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Amplification of coherent polar vibrations in biopolymers: Frohlich condensate
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We consider the nonequilibrium and dissipative evolution, and the steady state of the population of vi-
brational polar modes in a chain of biomolecules. These polar modes are excited through a coupling
with a metabolic pumping source and are in anharmonic interaction with an elastic continuum. Groups
of polar modes are coupled in this way through nonlinear terms in the kinetic equations. This nonlinear-
ity is shown to be the source of an unexpected phenomenon characterizing complex behavior in this kind
of system: after a threshold of intensity of the pumping source is achieved, polar modes with the lowest
frequencies increase enormously their population in a way reminiscent of a Bose-Einstein condensation
(Frohlich effect). The transient time for the steady-state condensate to follow is very short (picosecond
time scale) and the condensation appears even for weak values of the anharmonic coupling strength re-
sponsible for its occurrence. Further, it seemingly requires accessible levels of metabolic pumping power

in order to be produced and sustained.

PACS number(s): 87.10.+¢, 05.70.Ln

I. INTRODUCTION

Nonlinearity is known to be the source of new and
unexpected phenomena that characterize complex
behavior in physical systems. This is particularly the
case in dissipative systems far from equilibrium [1]. The
concept that many-body systems sufficiently far away
from equilibrium and governed by nonlinear kinetic laws
may display self-organized ordered structures at the mac-
roscopic level, as observed in many cases, has been
brought under unifying approaches such as dissipative
structures [2,3], synergetics [4], and macroconcepts [5].
We may say that, in particular, biological systems are
complex systems by antonomasia, which are open, driven
far from equilibrium, and display a variety of nonlinear
physicochemical processes. Thus, as is the case, they
present an enormous number of rich and noticeable phe-
nomena on the morphological, biochemical, biophysical,
etc., levels. We emphasize that this is possible in the non-
linear thermodynamic regime far from equilibrium, since
in the linear (Onsager’s) regime near equilibrium, order-
ing is inhibited according to Prigogine’s theorem of
minimum entropy production (e.g., Ref. [3]) that
confirms the stability of the thermally chaotic branch of
solutions, i.e., the so-called thermodynamic branch that
emerges continuously from the equilibrium state with in-
creasing values of the intensity of the external perturba-
tion.

A quite interesting and illustrative example of non-
linearity at work, producing what can be very relevant
biological effects, is a model of a biophysical system pro-
posed by Frohlich [6,7] that may describe membranes or
large chains of macromolecules possessing longitudinal
electric modes. In the Frohlich model several modes of
polar vibrations are excited by a continuous supply of
metabolic energy, with these polar modes interacting
with a bath of acousticlike vibrations through nonlinear
dynamics, which is the source for what we call the
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Frohlich effect, namely, that under appropriate nonlinear
conditions the modes with the lowest frequencies increase
enormously their population in a way reminiscent of a
Bose-Einstein condensation. It has been stated that these
polar modes, thus largely excited, may exhibit long-range
phase correlations of the electret type [8—10], that may
produce observable effects in biosystems [7].

Some microscopic approaches using modeled Hamil-
tonians have been proposed to describe Frohlich system
[11,12]. In these treatments the nonlinear kinetic terms
arise out of nonlinear anharmonic interactions resulting
in the creation (decay) of a longitudinal polar excitation
from (into) a single excitation of the bath system and a
polar excitation.

More recently, Davydov has proposed a model for a
one-dimensional a-helical protein molecular chain with
oscillating peptide bonds, embedded in an elastic continu-
um. A theory of the transfer of metabolic energy and of
electrons along the chain describe excitations accom-
panied by a local deformation of the chain that move uni-
formly and undamped in what is called a solitary exciton
[13—15]. These ideas concerning the transfer of energy in
biological systems have been extended mainly by Scott
[16]. It should be stressed that the nonlinearity of the
equations of evolution, arising out of the interaction with
the elastic continuum, are responsible for the Frohlich
effect and the propagation of solitary excitons. In fact,
Tuszynski et al. [9] have shown the equivalence of the
Hamiltonians used to describe Frohlich and Davydov
models when both are placed in a representation in terms
of normal coordinates.

