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Nonparabolicity effects on electron–optical-phonon scattering rates in quantum wells
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The scattering rates for intrasubband and intersubband transitions due to electron–optical-phonon interaction
are calculated for GaAs-AlxGa12xAs quantum wells taking into account the conduction subband nonparabo-
licity. For the description of the confined- and interface-phonon modes we use a dielectric continuum model
and the nonparabolic conduction-subband energy is introduced as a second order expansion ofk2, the square
of the electron wave vector. Our results show that for transitions due to the emission of confined phonons the
scattering rates are significantly increased, while for interface phonons the scattering rates are decreased. In
particular, we show that for high kinetic energies electrons will relax at an almost constant rates for quantum
wells larger than 120 Å. We show that our results can be understood in terms of the phonon wave vector~or
Fröhlich electron-phonon coupling!, the density of final states, and the electron-phonon overlap.
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I. INTRODUCTION

Electron-phonon interaction in polar semiconductor qu
tum wells attracted a great amount of interest over the p
years due to its importance for electronic properties. For
stance, the cooling of photoexcited carriers, carrier tunn
ing, and the mobility of high-speed heterostructure devi
are primarily governed by the scattering of electrons
polar-optical-phonons. Particular interest was directed
wards optical phonon confinement effects~i.e., confined and
interface-phonon modes! which affects significantly the scat
tering rates in quantum wells.

The electron–optical-phonon interaction in quantum we
was studied using either dielectric continuum models1–3 or
microscopic lattice dynamical models,4–6 and much empha
sis was given on the influence of the specific phonon mo
employed. In general, the use of dielectric continuum mod
is well established5 and scattering rates calculated with su
models compare successfully with experimental results7–9

From the calculation of capture times10 it became evident
that capture processes with large kinetic energy influence
overall capture time. For those large kinetic energies, imp
ing in large momenta, the parabolic-band approximation
comes less justified even for GaAs-AlxGa12xAs structures
where in general nonparabolicity effects can be safely
glected. A question which has not yet been properly
dressed is how strongly the subband nonparabolicity aff
the intra- and intersubband scattering rates in quantum w

In this paper, we investigate systematically the influen
of band nonparabolicity on the intra- and intersubband s
tering rates due to emission of confined phonons and in
face phonons. Also, we consider the case of transitions
ing place at high kinetic energies. In a previous paper
reported some results on confined modes with low elec
kinetic energy.11 Our main purpose is to determine the im
portance of the subband nonparabolicity on the scatte
rates and to identify the physical origin of the changes int
560163-1829/97/56~15!/9619~6!/$10.00
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duced by this nonparabolicity. Our results are always co
pared with scattering rates in the parabolic-subband appr
mation in order to determine exactly where and w
quantitative and qualitative differences occur. Furthermo
the theory developed in this work can be used easily to
clude nonparabolic subbands in existing theoretical fram
works, which use dielectric continuum models for the calc
lation of scattering rates.

This paper is organized as follows: the general form
theory of the electron-phonon interaction and the scatte
rates calculation is discussed in Sec. II A; Sec. II B descri
briefly the electron envelope function used in this paper.
Sec. III we present and discuss our results. Finally, in S
IV we present our conclusions.

II. THEORY

A. Transition rates

The scattering rate of an electron from an initial stateuK i&
to a final stateuK f& accompanied by the emission or absor
tion of a phonon with energy\v is given by the Fermi
golden rule

W~ l !5
2p

\ E d~Ei2Ef6\v!z^K f uHe-phuKi& z2dNf , ~1!

whereE is the total electron energy andHe-ph represents the
electron-phonon interaction Hamiltonian. In this express
the integration is over the number of final statesNf . In order
to take into account the different effective masses of
barrier and the well, we express our results as an ave
scattering rateW5pWW(W)1pBW(B), wherepW (pB) is the
probability of finding the electron initially in the well~bar-
rier! subband. In order to ease the notation we will drop
index l 5W,B ~well or barrier, respectively!, which refers to
the effective mass mismatch.12
9619 © 1997 The American Physical Society
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In order to introduce the subband nonparabolicity we s
from an expression for the bulk conduction-band dispers
expanded up to second order ink2, obtained from the Kane
model

E2V5
\2k2

2m*
~12gk2!, ~2!

