z> 0,

HN = 2
Γ( N

4 )2

Γ( N−2
4 )2

= 2
N − 2

N

(
N
4e

)N/2(
N−2
4e

)(N−2)/2

(
1+ 1

3N + O(1/N2)
)2(

1+ 1
3(N−2) + O(1/N2)

)2

= 2

(
1−

2
N

)
(4e)

N−2
2 −

N
2

( N
N − 2

)N/2

(N − 2)
(
1+ O(1/N2)

)
=

N
2e

(
1−

2
N

)2−N/2 (
1+ O(1/N2)

)
=

N
2

(
1−

3
N
+ O(1/N2)

) (
1+ O(1/N2)

)
=

N − 3
2
+ O(1/N).



d) The estimates

N − 3
2
≤ HN ≤

√
(N − 3)2 + 1

2
(35)

can be obtained in a more straightforward way using particular test functions. We give a
proof of this at the end of Section 3. Also observe that(34)could be deduced from(35).

Let us explain first informally the idea behind the proof of Theorem 1.4, assuming for
a moment that a minimizerw ∈ H1(RN

+ ) of (10) exists. w then satisfies the associated
Euler-Lagrange equation:

(36)


∆w = 0 inRN

+ ,

∂w
∂ν
= HN

w
|x|

on∂RN
+ .

Elementary changes of variables show that givenR > 0 and a rotatione ∈ O(N − 1),
wR := R

2−N
2 w(Rx) andwe := w̄(e(x′), xN) are also minimizers of (10). Thus it is natural to

assumew = wR = we for all R> 0 ande ∈ O(N − 1). In particular a constant multiple ofw
solves ∆w = 0 inRN

+ ,

w = |x|−
N−2

2 on∂RN
+ .

Unfortunately, such a functionw does not belong toH1(RN
+ ). Let w = wα with α = N−2

2
as defined in (12). Observe thatC(N, N−2

2 ) = HN by (16) and hencew is indeed a solution
of(36).

Following an idea of Brezis and V́azquez (equation (4.6) on page 453 of [4]), we restate
(9) in terms of the new variablev = ϕ/w.

Proof of Theorem 1.4. When N ≥ 3, C∞0 (RN
+ \ {0}) is dense inH1(RN

+ ). So it suffices
to prove (9) forϕ ∈ C∞0 (RN

+ \ {0}). Fix such aϕ . 0 and letw be the function defined
by (12). Notice that, on suppϕ, w is smooth and bounded from above and from below

by some positive constants. Hencev := ϕ
w ∈ C∞0 (RN

+ ) is well defined. Now,ϕ = vw,
∇ϕ = v∇w+ w∇v and

|∇ϕ|2 = v2|∇w|2 + w2|∇v|2 + 2vw∇v∇w.

Integrating ∫
RN
+

|∇ϕ|2 =

∫
RN
+

v2|∇w|2 +
∫
RN
+

w2|∇v|2 + 2
∫
RN
+

vw∇v∇w

and by Green’s formula∫
RN
+

v2|∇w|2 =
∫
∂RN
+

v2w
∂w
∂ν
−

∫
RN
+

w∇(v2∇w)

=

∫
∂RN
+

v2w
∂w
∂ν
− 2

∫
RN
+

wv∇w∇v,

sincew is harmonic inRN
+ . Thus,

(37)
∫
RN
+

|∇ϕ|2 =

∫
RN
+

w2|∇v|2 +
∫
∂RN
+

v2w
∂w
∂ν
=

∫
RN
+

w2|∇v|2 +
∫
∂RN
+

ϕ2

w
∂w
∂ν
.

But by (16)
∂w
∂ν (x)
w(x) =

HN

|x| for x ∈ ∂RN
+ and hence,

(38)
∫
RN
+

|∇ϕ|2 ≥ HN

∫
∂RN
+

ϕ2

|x|
+

∫
RN
+

w2|∇v|2 ∀ϕ ∈ H1(RN
+ ).



The second term in the right hand side of the above inequality yields the improvement of
Kato’s inequality whenϕ has support in the unit ball.

Now we assumeϕ ∈ C∞0 (RN
+ \ {0} ∩ B) and, as before, setv = ϕ

w. Our aim is to prove
that given 1≤ q < 2 there existsC > 0 such that

(39) I :=
∫
RN
+

w2|∇v|2 ≥
1
C
‖ϕ‖W1,q.

In spherical coordinates

I =
∫ 1

0
rN−1

∫
S+1

w2(rθ)|∇v(rθ)|2dθ dr

whereS+1 = S1 ∩ R
N
+ andS1 = {x ∈ RN / |x| = 1} is the sphere of radius 1. From (15) we

havew(x) ≥ 1
C |x|

− N−2
2 for someC > 0 and allx ∈ B∩ RN

+ . Hence

I ≥
1
C

∫ 1

0
r
∫

S+1

|∇v(rθ)|2dθ dr.

