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Nonparabolicity effects on electron-optical-phonon scattering rates in quantum wells
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The scattering rates for intrasubband and intersubband transitions due to electron—optical-phonon interaction
are calculated for GaAs-&Ba, _,As quantum wells taking into account the conduction subband nonparabo-
licity. For the description of the confined- and interface-phonon modes we use a dielectric continuum model
and the nonparabolic conduction-subband energy is introduced as a second order expakfsitleafquare
of the electron wave vector. Our results show that for transitions due to the emission of confined phonons the
scattering rates are significantly increased, while for interface phonons the scattering rates are decreased. In
particular, we show that for high kinetic energies electrons will relax at an almost constant rates for quantum
wells larger than 120 A. We show that our results can be understood in terms of the phonon wavéovector
Frohlich electron-phonon coupling the density of final states, and the electron-phonon overlap.
[S0163-182697)05336-9

[. INTRODUCTION duced by this nonparabolicity. Our results are always com-
pared with scattering rates in the parabolic-subband approxi-
Electron-phonon interaction in polar semiconductor quanimation in order to determine exactly where and why
tum wells attracted a great amount of interest over the pagtuantitative and qualitative differences occur. Furthermore,
years due to its importance for electronic properties. For inthe theory developed in this work can be used easily to in-
stance, the cooling of photoexcited carriers, carrier tunnelclude nonparabolic subbands in existing theoretical frame-
ing, and the mobility of high-speed heterostructure device§vorks, which use dielectric continuum models for the calcu-
are primarily governed by the scattering of electrons byation of scattering rates.
polar-optical-phonons. Particular interest was directed to- This paper is organized as follows: the general formal
wards optical phonon confinement effeits., confined and theory of the electron-phonon interaction and the scattering
interface_phonon mod)}wl‘“ch affects Significant|y the scat- rates calculation is discussed in Sec. |l A, Sec. Il B describes
tering rates in quantum wells. briefly the electron envelope function used in this paper. In
The electron—optical-phonon interaction in quantum wellsSec. Il we present and discuss our results. Finally, in Sec.
was studied using either dielectric continuum motiéler [V we present our conclusions.
microscopic lattice dynamical modéts® and much empha-

sis was given on the influence of the specific phonon model Il. THEORY

employed. In general, the use of dielectric continuum models B

is well establishetland scattering rates calculated with such A. Transition rates

models compare successfully with experimental resfts.  The scattering rate of an electron from an initial s{#te

From the calculation of capture timésit became evident g 4 final statdK ) accompanied by the emission or absorp-
that capture processes with large kinetic energy influence thgs, of a phonon with energyte is given by the Fermi
overall capture time. For those large kinetic energies, imply'golden rule

ing in large momenta, the parabolic-band approximation be-
comes less justified even for GaAsz8la, _,As structures >
where in generall nonpqrabohuty effects can be safely ne- W<I>:_f 5(gi_gfiﬁw)|<Kf|He_ph|Ki>|2de, (1)
glected. A question which has not yet been properly ad- fi
dressed is how strongly the subband nonparabolicity affects
the intra- and intersubband scattering rates in quantum wellgvhere£ is the total electron energy ardk. ., represents the

In this paper, we investigate systematically the influenceelectron-phonon interaction Hamiltonian. In this expression
of band nonparabolicity on the intra- and intersubband scatthe integration is over the number of final stags In order
tering rates due to emission of confined phonons and inteto take into account the different effective masses of the
face phonons. Also, we consider the case of transitions takearrier and the well, we express our results as an average
ing place at high kinetic energies. In a previous paper wescattering ratéV=p,, W + pgW®) wherep,, (pg) is the
reported some results on confined modes with low electroprobability of finding the electron initially in the welbar-
kinetic energy:! Our main purpose is to determine the im- rier) subband. In order to ease the notation we will drop the
portance of the subband nonparabolicity on the scatteringqidex!=W,B (well or barrier, respective)y which refers to
rates and to identify the physical origin of the changes introthe effective mass mismatéh.
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In order to introduce the subband nonparabolicity we stal
from an expression for the bulk conduction-band dispersio
expanded up to second orderkf, obtained from the Kane
model

f

E-V= (1—yk?), 2)

m*
wherem* is the band edge mass andthe nonparabolicity
parameterV is the bulk conduction-band offset taken \ds
=0 in the well andvV=V, in the barrier. The central prob-
lem of introducing such a nonparabolic energy dispersio
relies in thed function of the Fermi golden rule. Thi§
function represents the energy conservation and is writte
for phonon emission, as