Along this line, we consider the case of a chain of
biomolecules, taken as a quasi-unidimensional system,
and study the macroscopic nonequilibrium evolution of
the polar vibrational modes they possess, whose kinetic
equations—derived in an appropriate mechanostatistical
scheme—are numerically solved. They are assumed to
be excited by the pumping of biochemical energy (usually
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thought of to be the energy released by hydrolysis of
adenosine triphosphate) on the polar oscillations (associ-
ated to double-bonded carbon-oxygen), which sustain an
anharmonic interaction with an elastic continuum, the
latter being modeled in terms of a Debye acoustic-
oscillation system. The system is far from equilibrium
and therefore its description requires nonequilibrium dis-
sipative thermodynamics. For that purpose we resort to
the powerful, and also elegant and concise, nonequilibri-
um statistical operator method (NSOM), reviewed and
brought under a unifying variational principle based on
the predictive statistical mechanics of Jaynes in Ref. [17].
NSOM allows for the construction of a nonlinear general-
ized transport theory—a far reaching generalization of
the methods of Chapman-Enskog and also Mori—that
describes the evolution of the system at the macroscopic
level in arbitrary nonequilibrium situations, as shown in
Ref. [18]. Among the different NSOM, we resort to the
method of Zubarev [19] and the so-called [18] second-
order approximation in the theory of relaxation
(SOART). It is also known in the literature as the quasi-
linear theory of relaxation [20], a name we avoid because
of the misleading term “linear” that refers to a certain or-
der of dissipation as described by the nonequilibrium sta-
tistical operator, although the equations of evolution
remain highly nonlinear.

We are thus allowed to write the equations of evolution
for the populations of the polar modes, with a bath of
acoustic vibrations that is assumed to remain in a state of
constant temperature through the action of an efficient
homeostatic mechanism. The polar vibration’s frequency
dispersion relation is modeled by a parabolic law around
the zone center in reciprocal space. We use typical
values for the different parameters that enter into the
equations of evolution, which results in the fact that the
polar modes are coupled in groups having a small num-
ber of modes, which greatly facilitates the computational
solution of the coupled system of equations.

We solve the time-dependent equations of evolution to
describe the transient period before the attainment of a
stationary state. In that way, it is possible to define a
transient time which is expressed in units of the relaxa-
tion time of the polar modes to the thermal bath. Fur-
thermore, the solutions for the values of the populations
in the steady state are obtained in terms of the intensity
of the energy pumping source.

In the next section we specify the system and write the
relevant Hamiltonian and the equations of evolution for
the population of the modes derived in NSOM-SOART.
We deal with an exactly soluble model for a chain of
biomolecules where, we anticipate, Frohlich effect fol-
lows: with increasing values of the pumping intensity,
after a threshold is achieved, there follows a large
amplification of a set of modes with the lowest frequen-
cies. It is shown that the phenomenon can be realized
even under conditions of weak contribution of the non-
linear terms in the equations of evolution that are
relevant for the effect to appear, and under accessible lev-
els of excitation. Also, it follows after a very short tran-
sient time after switching on the exciting external source,
and, furthermore, as shown elsewhere [10], at the critical
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point for the onset of the Frohlich effect the lifetime of
the oscillatory excitations largely increases, becoming
near dissipationless waves, much in the way of Davydov’s
solitary waves. Hence, both effects seem to have the
same and simultaneous origin.

II. POLAR MODES IN BIOPOLYMERS

Let us consider a quasilinear polymeric chain of
biomolecules consisting of an arrangement of periodically
repeated groups of molecules. Let a be the extension of
the crystallographic unit cell. An example could be the
a-helix protein depicted in Fig. 1, considered by Davydov
[15], more precisely three chains (channels) with peptide
bonds, in a near one-dimensional array (the ragius of the
helix is 2.8 A). The pitch of the spiral is 4.5 A, and the
crystalloographic unit cell contains 18 peptide groups
(a=>~80 A). The energy is pumped in the system by meta-
bolic processes, typically the energy released in the hy-
drolysis of adenosine 5-triphosphate (ATP) molecules,
and it is assumed that the chain can sustain longitudinal
polar vibrations. This vibrational energy is associated to
the CO stretching (or amide I) oscillators. The latter
have a frequency dispersion relation w,, where q is a
wave vector running over the reciprocal-space (Brillouin)
zone of length 27 /a. The chain is assumed to be embed-
ded in an elastic continuum represented by a Debye mod-
el, i.e., with a frequency dispersion relation sq, where s is
the sound velocity in such a medium and having a Debye
cutoff frequency wp. On the right-hand side of Fig. 1 we
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FIG. 1. An atomic model of the a-helix structure in a protein
(Refs. [15] and [16]), and on the right a rough description of the
mechanical model considered in the text.
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proceed to analyze a rough description of the mechanical
model of the chain. Such a mechanical system is com-
pletely characterized at the dynamical level by the Ham-
iltonian