Let us compute the Sobolev norm ofϕ :

‖ϕ‖
q
W1,q =

∫
RN
+∩B
|∇ϕ|qdx=

∫ 1

0
rN−1

∫
S+1

|∇ϕ(rθ)|qdθ dr

=

∫ 1

0
rN−1

∫
S+1

|∇v(rθ) w(rθ) + ∇w(rθ) v(rθ)|qdθ dr

≤ Cq

∫ 1

0
rN−1

∫
S+1

|∇v(rθ)|q|w(rθ)|q + |∇w(rθ)|q|v(rθ)|qdθ dr.

Define

I1 :=
∫ 1

0
rN−1

∫
S+1

|∇v(rθ)|q|w(rθ)|qdθ dr

I2 :=
∫ 1

0
rN−1

∫
S+1

|∇w(rθ)|q|v(rθ)|qdθ dr.

Sincew(x) ≤ C|x|−
N−2

2 we have by Ḧolder’s inequality

I1 ≤ C
∫ 1

0
rN−1− (N−2)q

2

∫
S+1

|∇v(rθ)|qdθ dr

≤ C
[ ∫ 1

0
r
∫

S+1

|∇v(rθ)|2dθdr
] q

2
[ ∫ 1

0
r (N−1− Nq

2 +
q
2 ) 2

2−q dr
] 2−q

2
= CI

q
2 ,(40)

sinceq < 2.
Using |∇w(x)| ≤ C|x|−

N
2 we estimateI2 :

I2 ≤ C
∫

S+1

∫ 1

0
rN−1− Nq

2 |v(rθ)|q dr dθ.

From the classical Hardy inequality∫ 1

0
rγ| f (r)|p dr ≤

( p
γ + 1

)p
∫ 1

0
rγ+p| f ′(r)|p dr



(p ≥ 1, γ > −1, f ∈ C∞0 (0,1)) we deduce∫ 1

0
rN−1− Nq

2 |v(rθ)|q dr ≤ C
∫ 1

0
rN−1− Nq

2 +q|∇v(rθ)|q dr

and therefore

I2 ≤ C
∫

S+1

∫ 1

0
rN−1− Nq

2 +q|∇v(rθ)|q dr dθ.

Hölder’s inequality yields

I2 ≤ C
[ ∫

S+1

∫ 1

0
r |∇v(rθ)|2 dr dθ

] q
2
[ ∫

S+1

∫ 1

0
r (N−1− Nq

2 +
q
2 ) 2

2−q dr dθ
]1− q

2
= CI

q
2 ,(41)

where we have usedq < 2. Gathering (40) and (41) we conclude that (39) holds. �
Now we pass to the proof of item (d) of Remark 3.1.

Proof of (35). We shall first show the inequality

N − 3
2
≤ HN, ∀N ≥ 4.

One may assume thatu = u(r, t) wherer = |(x1, . . . , xN−1)| andt = xN. Then∫
∂RN
+

u2

|x|
= (N − 1)ωN−1

∫ ∞

0
u(r,0)2rN−3 dr,

But

u(r,0) = −2
∫ ∞

0
u(r, t)

∂u
∂t

(r, t) dt.

So,∫
∂Rn
+

u2

|x|
= −2(N − 1)ωN−1

∫ ∞

0

∫ ∞

0
u(r, t)

∂u
∂t

(r, t)rN−3 dr dt

≤ 2(N − 1)ωN−1

∫ ∞

0

(∫ ∞

0
u(r, t)2rN−4 dr

)1/2 (∫ ∞

0

(∂u
∂t

(r, t)
)2

rN−2 dr

)1/2

dt.

We use now the inequality∫ ∞

0
u(r, t)2rN−4 dr ≤

4
(N − 3)2

∫ ∞

0

(∂u
∂r

(r, t)
)2

rN−2 dr,

which is one of the classical version of Hardy’s inequality (in dimensionN−1). We obtain∫
∂RN
+

u2

|x|

≤
4

N − 3
(N − 1)ωN−1

∫ ∞

0

[∫ ∞

0

(∂u
∂r

(r, t)
)2

rN−2 dr

] 1
2
[∫ ∞

0

(∂u
∂t

(r, t)
)2

rN−2 dr

] 1
2

dt

≤
2

N − 3
(N − 1)ωN−1

∫ ∞

0

∫ ∞

0

[(∂u
∂t

)2
+

(∂u
∂r

)2]
rN−2 dr dt

=
2

N − 3

∫
RN
+

|∇u|2.



To prove

HN ≤

√
(N − 3)2 + 1

2
,(42)

we consider, for fixeda > 0 andε ↓ 0, the function

ϕ̃(r, xN) =

r
2−N

2 e−axN/r if r > ε

ε
2−N

2 e−axN/ε if r ≤ ε,

wherex = (x′, xN) ∈ RN−1
+ × R+, r = |x′|. Let η ∈ C∞0 (RN), 0 ≤ η ≤ 1, η ≡ 1 in B1(0) and

η ≡ 0 outside ofB2(0) and set

ϕ = ηϕ̃.