8(&—&—hw)=8[f(cosH)]= 6(acos 6+ bcosh+c),
)
where cog is related to the in-plane momentum conserva
tion for the emission of a phonon with momentuy,

kfr =K+ qf — 2kj;q cosy, 4
anda, b, andc are defined as
2
a= o Akl (58
hZ
b= Z 2Ky — 4 (i +a) ki — 4 kg ki,
(5b)
—ﬁz 2 2 2 2, 42 2
€= 2m*{klli[1_ y(Kji+2kz) ] = (kji+aj) (1 —2yk3y)
+ y(kf +af)?+Q?%, (50
and for phonon emissio® is given by
) 2m*
Q== 52 (Ei—Ei—fhoo), (6)

where the upper sign corresponds to intrasubband transitio

AUGUSTO M. ALCALDE AND GERALD WEBER

56

rt The electron-confined LO-phonon interaction Hamil-

rionian in heterostructures as derived from fich interac-
tion is given by

A
Ho=—=2> explig-rpta(a)uj(z)[as(a)+at(—apl,

NV
(8)

wherea, anda' are the phonon annihilation and creation
operators, respectively, and

n N=4me?hw ol — e Y,

(€)

where € and €. are, respectively, the static and high-
frequency dielectric constants, o is the LO-phonon fre-
quency e is the electron charge, amgandr| are the parallel

components of the phonon wave vector and position vector,

respectively.
The normalization of the phonon displacement i)

-=(21,)" Y2 with
du,\?
uk

and for most dielectric continuum modkt t,(q;) can be
written in a general form

1 (+L/2
T f qjun dz, (10
—L/2

Ih=

ta(d)) = (angf +b, /L), (11

where the coefficienta, andb,, are specific to each phonon
model.
The scattering rate for confined modes is given by

2

_ 2
W= thEn: |Gl 2(Ng+1)

<

.
Ut (qp|b>~4ac] A 1-R%) YHdg),

(12

where N is the phonon ocupation number a@j}, is the
overlap integral of the electron wave function and the
z-dependent part of the electron-confined-phonon Hamil-

nian,

and the lower sign corresponds to intersubband transitions,

E=£&(k;=0) are the confined energy levels akgis thez
component of the initialfinal) electronic wave vector for
intrasubbandintersubbangtransitions. Using basié func-
tion properties and making=cosy, we obtain

8(&—&—hw)=8T(x)]=|b?—4ac| Y25(x—R_),
(7)
whereR_ is the negative root of(x)=0. The positive root
R is neglected because it diverges in the limit0.

o (172760 ~{(1- 29169~ 4oTkfi(1— vi) — 27KikGi+ Q°}

+L12
Gn:f ¥t (2)u)n(2)¢i(z)dz. (13
—L12

The lowerq; and uppequ+ integration limits of Eq(12) are
given as

aj =kp= VK, (14)

where

2y (15
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The integral in Eq(12) is valid for any initial or final elec- For interface modes, we can write the final general form
tron energy, but it has to be evaluated numerically. Howeverof the nonparabolic scattering rates as

this integral can be evaluated exactly in the limit case where
for intrasubband transitions the electron has just enough en- v
ergy to emit one LO confined-phonoik{=0) and for in-
tersubband transitions where the electron is initially at the o ) _2
bottom of the subbandk(;=0). x[b?—4ac| 22 (q))|G,,.(q)|*(1-R_)"2dq.

(21)

1
> |G 2(Ng+ DS The integration limitsgjmay and gjmi, are obtained numeri-
" cally by taking into account the interface-phonon dispersion,
-1 the in-plane momentum conservation, and the energy conser-
, (16)  vation.
Similar as for confined-phonon modes, we obtain an ana-
where lytic expression for intrasubband transitions where the elec-
tron has just enough energy to emit one LO confined-phonon
a=[(2yk2-1)2+4yQ?]*?, (17 (kjy=0) and for intersubband transitions where the electron
is initially at the bottom of the subbandk“(ZO),

e (N +1>f 0,,(q))

q||min

m* \2L

where k,=k,; and k,=k,; are for intra- and intersubband

transitions, respectively. w,,(q))em* 11G,, |2f2 (P)
Note that Eq(16) has a nontrivial limit fory—0. But an w= £ 5 (Ng+1)—~ 5 , (22
elementary application of L’Hopital rule shows that in this 4heg

limit (16) becomes the well-known scattering rates for paranere
bolic subbands?