wherem* is the band edge mass andg the nonparabolicity
parameter.V is the bulk conduction-band offset taken asV
50 in the well andV5V0 in the barrier. The central prob
lem of introducing such a nonparabolic energy dispers
relies in thed function of the Fermi golden rule. Thisd
function represents the energy conservation and is writ
for phonon emission, as

d~Ei2Ef2\v!5d@ f ~cosu!#5d~acos2u1bcosu1c!,
~3!

where cosu is related to the in-plane momentum conserv
tion for the emission of a phonon with momentumqi ,

ki f
2 5ki i

2 1qi
222ki iqicosu, ~4!

anda, b, andc are defined as

a5
\2

2m*
4gki i

2 qi
2 , ~5a!

b5
\2

2m* @2ki iqi24g~ki i
2 1qi

2!ki iqi24gkz f
2 ki iqi#,

~5b!

c5
\2

2m* $ki i
2 @12g~ki i

2 12kzi
2 !#2~ki i

2 1qi
2!~122gkz f

2 !

1g~ki i
2 1qi

2!21Q2%, ~5c!

and for phonon emissionQ is given by

Q256
2m*

\2 ~Ei2Ef2\vLO!, ~6!

where the upper sign corresponds to intrasubband transi
and the lower sign corresponds to intersubband transiti
E5E(ki50) are the confined energy levels andkz is the z
component of the initial~final! electronic wave vector for
intrasubband~intersubband! transitions. Using basicd func-
tion properties and makingx5cosu, we obtain

d~Ei2Ef2\v!5d@ f ~x!#5ub224acu21/2d~x2R2!,
~7!

whereR2 is the negative root off (x)50. The positive root
R1 is neglected because it diverges in the limitg→0.
rt
n

n

n,

-

ns
s,

The electron-confined LO-phonon interaction Ham
tonian in heterostructures as derived from Fro¨hlich interac-
tion is given by13,14

Hn5
l

AV
(
qi

exp~ iqi–r i!tn~qi!uin~z!@an~qi!1an
†~2qi!#,

~8!

where an and an
† are the phonon annihilation and creatio

operators, respectively, and

l254pe2\vLO~e`
212es

21!, ~9!

where es and e` are, respectively, the static and hig
frequency dielectric constants,vLO is the LO-phonon fre-
quency,e is the electron charge, andqi andr i are the parallel
components of the phonon wave vector and position vec
respectively.

The normalization of the phonon displacement istn(qi)
5(2I n)21/2 with

I n5
1

LE2L/2

1L/2Fqi
2un

21S dun

dz D 2Gdz, ~10!

and for most dielectric continuum models1–3 tn(qi) can be
written in a general form

tn~qi!5~anqi
21bn /L2!, ~11!

where the coefficientsan andbn are specific to each phono
model.

The scattering rate for confined modes is given by

W5
l2

p\L(
n

uGnu2~Nq11!

3E
qi

2

qi
1

tn
21~qi!ub224acu21/2~12R2

2 !21/2qidqi ,

~12!

where N q is the phonon ocupation number andGn is the
overlap integral of the electron wave function and t
z-dependent part of the electron-confined-phonon Ham
tonian,

Gn5E
2L/2

1L/2

c f* ~z!uin~z!c i~z!dz. ~13!

The lowerqi
2 and upperqi

1 integration limits of Eq.~12! are
given as

qi
65ki i6AK, ~14!

where
K5
~122gkz f

2 !2$~122gkz f
2 !224g@ki i

2 ~12gki i
2 !22gki i

2 kzi
2 1Q2#%1/2

2g
. ~15!
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The integral in Eq.~12! is valid for any initial or final elec-
tron energy, but it has to be evaluated numerically. Howev
this integral can be evaluated exactly in the limit case wh
for intrasubband transitions the electron has just enough
ergy to emit one LO confined-phonon (ki f50) and for in-
tersubband transitions where the electron is initially at
bottom of the subband (ki i50).

W5
m* l2L

\3 (
n

uGnu2~Nq11!
1

a

3H anL2

2g
@~122gkz

2!2a#1bnJ 21

, ~16!

where

a5@~2gkz
221!214gQ2#1/2, ~17!

where kz5kzi and kz5kz f are for intra- and intersubban
transitions, respectively.

Note that Eq.~16! has a nontrivial limit forg→0. But an
elementary application of L’Hopital rule shows that in th
limit ~16! becomes the well-known scattering rates for pa
bolic subbands,1,2

W5
m* l2L

\3 (
n

uGn
i→ f u2~Nq11!@7Q2anL21bn#21.

~18!