Then ∫
∂RN
+

ϕ2

|x|
= (N − 1)ωN−1 log(

1
ε

) +O(1)(43)

and ∫
RN
+

η2|∇ϕ̃|2 = (N − 1)ωN−1

(
1
8a

((N − 3)2 + 1)+
a
2

)
log

1
ε
+O(1),

whereO(1) is bounded asε → 0. The value ofa that minimizes the expression above is
a = 1

2

√
(N − 3)2 + 1, and this yields∫

RN
+

|∇ϕ|2 = (N − 1)ωN−1
1
2

√
(N − 3)2 + 1 log

1
ε
+O(1)

which combined with (43) proves (42).

4. T  

We need the following result that characterizes extremal singular solutions belonging to
H1(Ω).

Lemma 4.1. Assume that v∈ H1(Ω) is an unbounded solution of(1) for someλ > 0.
Assume furthermore the stability condition

λ

∫
Γ1

f ′(v)ϕ2 ≤

∫
Ω

|∇ϕ|2 ∀ϕ ∈ C1(Ω), ϕ = 0 onΓ2.(44)

Thenλ = λ∗ and v= u∗.

Remark 4.2. The above lemma is an adaptation of[4, Theorem 3.1]. The proof of[4,
Theorem 3.1]relies on a result of Martel (see[22]), stating that the extremal solution of
(5) is unique in the class of weak solutions. This uniqueness result is not known in our
context, unless we require in addition thatΩ is smooth, see[12, Theorem 3.11]. Below we
bypass this difficulty and prove Lemma 4.1, even ifΩ has a corner at the interfaceΓ1 ∩ Γ2

(as is the case in Theorem 1.3).

Proof. The fact thatλ = λ∗ can be proved exactly in the same way as in [4, Theorem 3.1].
Hence we have to show thatv = u∗. Note thatv is a supersolution of (1), and therefore
uλ ≤ v for all 0 < λ < λ∗. Thusu∗ ≤ v.



By density, (44) holds forϕ ∈ H1(Ω) such thatϕ = 0 onΓ2. By assumption,v ∈ H1(Ω)
and sincef satisfies (3), we also haveu∗ ∈ H1(Ω). Thus we may chooseϕ = v− u∗ in (44)
and obtain ∫

Γ1

[
f (u∗) − f (v) − f ′(v)(u∗ − v)

]
(v− u∗) ≤ 0.

But the integrand is nonnegative sincev ≥ u∗ a.e. andf is convex. Therefore

f (u∗) = f (v) + f ′(v)(u∗ − v) a.e. onΓ1.

It follows that f is linear in intervals of the form [u∗(x), v(x)] for a.e.x ∈ Γ1. If u∗ . v then
the union of such intervals is an interval of the form [a,∞) for somea ≥ 0, which can be
proved as in [17] or [12]. This is a contradiction with (3) and we conclude thatu∗ ≡ v. �

To prove Theorems 1.3 and 1.5 it will be convenient to study the functionu0 defined by

u0(x) =
∫
∂RN
+

K(x, y) log
1
|y|

dy for x ∈ RN
+ ,(45)

where as beforeK(x, y) = 2xN

NωN
|x− y|−N. Thenu0 is harmonic inRN

+ and

u0(x) = log
1
|x|

for x ∈ ∂RN
+ , x , 0.

Note that

u0(Rx) = u0(x) + log
1
R
.

Let r = |x′|. Then

u0(x′, xN) = v(
xN

r
) + log

1
r
,(46)

for somev : [0,∞)→ R such thatv(0) = 0. We see that

∂u0

∂ν
= −

∂u0

∂xN

∣∣∣
xN=0
= −

1
r

v′(0)

so
∂u0

∂ν
= λ0,Neu0 on∂RN

+ ,

where we let

λ0,N = −v′(0).

Let

Ω0 = {x ∈ R
N
+ : u0(x) > 0}

Γ1 = ∂Ω ∩ ∂R
N
+ Γ2 = ∂Ω \ ∂R

N
+ .

The boundary∂Ω0 is not smooth itself butΓ1, Γ2 are, and it can be checked that Proposi-
tion 1.1 still holds in this case.

It can be verified thatΩ0 can be written asΩ0 = {(x′, xN) ∈ RN−1×R+ : |x′| < ev(xN/|x′ |)}.

Lemma 4.3. We have

λ0,N =

(N − 3)
√
πΓ( N

2 −
3
2 )

2Γ( N
2 −1)

if N ≥ 4,

1 if N = 3.



Proof. We give details forN ≥ 4, the caseN = 3 being similar. We need to computev′(0).
Calculating∆u0 in terms ofv (see (46)) we obtain thatv satisfies

(1+ t2)v′′(t) + (4− N)tv′(t) + 3− N = 0

and thusv′ is given by

v′(t) = (N − 3)(1+ t2)
N−4

2

∫ t

0
(1+ s2)

2−N
2 ds+ (1+ t2)

N−4
2 v′(0).