H=H,+Hyp+H, +H,+H, +Hy+H,, (1)
where

Hy = Zﬁ(oq(a:;a
q

) (2a)

is the Hamiltonian of the free polar vibrations; a (aT), as
usual, are the annihilation (creation) operators in mode q;

Hyp=3sq'(blby+1) (2b)
q
is the Hamiltonian of the bath of free acousticlike vibra-
tions; and b (b') are the corresponding annihilation
(creation) operators. The next four terms arise out of
anharmonic interactions involving three-quasiparticle
collisions, given by the expressions

Hy =3 Vigagbybl, o +He. , (2¢)
9,9’
Hy,=S vV plpl +H 2d)
12 X Voqdqbgbg—q TH.c.
9,9
H, =73 Vilz)'aqaq,bz+q,+H.c. , (2e)
9,9
and
Hyp=3 VZala b, _ +H 2f)
2= 2 Voqaqaqbq—g tHec.,
9,9’

where V'V and ¥V? are the corresponding matrix ele-
ments of the interaction potential. Finally,

H;,=3 ¢al+H.c. (2g)
q

represents the energy of interaction between the pumping
source and the polar modes: ¢ (q)f) are annihilation
(creation) operators of excitations in the source, also con-
taining the coupling strength. Furthermore, we intro-
duce—as required by NSOM —the partial Hamiltonians

Hy=Hy +Hgp,
and
H'=H, +H;,,+H, +Hy+H,.

To deal with this system in NSOM the first step is to
define the basic set of variables deemed appropriate for
the description of its macroscopic state. We choose the
populations of the polar vibrations

v()=Tr{alap(t)) =Tr{p,p(1)} , (3)
J

( _
JQO)(I)—Tr

1 —
;[aj;a(pHO}p(t’O) } >

Jf]”(t)=Tr[—l,%[agaq,H’]ﬁ(t,O)J ,
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and the energy of the free subsystem of acoustic vibra-
tions (bath)

Ey(0=Tr | 3 #isq'(blby +L)p(1) | , @)
<

where p(t) is the nonequilibrium statistical operator
(NSO) in Zubarev’s approach [19]. We recall that the
acoustic modes act as a thermal bath for the polar modes,
remaining in an equilibrium state at constant temperature
T, while in contact with a thermal reservoir providing an
efficient homeostatic mechanism. Hence, the NSOM
auxiliary operator [17,19] is, in this case,

p(1,0)=exp | —¢(1)— 3 Fo(t)9,—BHp, | , 5)
q

where B=1/kT and F(¢) are nonequilibrium thermo-
dynamic parameters conjugated to the dynamical vari-
able occupation number of polar vibrations, ¢(¢) is a
Massieu-Planck functional that ensures its normalization,
and B is time independent because of the assumption that
T is kept constant. Therefore, we are simply left with
equations of evolution for the population of the polar
modes, then characterizing the nonequilibrium dissipa-
tive thermodynamic state of the system.

As noted in the Introduction, these equations are de-
rived by resorting to the nonlinear quantum generalized
transport theory that NSOM provides [18]. But the col-
lision operator they define, which contains highly non-
linear, nonlocal, and memory effects, is extremely difficult
to handle in practical calculations; however, through an
appropriate mathematical manipulation it can be rewrit-
ten in terms of an infinite series of partial collision opera-
tors which are instantaneous in time [given as averages
over the auxiliary NSO—that of Eq. (5) in our case—at
the time of measurement] and organized in increasing
powers n of the interaction strengths [18]. The form of
the collision operator thus obtained permits us to intro-
duce approximations by means of a truncation of the
series of partial collision operators in a given order of in-
teraction. The lowest order that introduces relaxation
effects is a truncation in second order in the interaction
strengths, the SOART referred to in the Introduction: it
renders the equations Markovian in character [17,18,20].
We resort here to this approximation; it produces the
nonlinear contributions relevant to the question in hand,
with the higher-order terms given small modifications.
The NSOM-SOART equation of evolution for the mode
populations are

d
dt

where

vO=ILO+IV () +IP (), (6)

(7a)

(7b)
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1)( )

0 +— _dt'e”
aq11p(2,0)} f t (t)

2
Jff)(t)= [# ] f_owdt'e”'Tr{[H’(t'),[H {[alaq.H’]ﬁ(t,O)} , (7¢c)
where § stands for functional derivative, p is given by Eq. (5), and Zubarev’s approach was used.