An important characteristic of the scattering rates in E
~12! and~16! is that they follow exclusively from the energ
dispersion relation, Eq.~2!. No additional assumption abou
the confined-phonon model nor the method which calcula
the energy eigenvalues and eigenfunctions was made. In
work we use the reformulated15 slab model for whichtn is
given by

tn~qi!5H @qi
21~n11!2p2/L2#21/2, n51,3,5, . . .

@3qi
21n2p2/L2#21/2, n52,4,6, . . . .

~19!

For the description of the electron-interface-phonon int
action we use the Hamiltonian proposed by Mori a
Ando.14 The electron-phonon Hamiltonian for interface ph
non in heterostructures is given by

Hnm5(
qi

S \vnme2

2e0L2 D 1/2

f nm~qi!hn~qi ,z!

3
eiqi–r i

A2qi

@anm~qi!1anm
† ~2qi!#, ~20!

wherevnm is the interface-phonon frequency,e0 is the per-
mitivity of vacuum, andanm and anm

† are the interface-
phonon annihilation and creation operators, respectively.
subscriptn refers to the parity~symmetric or antisymmetric!
and m the possible solution of the interface-phonon disp
sion equations~GaAs and AlAs-like modes!. For additional
details and definitions of the remaining parameters of
electron-phonon Hamiltonian we refer the reader to the w
of Mori and Ando.14
r,
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For interface modes, we can write the final general fo
of the nonparabolic scattering rates as

W5
e2

4pe0
~Nq11!E

qimin

qimax
vnm~qi!

3ub224acu21/2f nm
2 ~qi!uGnm~qi!u2~12R2!22dqi .

~21!

The integration limitsqimax and qimin are obtained numeri-
cally by taking into account the interface-phonon dispersi
the in-plane momentum conservation, and the energy con
vation.

Similar as for confined-phonon modes, we obtain an a
lytic expression for intrasubband transitions where the e
tron has just enough energy to emit one LO confined-pho
(ki f50) and for intersubband transitions where the elect
is initially at the bottom of the subband (ki i50),

W5
vnm~qi!e

2m*

4\2e0

~Nq11!
1

a

uGnm~P!u2f nm
2 ~P!

P
, ~22!

where

P25
~122kz

2g!2a

2g
, ~23!

and a is functionally defined by Eq.~17! and kz is the z
component of the initial~final! electronic wave vector for
intrasubband~intersubband! transitions. In this work we are
taking into account the interface-phonon dispersion, us
the appropriate values ofvnm andqi which are calculated for
each given electron energies.

The overlap of the electron wave function and t
z-dependent part of the electron-interface-phonon Ham
tonian is given by

Gnm5E
2`

1`

c f* ~z!hn~qi ,z!c i~z!dz. ~24!

B. Envelope functions

For the description of the electron subband nonparabo
ity, several models were proposed, e.g., Refs. 16–19, wh
the main differences between those models are the form
the energy dispersion relation describing the subband no
rabolicity and the definition of appropriate energy effecti
masses. The effective mass enters in the analysis when
wave vector is evaluated for a given energy and also w
the derivatives of the envelope functions are matched at
heterojunction interface.

The question of energy dependent effective masses
present the subject of some controversy; a particular as
of this problem consists in the definition of the parallel co
ponent of the effective mass, the concept of which has b
treated in the literature for superlattices20 and quantum
wells.17,21,22 In our specific calculation, the application o
this description is not immediate, since the dispersion re
tion given by the Eq.~2! cannot be expressed like the sum
parallel E(ki) and perpendicularE(kz) components. This
typical characteristic of nonparabolic structure in finite qua
tum wells is due to coupling betweenki and kz through of
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nonparabolic parameterg. In order to estimate the effect of
heavier parallel mass, we included in Eq.~5c! a definition of
parallel masses, given in Refs. 17,21, in the isotropic lim
For narrow quantum wells~50–70 Å! in both intra- and in-
tersubband, the maximum increase of the order of 4%
obtained. This effect is significatively reduced when t
quantum well width is increased. In all cases tested, the
clusion of this parallel mass definition did not modify th
behavior of the scattering.