Integrating and usingv(0) = 0 yields

v(t) = (N − 3)
∫ t

0
(1+ τ2)

N−4
2

∫ τ

0
(1+ s2)

2−N
2 ds dτ + v′(0)

∫ t

0
(1+ τ2)

N−4
2 dτ.(47)

We look at the asymptotics of the two integrals above, ast → ∞. For the second integral,
we have

lim
t→∞

∫ t

0
(1+ τ2)

N−4
2 dτ

tN−3
=

(1+ t2)
N−4

2

(N − 3)tN−4
=

1
N − 3

.

And for the first integral,

lim
t→∞

∫ t

0
(1+ τ2)

N−4
2

∫ τ

0
(1+ s2)

2−N
2 ds dτ

tN−3
= lim

t→∞

(1+ t2)
N−4

2

∫ t

0
(1+ s2)

2−N
2 ds

(N − 3)tN−4

=
1

N − 3

∫ ∞

0
(1+ s2)

2−N
2 ds

=
1

N − 3

√
πΓ( N

2 −
3
2)

2Γ( N
2 − 1)

.

Going back to (47), we obtain that

v(t) =

 √πΓ( N
2 −

3
2)

2Γ( N
2 − 1)

+
v′(0)
N − 3

 tN−3 + o(tN−3).

Now, recall that forxN > 0, limr→0 v(xN/r) + log 1
r = u0(0, xN) ∈ R exists and is finite.

Hence, we must have

v′(0) = −(N − 3)

√
πΓ( N

2 −
3
2)

2Γ( N
2 − 1)

.

�

Proof of Theorem 1.3. We have shown thatu0 defined in (45) is a solution to (1) with
Ω = Ω0 andλ = λ0,N. This solution satisfies the stability condition (44) if and only if (by
scaling)

λ0,N

∫
∂RN
+

ϕ2

|x|
≤

∫
RN
+

|∇ϕ|2, ∀ϕ ∈ C1
0(RN

+ \ {0}).

In the Appendix we prove that

HN ≥ λ0,N if and only if N ≥ 10(48)

and this completes the proof of the theorem. �

Proof of Theorem 1.5.
We prove the theorem by contradiction, assuming thatu∗ is unbounded. We use an idea

of Crandall and Rabinowitz [11], but with different test functions.



Let φ(x) =
∫
∂RN
+

K(x, y)|y|2−N+εdyandψ(x) =
∫
∂RN
+

K(x, y)|y|
2−N+ε

2 dy. Then,

∂φ

∂ν
= Kφ|x|

1−N+ε ∂ψ

∂ν
= Kψ|x|

−N+ε
2 ,(49)

where the constantsKφ, Kψ are given by

Kφ = λ0,Nε +O(ε2) and Kψ = HN +O(ε).

Indeed, sinceu0 andφ are harmonic inΩ,∫
∂Ω

u0
∂φ

∂ν
=

∫
∂Ω

φ
∂u0

∂ν
.

Clearly,
∫
Γ2

∣∣∣φ ∂u0
∂ν

∣∣∣ ≤ C, for some constantC independent ofε. So

Kφ

∫ 1

0
ln

(
1
r

)
1
r

r2−N+εrN−2dr = λ0,N

∫ 1

0

1
r

r2−N+εrN−2dr +O(1) =
λ0,N

ε
+O(1).

Now,
∫ 1

0
ln 1

r r−1+εdr = 1
ε2 so we end up with

Kφ = λ0,Nε +O(ε2).

Similarly, sinceψ andw (defined in (12)) are harmonic inΩ, we have∫
∂Ω

w
∂ψ

∂ν
=

∫
∂Ω

ψ
∂w
∂ν
.

As before the boundary terms onΓ2 are bounded independently ofε so

Kψ

∫ 1

0
r−1+εdr = HN

∫ 1

0
r−1+εdr +O(1).

Hence,
Kψ = HN +O(ε).

For 0< λ < λ∗, letuλ denote the minimal solution of (1). Integrating by parts twice against
φ yields : ∫

∂Ω

uλ
∂φ

∂ν
=

∫
∂Ω

φ
∂uλ
∂ν
= λ

∫
Γ1

φeuλ +

∫
Γ2

φ
∂uλ
∂ν
≤ λ

∫
Γ1

φeuλ .

Recall thatuλ ↗ u∗ andeu∗ ∈ L1(Γ1). Furthermore,φ is bounded away from the origin :
givenR> 0, φ ≤ R2−Ndiam(Γ1)ε ≤ R2−N(diam(Γ1) + 1) in Γ1 \ BR(0). So,∫

∂Ω

u∗
∂φ

∂ν
≤ λ∗

∫
Γ1

φeu∗ ≤

∫
Γ1∩BR(0)

φeu∗ +C.(50)

Let η ∈ C∞(RN) be such thatη ≡ 1 in BR(0) whereR> 0 is small and fixed, andη = 0 on
Γ2. Using the stability condition (7) withηψ yields

λ∗
∫
Γ1∩BR(0)

eu∗ψ2 ≤

∫
Ω

|∇(ηψ)|2 =
∫
∂Ω

∂

∂ν
(ηψ)(ηψ) −

∫
Ω

(ηψ)∆(ηψ)

≤

∫
Γ1∩BR(0)

∂ψ

∂ν
ψ +C(51)

where the constantC does not depend onε. Sinceψ2 = φ on∂RN
+ combining (50) and (51)

we obtain ∫
∂Ω

u∗
∂φ

∂ν
≤

∫
Γ1∩BR(0)

∂ψ

∂ν
ψ +C.