In the NSOM-SOART calculation for the equations of evolution for the polar mode populations, it results that be-
cause of the symmetry properties of the system and the selected choice of the basic variables—and thus the form of the
auxiliary NSO of Eq. (5)—several contributions are null, namely, J‘©) and J'!). There remains only the first contribu-
tion to J'?), which produces a result that correspond to the golden rule of quantum mechanics averaged with the auxili-
ary nonequilibrium statistical operator of Eq. (5); performing the required calculations we finally obtain

2
%vq(t)=1q(wq)—ﬁ—1;2’|V$;|{ S+ () — (L +vE W g [1 v ()]} 8(slq+q'| —slq'| — @)
q
WS+ DO g+ Dvg()—vEvE_ [ 1+ v (01}8(sla—q'| +5lq'| — o)

Vo g1 ve(D][1+v(D]}8(slq +qi — 0y —w,)

27
_;{E’]V% HO v g v (v () — q

2|qu| {( 1+v g [1Hvg (D) ]vy(2)— q Ve (D1 +vy(0)]}8(slq—q' | oy, — o)

2 ’
— 72 IV Pva— g [1Hvg () Ivg(0) — (125 _ v (D[ 1+vo(1)]}8(s|q' —ql — g +ay) . ®)
q
We recall that q when referred to the polar modes runs over the Brillouin zone (—7/a <q < /a), and that the Hamil-
tonian of Eq. (1) already contains information on the conservation of the linear momentum; in the equation above the 8§
functions take care of the conservation of energy in the collision events. Furthermore, we expressed the time-dependent

correlations involving the operators associated to the external source in terms of a spectral density, namely,
27 <
“7(¢7q(t)cp:£>=f_m—“l( w)e'! 9)

where I (w) represents the intensity of the source over the spectrum of frequencies. Finally, +° is the population of the
acoustic vibrational modes, namely,

vé=[ exp(Bsq)—1]"" (10)

Taking into account Eq. (10) and using the energy-conserving 8 functions, Egs. (8) can be rewritten as

d ghict, | Vq(t) , ,
27 VD=1 EIV“’ Wevbige 9 |- —1(8(slq+q | —slq' | —wy)
q
_ 27 (1)|2,,6 .,b V(t) o "0
22— 2 |qu,l VaVa—q' Vg 8(slq—q’'| +slq'l wg)

2|V“ 28 ATV DT T+ vy ] = v (v (e 591 8(s|g+q'| — g — )

BHA ,

z [V Ve _ g {vg (D1 v ()] = [1+vg () vg(t)e” 9}8(slq—q'| + g —a,)

2 VEI2E (v (D[ 1Hvg(D)]e 729 — [ 14y (1) v (1)) 8(s]q’ +q] — g +ay) (11)
hz —qtVq q q'?/ Vg qTqlTwOgTaOg),
[

where pump term, which is the first one, the next two terms are
Q=+ 12 associated to relaxation (decay) of the polar excitations to
a@’” Pq T g > (122) " the thermal bath (related to H 11 and H,); the fourth,
Agg=0g—ay (12b)  arising out of H,,, is also a relaxation term of the vibra-

tional mode; the last two terms are contributions arising

and 1 is the population in equilibrium (at temperature T)
of the polar vibrational mode.

Equation (11) is the type of equation proposed by
Frohlich. On the right-hand side of Eq. (11), besides the

from H,, that we call Frohlich terms, because those are
responsible for the transfer of excitations to the low-
frequency polar modes. In fact, given mode q, if 0y <o,

the bilinear terms containing VqVq lead to an mcrease 1n
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population for it, at the expense of the other q' modes. It
has been argued [21] that contributions coming from the
fourth term wash away the effect of contributions arising
out of H,,, but Frohlich has countered [22] that it has a
small contribution as a result of the different form of en-
ergy conservation in both processes as, in fact, character-
ized by the 8 functions in Eq. (8); we anticipate that for
the parameters we use in our numerical calculations con-
tributions arising from H,, are identically null.