2
ML pe_(172Key)
> 1GH 2N+ D[ 7 Q%a,L 2+ b, L. 2y
" (18) and « is functionally defined by Eq(17) andk, is the z
component of the initialfinal) electronic wave vector for

An important characteristic of the scattering rates in Egsintrasubbandintersubbangitransitions. In this work we are
(12) and(16) is that they follow exclusively from the energy taking into account the interface-phonon dispersion, using
dispersion relation, Eq2). No additional assumption about the appropriate values af,, andq; which are calculated for
the confined-phonon model nor the method which calculategach given electron energies.
the energy eigenvalues and eigenfunctions was made. In this The overlap of the electron wave function and the

work we use the reformulatétislab model for whictt, is z-dependent part of the electron-interface-phonon Hamil-
given by tonian is given by

: (23

W=

2 221 27—-1/2 — +o
(q=| DL, =138 6= [ wtan@ @i (29
Al [3af+n?m?/L2]" Y2 n=246... . -
(19
B. Envelope functions
For the description of the electron-interface-phonon inter-

action we use the Hamiltonian proposed by Mori and
Ando* The electron-phonon Hamiltonian for interface pho-
non in heterostructures is given by

For the description of the electron subband nonparabolic-
ity, several models were proposed, e.g., Refs. 16—19, where
the main differences between those models are the form of
the energy dispersion relation describing the subband nonpa-

b @2\ 12 rabolicity and the definition of appropriate energy effective
HVMZE (Lz) f,.(aph,(q;,2) masses. The effective mass enters in the analysis when the
aq \ 2e0l wave vector is evaluated for a given energy and also when
S| the derivatives of the envelope functions are matched at the

% (20) heterojunction interface.

+
\/Z_q”[aw(qHHaw( apl The question of energy dependent effective masses is at

present the subject of some controversy; a particular aspect
wherew,,, is the interface-phonon frequenc% is the per-  of this problem consists in the definition of the parallel com-
mitivity of vacuum, anda,, and a are the interface- ponent of the effective mass, the concept of which has been
phonon annihilation and creat|on operators respectively. Thereated in the literature for superlattié@sand quantum
subscripty refers to the paritysymmetric or antisymmetric ~ wells1”?122|n our specific calculation, the application of
and u the possible solution of the interface-phonon disperthis description is not immediate, since the dispersion rela-
sion equationgGaAs and AlAs-like modes For additional tion given by the Eq(2) cannot be expressed like the sum of
details and definitions of the remaining parameters of thearallel £(k;) and perpendicula€(k,) components. This
electron-phonon Hamiltonian we refer the reader to the workypical characteristic of nonparabolic structure in finite quan-
of Mori and Ando!* tum wells is due to coupling betwedq andk, through of
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nonparabolic parameter. In order to estimate the effect of a
heavier parallel mass, we included in Efc) a definition of
parallel masses, given in Refs. 17,21, in the isotropic limits.
For narrow quantum well§50—70 A in both intra- and in-
tersubband, the maximum increase of the order of 4% is
obtained. This effect is significatively reduced when the
guantum well width is increased. In all cases tested, the in-
clusion of this parallel mass definition did not modify the
behavior of the scattering.

For the theory outlined in Sec. Il A one may use any
model which describes the subband nonparabolicity in the
form of Eq. (2). We follow the model proposed by Nag and
Mukhopadhyay? which was shown to adequately describe
the energy levels with subband nonparabolicity in GaAs-
Al,Ga, _,As quantum wells. This model writes the electron
envelope wave function in the same functional form as for
the simple parabolic subband model for a finite barrier quan-
tum well, k —

Energy

Aexp( —kp2), z<-L/2 FIG. 1. Schematic diagram for intrasubband and intersubband
Y(z)=9 Bsin(kwz) +Ccogkwz), |z|]<L/2 (25 transitions in quantum wells. The solid lines represent nonparabolic