Using (49) we arrive at

Kφ

∫
Γ1∩BR(0)

u∗|x|1−N+ε ≤ Kψ

∫
Γ1∩BR(0)

|x|1−N+ε +C

and thus ∫
Γ1∩BR(0)

u∗|x|1−N+ε ≤ (N − 1)ωN−1
HN

λ0,N

1
ε2
+O(

1
ε

).

This last equation can be rewritten as∫ R

0
r−1+ε

?
SN−2

u∗dω dr ≤
HN

λ0,N

1
ε2
+O(

1
ε

),(52)

Next we claim that for any given 0< σ < 1 there existsr(σ) > 0 such that

u∗(x) ≥ (1− σ) log
1
|x|

∀x ∈ Γ1, |x| ≤ r(σ).(53)

Observe first that for all 0< λ < λ∗ the minimal solutionuλ is symmetric in the vari-
ablesx1, . . . , xN−1 by uniqueness of the minimal solution and symmetry ofΩ. Using the
symmetry and convexity assumptions onΩ combined with the moving plane method (see
Proposition 5.2 in [7]), we also have thatuλ achieves its maximum at the origin.

Assume by contradiction that (53) is false. Then there existsσ > 0 and a sequence
xk ∈ Γ1 with xk → 0 such that

u∗(xk) < (1− σ) log
1
|xk|

.(54)

Let sk = |xk| and choose 0< λk < λ
∗ such that

max
Ω

uλk = uλk(0) = log
1
sk
.(55)

Note thatλk → λ∗, otherwiseuλk would remain bounded. Let

vk(x) =
uλk(skx)

log 1
sk

x ∈ Ωk ≡
1
sk
Ω.

Then 0≤ vk ≤ 1, vk(0) = 1,∆vk = 0 inΩk and

∂vk

∂ν
(x) =

1

log 1
sk

skλk exp(uλk(skx))

≤
λk

log 1
sk

→ 0.

by (55). By elliptic regularityvk → v uniformly on compact sets ofRN
+ to a functionv

satisfying 0≤ v ≤ 1, v(0) = 1,∆v = 0 inRN
+ , ∂v

∂ν
= 0 on∂RN

+ . Extendingv evenly toRN we
deduce thatv ≡ 1. Since|xk| = sk we deduce that

uλk(xk)

log 1
sk

→ 1,

which contradicts (54).
Going back to (52) and using (53) we find

(1− σ)
∫ r(σ)

0
log

1
r

rε−1 dr ≤
Kψ

Kφ

1
ε
+C =

HN

λ0,N

1
ε2
+O(

1
ε

).(56)



Integrating

(1− σ)

(
1
ε2

r(σ)ε +
1
ε

r(σ)ε log
1

r(σ)

)
≤

HN

λ0,N

1
ε2
+O(

1
ε

).

Lettingε→ 0 yields

(1− σ) ≤
HN

λ0,N
.

Asσ is arbitrarily small we deduceHN

λ0,N
≥ 1 which by (48) forcesN ≥ 10, a contradiction.

�

Proof of Proposition 1.7.Let indeedu = uλ be the minimal solution of (1). Working as in
[11] we takeϕ = eju − 1, j > 0 in (6) and multiply (1) byψ = e2 ju − 1. We obtain

λ

j2

∫
Γ1

eu
(
eju − 1

)2
ds≤

λ

2 j

∫
Γ1

eu
(
e2 ju − 1

)
ds.

It follows that(
1
j
−

1
2

) ∫
Γ1

e(2 j+1)u ds≤
2
j

∫
Γ1

e( j+1)u ds

≤
2
j

∫
Γ1∩A

e( j+1)u ds+
2
j

∫
Γ1∩B

e( j+1)u ds,

whereA = [(1/ j − 1/2)e(2 j+1)u < 4
j e

( j+1)u] andB = [(1/ j − 1/2)e(2 j+1)u ≥ 4
j e

( j+1)u]. Given
j ∈ (0,2), we see thatu remains uniformly bounded onA, while

2
j

∫
Γ1∩B

e( j+1)u ds≤
1
2

(
1
j
−

1
2

) ∫
Γ1

e( j+1)u ds.

We conclude thateu is bounded inL2 j+1(∂Ω) independently ofλ. If 2 j + 1 > N − 1 we
obtain by elliptic estimates a bound foru in Cα(Ω), for someα ∈ (0,1). Thus if N < 6
we can choosej ∈ (0,2) such thatN − 1 < 2 j + 1 < 5 and obtain a bound foru in
Cα(Ω) independent ofλ. However, forN = 6,7,8 or 9, this argument does not prove that
u∗ ∈ L∞(Ω). �

5. T  

Proof of Theorem 1.10. We shall give here the proof of the casep C(N, 1
p−1) > HN. If

p < N
N−2, the boundedness ofu∗ follows from standard techniques, using the Sobolev trace

embedding theoremH1(Ω)→ L
2(N−1)

N−2 (∂Ω).
Let v = C(N, 1

p−1)
1

p−1 w 1
p−1

. Thenv satisfies
∆v = 0 inRN

+

∂v
∂ν
= vp on∂RN

+ .