To proceed further, we model the dispersion relation of
the polar modes by a parabolic law, namely

a)q=a)0—aq2 R (13)

where w, and a are constant parameters. It should be no-
ticed that this form for the dispersion law implies a max-
imum value @, at the zone center and a minimum value
at the zone boundaries. Also, the second and third terms
on the right-hand side of Eq. (11) are written as

_1 ( Vg~ v9)

, (14)
’Tq 9

which introduces the relaxation time

_ 27 1

1— (112

Tq 2 .0 2|qu’|
# Ve q

X [vg,vg+q,e%lq'|6(s|q+q’| —slq'| —w,)
+vg,vg_q'8(s|q~q’| +slq'|—wy)] .
(15)

Because of the choice given by Eq. (13) we are now in
condition to evaluate the energy-conserving 8 functions,
i.e., to determine the values of g’ that they fix. This re-
quires one to look for the roots of the equations,

fl1=w,—aq?+s|q' | —slq+q'| , (16a)
fra=wy—aq*—s|lq'| —slq—q'l , (16b)
fr=2wy—alq®*+q'Y)—slq+q'| , (16c)
fi=alqg?—q¢*)—slq—q'| , (16d)
f4Ea(q'2—q2)+s|q—q" . (16e)

In one dimension the vectors q and q’ take the values g
and q’', positive or negative. Taking this into account we
have the following:

(1) The roots of f; are

—(wo—aq?+sq)/2s,

, if ¢>0 and q +q'<0 (17a)
In= (wy—aq®—sq)/2s ,
if ¢’<0 and ¢ +¢’'>0; (17b)

note that this implies w,—ag?+sq <0.
(2) The roots of f, are
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(wg—agq*+sq)/2s,
. if g¢'>0 and ¢ —¢q’' <0 (17¢)
9127 —(wy—aq?—sq)/2s ,
if g¢’<0 and g —q¢'>0; (17d)
what implies that w,—ag?tsq > 0.
(3) The roots of f, are
2 2eon 1172
=S5 4| |5 | —g2445,4+ 0
92+ 2a— 2a q aq o )
forg+q'>0, (17e)
2 2en 1172
f(2)=____i_+ LI B 2_4i +_0
q>+ 20 | | 2a q a? p ’
for g +q’'<0. (170
(4) The roots of f; are g5 =g, and
, —q—s/a, ifg—¢q’'>0 and ¢ > —s/2a (17g)
927 | —g+s/a, ifqg—q'<0 and ¢ <s/2a ; (17h)
(5) The roots of f, are g3 =g, and
, —q—s/a, if g—q'<0 and g < —s/2a (171
93~ |—g+s/a, ifqg—q'>0 and ¢>5/2¢c ; (175

It should be noted that the 8 functions in Egs. (11) pro-
duce 8 functions in the variable of the integration g’
through the known relation
-1

8(q'—qj,) (18)

df;

BfaN=3 |50

n

where n runs over all the roots of f;.

To further simplify matters, but without losing the fun-
damental characteristics of the model, we take the matrix
elements Vi) and V%) as constants, ¥, and ¥, respec-
tively. We go over the quasicontinuum (large system) in

the reciprocal space, i.e., in one dimension,
L
— | dq , 19)

where L is the length of the chain, the limits of integra-
tion are for the values g of the polar vibrations Q,=7/a
and —Q,= —/a, i.e., the end values of the Brillouin
zone, and those for the values of g’ of the mode of vibra-
tions in the continuum are in the interval @, and —Qp,
i.e., the Debye wave number fixed by the Debye cutoff
frequency; we assume that Q, >>Q,. Introducing the
time scale 7=#%s/L|V,|? and the reduced time 7=1/7,
the coefficient A=|¥,|?/|V,|?, and taking into account
the expressions for the energy conserving & functions as
given by Eqgs. (18) and (17), we find that

d (q)
-qu=sq—l’7jl[vq—vg]+1z,(q)+R2(q), (20)
q
where
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S,=1,7, (21a)

y(q)—sf 4V e8| - [1-0(g +4')10(¢")8(g" +(wo—ag?+5)/25)

+—21S—6(q +¢")[1—0(g")18(g' —(wo—agq’—sq)/2s)

+sf dg'vgvg —q %[1—9@—q')]e(q’)ﬁ(q'—(wo—aq2+sq)/2s)
+%9(‘I“‘Q')[l—G(q’)]S(q'+(w0—aq2—sq)/2s) , (21b)
RI(Q)——}\Sf dd’ Ve L Ly )Ly —vgve” ]