Dexp(kg2), 7>L/2, Egﬂi:ctlon subbands and the dashed lines are for parabolic sub-
where, as usual, the constaitsB, C, andD are found by
applying boundary conditions and by normalizing the wavex 10~*° m2. The phonon occupation number is assumed
function. The information about the subband nonparabolicityNq~0, which is valid for low temperatures.
is contained in the energy-dependent definition of the effec- Before we present the results of our calculations, we will
tive masses. The only one difference compared to the pardviefly discuss some aspects of the subband nonparabolicity
bolic case is that the relation between the paramdtgrand ~ Which are expected to affect the scattering rates. In Fig. 1 we
ks and the energy are more complicated due to presence @resent a schematic diagram of phonon wave vectors which
energy effective masses. An immediate advantage of thghows that for nonparabolic subbands the phonon wave vec-
functional form of Eq.(25) is that the overlap integrals, Eqgs. tor is larger than for parabolic subbands. It is well known
(13) and (24), are functionally the same as in previous that the electron-phonon interagtion has a strong dependence
calculations:? Therefore, this model is particularly well on these wave vectors, for the Riich interaction which is
suited for the comparative study of scattering rates for pararoughly proportional to I this indicates that the electron
bolic and nonparabolic electron subbands. couples more weakly to the phonon for nonparabolic sub-

A drawback of this model is that the wave functions of bands. Therefore, these larger phonon wave vectors will re-

the first and third state are not completely orthogonal. Thigluce the scattering rates. Furthermore, one expects that the
nonorthogonality, which affects only the-81 transitions, is  electron-phonon coupling will be more affected for transi-
associated to the problematic definitions of energy dependetions involving electrons with larger kinetic energies.
effective masses and boundary conditions, but does other- The Fermi golden rule depicted in Ed) is an integral of
wise not affect the electron-phonon transition selection rulegnatrix elements over final states, therefore the density of
We have numerically estimated that this nonorthogonalitystates plays a major role for scattering rates. Figure 2 shows
may cause a variation of the order of 1% in the overlapthe density of states for nonparabolic subbands described by
integrals of the 3-1 transitions and therefore has a negli- Ed. (2),
gible effect on the scattering rates.

m* Am* y
ganﬁ 1+ 72 &, (26)

ll. RESULTS AND DISCUSSION
For the calculations of scattering rates due to emission ofnq compares it with the density of states in the parabolic
confined longitudinal-optical phonons we assume a GaAssypband approximation for the first three subbands of a
Al Gay _As quantum well with finite barriers of 224 meV Gaas-Al, (Ga, -As quantum well. Figure 2 illustrates clearly
corresponding ta=0.3. The material parameters used in our{hat although the energy levels do not change appreciably
calculations aré for GaAs, the effective massy,=0.0665  due to subband nonparabolicity, the density of states indeed
mo, the dielectric constants,=12.35 ands..=10.48, the  do vary significantly. With a larger density of states within
bulk phonon energie w, ;=36.8 meV, andiw10=33.29  the energy range of a LO phonon one expects an increase of
meV the nonparabolicity parameter is takef®a8 y,,=4.9  the scattering rates. One exception is intrasubband transitions
X107 m?; for GaAl,_,As, the effective mass with just enough initial kinetic energy to emit one phonon. In
mg =0.0901n,, the dielectric constantss,=14.12 and this case the final state of the electron is at the bottom of the
£,=10.07, the phonon energigsw o=46.97 meV, and subband kj;=0) where the densities of states of the para-
hwro=44.77 meV the nonparabolicity parametgs=2.67  bolic and nonparabolic subbands are the same. Thus, for
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FIG. 2. Density of states calculated for a GaAg:&a,/As interface-phonon modes become smaller. The larger phonon
quantum well of widthL =120 A, for parabolic(dashed lineand  wave vector reduces the scattering rates, and for these spe-
nonparabolic(solid line) electron subbands\ E, represents the cific transitions the density of states does not affect the scat-
confined energy shift induced by the subband nonparabolicity.  tering rates. For confined modes, this decrease is compen-

sated by larger overlap integrals and therefore these rates are
these transitions the densities of final states neither enhangenerally larger for nonparabolic subbands. On the other
nor decrease the scattering rates. hand, for interface modes both larger wave vectors and