Observe thatpvp−1 =
pC(N, 1

p−1 )

|x| > HN

|x| on∂RN
+ \ {0} and hence

inf

∫
∂RN
+

|∇ϕ|2 − p
∫
∂RN
+

vp−1ϕ2∫
∂RN
+

ϕ2
= −∞(57)

where the infimum is taken over the functionsϕ ∈ C∞0 (RN
+ ) that do not vanish identically

on∂RN
+ .



Assume thatu∗ is singular. ForR> 0 and 0< λ < λ∗ let

uR(x) = λ
1

p−1 R
1

p−1 uλ(Rx+ xλ),

wherexλ denotes a point of maximum ofuλ. Observe that sinceuλ is positive and harmonic
in Ω, xλ ∈ Γ1.

For 0 < λ < λ∗, we chooseR such thatuR(0) = 1 i.e. such thatλ
1

1−p R
1

p−1 uλ(xλ) = 1.
Sinceuλ(xλ)→ ∞ asλ ↑ λ∗ we haveR→ 0 asλ ↑ λ∗.

ThenuR verifies 
∆uR = 0 inΩR

∂uR

∂ν
= (λ

1
p−1 R

1
p−1 + uR)p onΓR

1

uR = 0 onΓR
2 ,

where

ΩR = (Ω − xλ)/R, ΓR
1 = (Γ1 − xλ)/R, ΓR

2 = (Γ2 − xλ)/R.

FurthermoreuR satisfies the stability condition∫
ΩR

|∇ϕ|2 ≥ p
∫
ΓR

1

(λ
1

p−1 R
1

p−1 + uR)p−1ϕ2 ∀ϕ ∈ C∞0 (ΩR∪ Γ
R
1).

Let

φ(R) = sup{r > 0/ Br ∩ ∂R
N
+ ⊂ Γ

R
1}.

Using the convexity assumptions onΩ, the moving plane method implies that the distance
of the pointxλ ∈ Γ1 to Γ1 ∩ Γ2 stays bounded away from zero, see [7] for this method in
the context of non-linear Neumann condition. This implies that

φ(R)→ +∞ asR→ 0.(58)

Step 1.We have

uR ≤ v in ΓR
1 ∩ Bφ(R).(59)

Proof of Step 1. Suppose not. Define

r0 = sup{ r > 0 | r < φ(R), uR ≤ v in Br ∩ Γ
R
1 }.

Sincev is singular at 0,r0 > 0 and we haveuR ≤ v in Br0 ∩ Γ
R
1 . Furthermore, there exists

x0 ∈ ∂R
N
+ such that|x0| = r0 anduR(x0) = v(x0).

Let x = (x′,0) ∈ ΓR
1 be such that|x| = r0. If uR(x′,0) = v(x′,0) then ∂v

∂ν
(x′,0) =

v(x′,0)p < (λ
1

1−p R
1

p−1 + uR(x′,0))p = ∂uR
∂ν

(x′,0) and hence for someδx > 0

∂v
∂xN

(y, t) >
∂uR

∂xN
(y, t) |y− x′|2 + t2 < δ2

x.(60)

It follows that for somemx > 0 (and decreasing if necessaryδx)

uR(y, t) < v(y, t), if |y− x′|2 + t2 < δ2
x, t > m( |y| − r0), t > 0.(61)

Indeed, because of (60) anduR(y,0) ≤ v(y,0) for |y| ≤ r0 we immediately obtain

uR(y, t) < v(y, t) for |y− x′|2 + t2 < δ2
x, |y| ≤ r0, t > 0.

If (61) is false, then there are sequencesyk → x′, tk → 0 with |yk| > r0 and tk
|yk−x′ | → ∞

such thatv(yk, tk) ≤ uR(yk, tk). Then by the mean value theorem there exists a pointξk in
the segment from (yk, tk) to (x′,0) such that∇(v(ξk) − uR(ξk)) · wk ≤ 0 wherewk is the unit



vector parallel to (yk− x′, tk). Taking the limit we obtain ∂
∂xN

(v(x′,0)−uR(x′,0)) ≤ 0 which

contradicts (60) (recall that∂
∂ν
= − ∂

∂xN
). This proves (61).

Supposex ∈ ΓR
1 is such that|x| = r0 anduR(x′,0) < v(x′,0). The by continuity there is

δx > 0 such that (61) still holds.
Then by compactness for someδ > 0 andm> 0 we have

uR(x′, t) < v(x′, t), if ( |x′| − r0)2 + t2 < δ2, t > m( |x′| − r0), t > 0.(62)

Now consider

z(x′, t) = ρα(sin(α(θ − θ0)) + b(θ − θ0)2),

where (ρ, θ) are polar coordinates around (r0,0) i.e.

|x′| = r0 + ρ cos(θ), t = ρ sin(θ).