X([s —4a%q?—16asq +8aw,] " ?0(q +¢"){8(q' —q L) +8(q' — g5V}
+[s2—4a2q2+16asq+8aa)0]_1/2[1—6(q+q')]{ (@' —g 2 )+8(qg"—q5)H)}) , 21¢)
Ry(q)= /\sf gVl vy(1v)— (1 vg vge™ o]

1 ) ,
% { [2aq +s| O(q —q')0(q +s/2a)8(q'+q +s/a)

——I-_Tl[l—e(q —q")][1—6(q —s/2a))d(q'+q —s/a) ]

+
[2aq

—BhA,

Q
+7Lsf_;odq’vq,_q[vq,(l+vq)e W— (14 vy v,]

1 o ,
Xl|2aq+s|[l O(g —¢")][1—6(q +5/2a)18(q"+q +s/a)

+—|§—C—l—‘}1—_ge(q —q')0(g —s/2a)8(q'+q —s/a)] , (21d)
where O(x) is Heaviside’s step function accounting for the step limitations imposed on g’ by Egs. (17). It should be not-
ed that in R, the contributions from the roots ¢’=g in f; and f, are null. Furthermore, we recall that —Q,<q < Q,,
and it should be noted that Eq. (20) is invariant under the inversion operation in which q and q’ change in —q and —q'.

For the sake of simplicity, we already take into account that for the values to be used later on for numerical calcula-
tions the first term in ¥ is null as well as the term R ;. Hence, leaving aside these contributions, performing the integra-
tions in Eqgs. (21) we find that (g, next, is the vector in one dimension)

d
Sovy =S, = L v, =14 0g 5 /20y, 1ol 1) = D 1ty ]
q
+[1—6(g —s /) AU [V, —s /ol 1+ v, ) —e TFBRI=S/O (1 4y v, ]
+[1—06(q +5/2a) IA@(@[vy 15 /6l 1+ vy )e PECIFS/D (1 4y v, ]
+0(g —s 2a0)AYQ vy — o1+ v, )ePE2 /D —(1 4y o, ], 22)
[
where now We can see that in the all important term R,(q) (the
1. BH1/2)lwy—ag?—sq . one containing the nonlinear contributions? not all the
Y(q)zi[e —1] polar modes are coupled, but those that differ between
) them in a spacing given by *s/a, and are contained in
X[ eﬁﬁ“/z’l“’o—aq +S‘i|_1]—1 , (23a)  the Brillouin zone. Hence, the modes contained in each
o+ segment of the extension s/a are, each mode indepen-
P(q)=s/|2aq +s|(ePlats/al—1) (23b)  dently, coupled to a finite number 27 of modes outside it,
Wq)=s/|2aq —s|(ePil2a—s/al _1) (23¢) such that 7 equals the integer part of [wa/sal.

For example, if the set contains the mode at the
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zone center, g =0, then the coupled modes are
{+0,%s/a;E2s/a;. . .; xAs/a} and the set that con-
tains the end zone vector Qo=mw/a is {Qy;Qp—s/a;
Qo—2s/a;..., Qy—(fi—1)s/a}. The bilinear terms
connect the mode g to the modes ¢ —s/a and g +s/a, in
a process of transmission of energy from each mode g for
the next lower in energy. Furthermore, we recall that be-
cause of symmetry considerations modes with negative
wave vectors are equivalent to those with a positive
value.

Having set the equations of evolution for the popula-
tions of the coupled modes let us first consider the sta-
tionary states that should follow after a certain transient,
to be determined later on in this section, have elapsed.
The steady state is the solution of Egs. (22) when setting
dv/d7T=0. It is worth noting that in NSOM, because of
the form of the auxiliary operator of Eq. (5), one finds
that

vg=1/[e"—1], (24)

i.e., the populations can be expressed in terms of the un-
known nonequilibrium thermodynamic parameter Fy. In
particular, we may choose the alternative form

F =Bl fiog—pg] , (25)

and then Eq. (24) resembles a Bose-Einstein distribution
but with a quasichemical potential for each mode pu,,
thus being of the form proposed by Frohlich [7]. Clearly,
replacing Eq. (25) in Eq. (24), and the latter for v in the
steady-state equation of evolution, one gets an equation
for the quasichemical potential in terms of the popula-
tions of different modes. This quasichemical potential in-
creases with growing external pumping energy and then
may signal a kind of Bose-Einstein condensation if at
some critical intensity pq coincides with #iw,. This implies
the possibility of emergence of the Frohlich effect as de-
scribed in the Introduction. The formal character of the
quasichemical potential per mode, g, should be stressed,
while F_ is the nonequilibrium intensive thermodynamic
parameter that NSOM introduces, that is, Eq. (25) is an
arbitrary choice deemed appropriate for the physical dis-
cussion of the problem. A quasichemical potential for
the characterization of the population of nonequilibrium
photons in the case of a nonequilibrium state of radiation
and carriers in semiconductors was also used by
Landsberg [23].