For the theory outlined in Sec. II A one may use a
model which describes the subband nonparabolicity in
form of Eq. ~2!. We follow the model proposed by Nag an
Mukhopadhyay,18 which was shown to adequately descri
the energy levels with subband nonparabolicity in GaA
Al xGa12xAs quantum wells. This model writes the electro
envelope wave function in the same functional form as
the simple parabolic subband model for a finite barrier qu
tum well,

c~z!5H Aexp~2kBz!, z,2L/2

Bsin~kWz!1Ccos~kWz!, uzu,L/2

Dexp~kBz!, z.L/2,

~25!

where, as usual, the constantsA, B, C, andD are found by
applying boundary conditions and by normalizing the wa
function. The information about the subband nonparabolic
is contained in the energy-dependent definition of the eff
tive masses. The only one difference compared to the p
bolic case is that the relation between the parameterskW and
kB and the energy are more complicated due to presenc
energy effective masses. An immediate advantage of
functional form of Eq.~25! is that the overlap integrals, Eq
~13! and ~24!, are functionally the same as in previou
calculations.1,2 Therefore, this model is particularly we
suited for the comparative study of scattering rates for pa
bolic and nonparabolic electron subbands.

A drawback of this model is that the wave functions
the first and third state are not completely orthogonal. T
nonorthogonality, which affects only the 3→1 transitions, is
associated to the problematic definitions of energy depen
effective masses and boundary conditions, but does ot
wise not affect the electron-phonon transition selection ru
We have numerically estimated that this nonorthogona
may cause a variation of the order of 1% in the over
integrals of the 3→1 transitions and therefore has a neg
gible effect on the scattering rates.

III. RESULTS AND DISCUSSION

For the calculations of scattering rates due to emission
confined longitudinal-optical phonons we assume a Ga
Al xGa12xAs quantum well with finite barriers of 224 meV
corresponding tox50.3. The material parameters used in o
calculations are23 for GaAs, the effective massmW* 50.0665
m0, the dielectric constants«0512.35 and«`510.48, the
bulk phonon energies\vLO536.8 meV, and\vTO533.29
meV the nonparabolicity parameter is taken as16,18 gW54.9
310219 m2; for GaxAl12xAs, the effective mass
mB* 50.0901m0, the dielectric constants«0514.12 and
«`510.07, the phonon energies\vLO546.97 meV, and
\vTO544.77 meV the nonparabolicity parametergB52.67
.
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310219 m2. The phonon occupation number is assum
Nq;0, which is valid for low temperatures.

Before we present the results of our calculations, we w
briefly discuss some aspects of the subband nonparabo
which are expected to affect the scattering rates. In Fig. 1
present a schematic diagram of phonon wave vectors w
shows that for nonparabolic subbands the phonon wave
tor is larger than for parabolic subbands. It is well know
that the electron-phonon interaction has a strong depend
on these wave vectors, for the Fro¨hlich interaction which is
roughly proportional to 1/q this indicates that the electro
couples more weakly to the phonon for nonparabolic s
bands. Therefore, these larger phonon wave vectors will
duce the scattering rates. Furthermore, one expects tha
electron-phonon coupling will be more affected for tran
tions involving electrons with larger kinetic energies.

The Fermi golden rule depicted in Eq.~1! is an integral of
matrix elements over final states, therefore the density
states plays a major role for scattering rates. Figure 2 sh
the density of states for nonparabolic subbands describe
Eq. ~2!,

gnp5
m*

p\S 11
4m* g

\2
ED , ~26!

and compares it with the density of states in the parab
subband approximation for the first three subbands o
GaAs-Al0.3Ga0.7As quantum well. Figure 2 illustrates clearl
that although the energy levels do not change apprecia
due to subband nonparabolicity, the density of states ind
do vary significantly. With a larger density of states with
the energy range of a LO phonon one expects an increas
the scattering rates. One exception is intrasubband transit
with just enough initial kinetic energy to emit one phonon.
this case the final state of the electron is at the bottom of
subband (ki f50) where the densities of states of the pa
bolic and nonparabolic subbands are the same. Thus,

FIG. 1. Schematic diagram for intrasubband and intersubb
transitions in quantum wells. The solid lines represent nonparab
conduction subbands and the dashed lines are for parabolic
bands.
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56 9623NONPARABOLICITY EFFECTS ON . . .
these transitions the densities of final states neither enh
nor decrease the scattering rates.

The third key element which influences the scatter
rates are the overlap integrals given by Eqs.~13! and~24!. In
general, the subband nonparabolicity electron wave func
becomes more confined in thez direction, i.e., to the quan
tum well. Thus the confined phonon modes will have larg
overlap integrals~increasing scattering rates! while the
interface-phonon modes will present smaller overlap in
grals ~decreasing scattering rates!. As we shall see, most re
sults can be understood in terms of the phonon wave vec
the density of states, and the overlap integrals.