We chooseθ0 ∈ (0, π2) is close enough toπ2 so that tanθ0 > m. The parametersα, b are
chosen later on.

We shall use the maximum principle to prove that for sufficiently smallδ > 0, ε > 0 we
have

v(x′,0)− uR(x′,0) ≥ εz(x′,0), r0 − δ < |x
′| < r0.

We have

∆z=
ρα−2

r0 + ρ cos(θ)

[
2br0 + α

2br0(θ − θ0)2 + ρ
(
− (N − 2)α sin(θ) cos(α(θ − θ0))

− 2b(N − 2) sin(θ)(θ − θ0) + 2bcos(θ) + (N − 2)α cos(θ) sin(α(θ − θ0))

+ bα(α + N − 2) cos(θ)(θ − θ0)2
)]

= ρα−2
(
2b+ α2b(θ − θ0)2 +O(ρ)

)
, asρ→ 0(63)

and, observing that forθ = π we are on∂RN
+

∂z
∂ν
=

1
ρ

∂z
∂θ

∣∣∣∣∣
θ=π

= ρα−1(α cos(α(π − θ0)) + 2b(π − θ0)).

But π − θ0 >
π
2 . We fix 0< α < 1 close enough to 1 such that cos(α(π − θ0)) < 0, and then

takeb > 0 small enough so thatα cos(α(π − θ0)) + 2b(π − θ0) < 0. Thus, setting

a ≡ −(α cos(α(π − θ0)) + 2b(π − θ0)) > 0,

we have
∂z
∂ν
= −aρα−1 for ρ > 0 small.

On the other hand, by (63)

∆z≥ ρα−2 (2b+O(ρ)) asρ→ 0(64)

uniformly for θ0 < θ < π. Now consider the region

D = { (x′, t) | (|x′| − r0)2 + t2 < δ2, t > m(|x′| − r0), t > 0 } = { (ρ, θ) | 0 < ρ < δ, θ0 < θ < π }

and write∂D = S1 ∪ S2 ∪ A where

S1 = { (ρ, θ) | 0 < ρ < δ, θ = θ0 }, S2 = { (ρ, θ) | 0 < ρ < δ, θ = π }

and

A = { (ρ, θ) | ρ = δ, θ0 < θ < π }.



By (64) and choosingδ > 0 smaller if necessary we achieve∆z > 0 in D. OnS1 we have
z= 0 andv− uR > 0. Now we seekε > 0, δ > 0 smaller than before such that

inf
S2

(
∂v
∂ν
−
∂uR

∂ν
) ≥ ε sup

S2

∂z
∂ν
= −aεδα−1

and

inf
A

(v− uR) > ε sup
A

z= εδαC1

whereC1 = sin(α(π − θ0)) + b(π − θ0)2. Writing K = − infS2(
∂v
∂ν
−

∂uR
∂ν

) < ∞ andc0 =

inf A(v− uR) > 0 we first chooseδ > 0 small such that

δ
K
a
<

c0

C1

and thenε such thatδ1−α K
a ≤ ε <

c0
C1
δ−α.

The calculations above and the maximum principle then yieldv− uR ≥ εz in D, which
was the desired conclusion. Now this implies thatv − uR is not differentiable at (x′0,0), a
contradiction.

Step 2.We letλ ↑ λ∗ and henceR→ 0. Since 0≤ uR ≤ uR(0) = 1, uR→ u uniformly on
compact sets of̄RN

+ andu satisfies
∆u = 0 inRN

+

∂u
∂ν
= up on∂RN

+

(65)

and

u(0) = 1.

Also, u satisfies ∫
RN
+

|∇ϕ|2 ≥ p
∫
∂RN
+

up−1ϕ2 ∀ϕ ∈ C∞0 (RN
+ ).(66)

By (58) and the previous step we deduce

u ≤ v in ∂RN
+ .

Let

µ = sup
∂RN
+

u
v
≤ 1.(67)

We claim thatµ = 1. Indeed, let

ũ(x) = c1

∫
∂RN
+

u(y)p

|x− y|N−2
dy x∈ RN

+ .

Then ũ is harmonic inRN
+ and agrees withu on ∂RN

+ . Sinceu is bounded by 1 and ˜u is
bounded, we see that ˜u−u must be a constant. But then, since ˜u(x′,0)→ 0 andu(x′,0)→ 0
as|x′| → ∞ we see thatu ≡ ũ.

Thus

u(x) =
∫
∂RN
+

u(y)p

|x− y|N−2
dy≤ c1µ

p
∫
∂RN
+

v(y)p

|x− y|N−2
dy= µpv(x) x ∈ ∂RN

+ .

This impliesµ ≤ µp and sinceµ , 0, we concludeµ = 1.