The third key element which influences the scatteringsmaller overlap integrals are reducing the scattering rates
rates are the overlap integrals given by E48) and(24). In  quite significantly, especially for narrower quantum wells.
general, the subband nonparabolicity electron wave functioihe AlAs-like interface modes have larger phonon energies
becomes more confined in tlzedirection, i.e., to the quan- and thus wave vectors than GaAs-like modes, which explains
tum well. Thus the confined phonon modes will have largetthe pronounced effect on AlAs-like modes. It is interesting to
overlap integrals(increasing scattering ratesvhile the  note that the total scattering raeonfined and both interface
interface-phonon modes will present smaller overlap inteinodeg also changes with the subband nonparabolicity, i.e.,
grals (decreasing scattering rajeé\s we shall see, most re- the increase of rates due to confined modes and the decrease
sults can be understood in terms of the phonon wave vectoflue to interface modes do not compensate each other. This
the density of states, and the overlap integrals. can be understood by the fact that these transitions have

The scattering rates due to confined- and interface-phonofuite different phonon wave vectors and that the difference
modes for 1-1 intrasubband transitions are shown in Fig. 3,in the magnitude of these wave vectors is enhanced by the
where the initial electron energy is just enough to emit onesubband nonparabolicity. For intrasubband transitions in-
phonon. The scattering rate due to confined modes becom@lving higher subbands, see Figb} the differences be-
larger with the subband nonparabolicity and the rates due tbveen the rates with parabolic and nonparabolic transitions

are even more pronounced.
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FIG. 3. Intrasubband transition rates as a function of the well
width, due to confined- and interface-phonon modeasConfined FIG. 5. Intrasubband transition rates as a function of electron
and GaAs-like and AlAs-like interface-phonon contributions to theenergy, including GaAs-like and AlAs-like interface modes. Solid
total scattering rate for the-21 transition,(b) total scattering rates lines refer to the nonparabolic rates and dashed lines are parabolic
for 2—2 and 3-3 transitions. Solid and dashed lines are for non-calculations. A well width of 70 A is assumed in p&a and 120 A
parabolic and parabolic subbands, respectively. in part (b).
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transitions, Fig. 5, the effect of the subband nonparabolicity

25 T 4 T T
@2 Toul ® . is more important for narrow quantum wells than for larger
20t ] wells. However, the most interesting aspect is that in some
N cases, e.g., confined modes for 120 A quantum .
@ 15} T 5(b)], the scattering rates increase for higher kinetic energies.
Iy IF-AlAslike Indeed, the total scattering rate for-1l transitions for larger
] i — guantum wells remains almost constant for higher kinetic
energy indicating that carrier relaxation will take place at a
0.5 " Confined uniform rate.
IF-GaAs-like
00 0:18 O,‘20 0.22 0 0,|10 0.|15 O.I20 IV. CONCLUSIONS

Energy (V) We have presented a systematic study of the electron sub-
FIG. 6. Intersubband transition rates as a function of electrorfand nonparabolicity on mtraSUbband.and intersubband Sc.at'
ering rates as due to confined- and interface-phonon emis-

energy, including GaAs-like and AlAs-like interface modes. Solid " he th d b lied |
lines refer to the nonparabolic rates and dashed lines are paraboﬁdon' T et gory presented can be applied to seve_ra
calculations. A well width of 70 A is assumed in péat and 120 A dielectric continuum models and can be used together with

in part (b). any electron envelope function which describes the subband
nonparabolicity as a second order expansiok?inWe have

For intersubband transitions, the effect of subband nonpas-hOWn that the effect of these subband nonparabolicity scat-

rabolicity on the density of final states largely com ensate%ering rates can be und_erstood in terms of the phonon wave
y y gely P gector, the density of final states, and the electron-phonon

the increase of phonon wave vectors leaving the scatterin . ) . E

rates essentially unchanged. This is verified in Fig. 4 wher ve_rlap. The case of electron relaxation at higher kinetic en-

we present the scattering rates of intersubband transitiorfg 9!€S Was also analyzed and we fOUF‘d that f(_)r quantum

where the initial state is at the bottom of the subband wells of the order of 120 A, or larger, this relaxation occurs
Scattering rates for electrons with higher initial energy are’t an almost constant rate.

shown in Figs. 5 and 6 for several intra- and intersubband ACKNOWLEDGMENTS
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