The scattering rates due to confined- and interface-pho
modes for 1→1 intrasubband transitions are shown in Fig.
where the initial electron energy is just enough to emit o
phonon. The scattering rate due to confined modes bec
larger with the subband nonparabolicity and the rates du

FIG. 2. Density of states calculated for a GaAs-Al0.3Ga0.7As
quantum well of widthL5120 Å, for parabolic~dashed line! and
nonparabolic~solid line! electron subbands.D En represents the
confined energy shift induced by the subband nonparabolicity.

FIG. 3. Intrasubband transition rates as a function of the w
width, due to confined- and interface-phonon modes.~a! Confined
and GaAs-like and AlAs-like interface-phonon contributions to t
total scattering rate for the 1→1 transition,~b! total scattering rates
for 2→2 and 3→3 transitions. Solid and dashed lines are for no
parabolic and parabolic subbands, respectively.
ce

g
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r
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e
to

interface-phonon modes become smaller. The larger pho
wave vector reduces the scattering rates, and for these
cific transitions the density of states does not affect the s
tering rates. For confined modes, this decrease is com
sated by larger overlap integrals and therefore these rate
generally larger for nonparabolic subbands. On the ot
hand, for interface modes both larger wave vectors a
smaller overlap integrals are reducing the scattering ra
quite significantly, especially for narrower quantum wel
The AlAs-like interface modes have larger phonon energ
and thus wave vectors than GaAs-like modes, which expla
the pronounced effect on AlAs-like modes. It is interesting
note that the total scattering rate~confined and both interface
modes! also changes with the subband nonparabolicity, i
the increase of rates due to confined modes and the dec
due to interface modes do not compensate each other.
can be understood by the fact that these transitions h
quite different phonon wave vectors and that the differen
in the magnitude of these wave vectors is enhanced by
subband nonparabolicity. For intrasubband transitions
volving higher subbands, see Fig. 3~b!, the differences be-
tween the rates with parabolic and nonparabolic transiti
are even more pronounced.

FIG. 4. Intersubband transition rates as a function of the w
width, due to confined- and interface-phonon modes.~a! Confined
and GaAs-like and AlAs-like interface-phonon contributions to t
total scattering rate for the 2→1 transition,~b! total scattering rates
for 3→ 1 and 3→2 transitions. Solid and dashed lines are for no
parabolic and parabolic subbands, respectively.

FIG. 5. Intrasubband transition rates as a function of elect
energy, including GaAs-like and AlAs-like interface modes. So
lines refer to the nonparabolic rates and dashed lines are para
calculations. A well width of 70 Å is assumed in part~a! and 120 Å
in part ~b!.
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For intersubband transitions, the effect of subband non
rabolicity on the density of final states largely compensa
the increase of phonon wave vectors leaving the scatte
rates essentially unchanged. This is verified in Fig. 4 wh
we present the scattering rates of intersubband transit
where the initial state is at the bottom of the subband.

Scattering rates for electrons with higher initial energy
shown in Figs. 5 and 6 for several intra- and intersubba
scattering rates, respectively. As expected, as we move
high energy regions of the electron subband the nonpar
licity effects become more pronounced. For intrasubba

FIG. 6. Intersubband transition rates as a function of elect
energy, including GaAs-like and AlAs-like interface modes. So
lines refer to the nonparabolic rates and dashed lines are para
calculations. A well width of 70 Å is assumed in part~a! and 120 Å
in part ~b!.
c
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transitions, Fig. 5, the effect of the subband nonparabolic
is more important for narrow quantum wells than for larg
wells. However, the most interesting aspect is that in so
cases, e.g., confined modes for 120 Å quantum well@Fig.
5~b!#, the scattering rates increase for higher kinetic energ
Indeed, the total scattering rate for 1→1 transitions for larger
quantum wells remains almost constant for higher kine
energy indicating that carrier relaxation will take place a
uniform rate.

IV. CONCLUSIONS

We have presented a systematic study of the electron
band nonparabolicity on intrasubband and intersubband s
tering rates as due to confined- and interface-phonon e
sion. The theory presented can be applied to sev
dielectric continuum models and can be used together w
any electron envelope function which describes the subb
nonparabolicity as a second order expansion ink2. We have
shown that the effect of these subband nonparabolicity s
tering rates can be understood in terms of the phonon w
vector, the density of final states, and the electron-pho
overlap. The case of electron relaxation at higher kinetic
ergies was also analyzed and we found that for quan
wells of the order of 120 Å, or larger, this relaxation occu
at an almost constant rate.
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