Step 3.Observe that the supremum in (67) is not attained. Otherwisev− u would achieve
a minimum at a pointx ∈ ∂RN

+ , where the normal derivative would be zero. By Hopf’s



lemma, we would haveu ≡ v, which is impossible sinceu is bounded andv is not. Let
xk ∈ ∂R

N
+ be such that|xk| → ∞ and u(xk)

v(xk) → 1. Let

uk(x) = |xk|
1

p−1 u(|xk|x).

Sincev is invariant under the above transformation we haveuk ≤ v in ∂RN
+ . Thus, for

a subsequence we haveuk → u0 andu0 solves (65). Sinceuk(
xk

|xk|
) → v(y) wherey =

lim xk

|xk|
, again using Hopf’s lemma we see thatu0 ≡ v. But u0 satisfies the condition (66),

contradicting (57).

Proof of Theorem 1.8.Setu = w 1
p−1
− 1 so that

∆u = 0 inRN
+(68)

∂u
∂ν
= C(N, 1

p−1)(1+ u)p on∂RN
+(69)

LetΩ = {x ∈ RN
+ |u(x) > 0}, Γ1 = ∂Ω ∩ ∂R

N
+ , Γ2 = ∂Ω \ ∂R

N
+ . Thenu is a singular solution

to (68), (69) with

u = 0 onΓ2.

To apply Lemma 4.1 we need to verify thatu ∈ H1(Ω). We are assuming thatpC(N, 1
p−1) ≤

HN andp ≥ N
N−2. Actually we must havep > N

N−2. For this it is convenient to observe that
:

C(N, α) = C(N,N − 2− α) ∀0 < α < N − 2, and(70)

α 7→ C(N, α) is increasing for 0< α < N−2
2 .(71)

Property (70) is direct from (16) and we leave (71) to the appendix. From these properties
we deduce thatp > N

N−2 and thereforeu ∈ H1(Ω). This solution satisfies the stability
condition (44) if and only if (by scaling)

pC(N, 1
p−1)

∫
∂RN
+

ϕ2

|x|
≤

∫
RN
+

|∇ϕ|2, ∀ϕ ∈ C1
0(RN

+ \ {0})

which is guaranteed by Kato’s inequality (9). Thus we may apply Lemma 4.1 and conclude
thatu is the extremal solution.

�

A

Proof of (48). We haveHN = 2
[
Γ( N

4 )
Γ( N

4 −
1
2)

]2
= 2 f (N/4)2 where

f (z) =
Γ(z)

Γ(z− 1
2)

(72)

and similarly we haveλ0,N =
√
πN−3

2
Γ( N

2 −
3
2)

Γ( N
2 −1) =

√
π
Γ( N

2 −
1
2)

Γ( N
2 −1) =

√
π f

(
N
2 −

1
2

)
. Then

HN

λ0,N
=

2 f (N/4)2
√
π f

(
N
2 −

1
2

) .
SinceH10 =

9π
8 > λ0,10 =

35π
32 it follows that

H10

λ0,10
> 1.



On the other hand

H9

λ0,9
=

(
5Γ( 1

4 )2

12π

)2

16
5

≈
3.039
3.333

< 1.

Let us compute

d
dx

f ( x
4)2

f
(

x
2 −

1
2

) = 1
2 f ( x

4) f ′( x
4) f

(
x
2 −

1
2

)
− 1

2 f ( x
4)2 f ′

(
x
2 −

1
2

)
f
(

x
2 −

1
2

)2

=
f ( x

4)2

2 f
(

x
2 −

1
2

)  f ′( x
4)

f ( x
4)
−

f ′
(

x
2 −

1
2

)
f
(

x
2 −

1
2

) 
Recall that

Γ′(z) = ψ0(z)Γ(z), whereψ0(z) = −

1
z
+ γ +

∞∑
n=1

(
1

n+ z
−

1
n

).
In particular,ψ0 is a positive increasing function on ]Ξ,∞[ whereΞ ≈ 1.4 is the unique
zero ofψ0 in R+, and

f ′(z) =

[
ψ0(z) − ψ0

(
z−

1
2

)]
Γ(z)

Γ(z− 1
2)
> 0 for z ∈]1/2,∞[.

Calculating

d
dx

f ′(x)
f (x)

= ψ′0(x) − ψ′0(x−
1
2

) =
∞∑

n=0

1
(n+ x)2

−
1

(n+ x− 1
2)2

< 0 for x >
1
2

.(73)

So f ′(x)
f (x) is decreasing forx > 1

2 and it follows that
f ′( x

4 )
f ( x

4 ) −
f ′( x

2−
1
2)

f ( x
2−

1
2)
> 0 for x > 2. Hence

HN > λ0,N only for N ≥ 10.

�

Proof of (71). Using the notation (72) we see that

C(N, α) = f
(
α
2 +

1
2

)
f
(

N−1
2 −

α
2

)
.

Hence, for 0< α < N−2
2 we have

d
dα

C(N, α) =
1
2

C(N, α)

 f ′
(
α
2 +

1
2

)
f
(
α
2 +

1
2

) − f ′
(

N−1
2 −

α
2

)
f
(

N−1
2 −

α
2

)  ≥ 0

by (73). �
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