Returning to Eqgs. (22) in the steady state, we proceed
to obtain their numerical solution using an adaptation of
a known computational algorithm [24]. For that purpose
we need to introduce numerical values for the parameters
involved; we take for them values that are typical of the
biopolymers involved [7,15,16], namely,

wo=10"%sec™; a=100 A

s =10% cm/sec; a=0.19 cm?/sec
that is we simply take values within the order of magni-
tude to be expected in such types of systems, e.g., the a-

helix protein of Fig. 1. We stress that the characteristic
behavior to be derived, as shown in Figs. 2-7, is indepen-
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FIG. 2. The population of the different coupled modes, in a
set that contains ¢ =0, as a function of the scaled intensity S for
(a) A=1 and (b) A=0.01. Mode g =0 is the only one pumped.
Index 6 stands for ¢ =0; 5 for ¢ —s/a,...,1 for g —5s/a
(mode 1 is the one with the lowest frequency).

dent of the numerical parameters, that is, the qualitative
aspects remain but, of course, with changing numerical
results. With these values it results that the end
Brillouin-zone wave number is Q,=3.14X 10% cm™!; the
width of the frequency spectrum of the polar modes is
['=1.87X10'? sec™!; the ratio s/a=5.27X10° cm™',
and then the number 7 of coupled modes is 12. The bath
temperature is taken as 300 K. There is an open parame-
ter, viz. A, that measures—as its definition indicates—
the ratio of the coupling strengths involved in the non-
linear and linear (in the polar mode populations) anhar-
monic interactions; we will obtain solutions for several
values of this parameter.

We consider the set that contains the mode at the zone
center (¢ =0), which is assumed to be the only one
pumped by the external source, and we solve the equa-
tions of evolution for the populations v, for the values

q
A=1 and 0.01; the results are shown in Figs. 2(a) and

x102

MODE POPULATION
n w »

108 107

10® 10* 10°
SCALED INTENSITY S

FIG. 3. As in the case of Fig. 1 but now with all modes
equally pumped and A=1. The dashed curve is the result for
A=0 (uncoupled modes), when the population of the different
twelve modes is roughly the same.
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FIG. 4. The dependence on the scaled intensity of the quasi-
chemical potential of the lowest-frequency mode (arrows indi-
cate the approximate onset of condensation).

2(b). Next, we consider the more realistic case of all
modes being pumped, and such that S;=S, and A=1
with the corresponding curves shown in Fig. 3.
Inspection of these curves clearly shows a complex
behavior of the system: at a given threshold of the inten-
sity S of the pumping source [we recall that S is a scaled
quantity for the amplitude of the intensity in the spectral
representation of Eq. (9); cf. Eq. (21a)] the mode with the
lowest frequency begins to grow enormously, in a very
steep fashion with increasing intensity S. The quasichem-
ical potential associated with this mode tends asymptoti-
cally from below to the value of the frequency of the
mode, but does not coincide with it; see Fig. 4. At and
beyond the threshold intensity (indicated in an estimative
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FIG. 5. Behavior of population of the lowest-frequency mode
v, for different values of the coupling strength.
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FIG. 6. Evolution in time of the populations of the modes for
A=1and S =5000.

way by the arrows) this very close approach of the quasi-
chemical potential to the frequency of this lowest-
frequency mode leads to a near Bose-Einstein condensa-
tion, in the sense that the distribution in the modes corre-
sponds to a very large accumulation in the lowest-energy
state. The comparison in Fig. 3 of the populations in the
presence of the nonlinear coupling with those in the ab-
sence of coupling, allows us to better visualize the
Frohlich effect: the mode with the lowest energy has in-
creased its population by almost an order of magnitude
above the value expected for A=0, at the expenses of the
other modes whose populations rest below the dashed
line; some of them tend to a constant saturated value.
After the critical intensity threshold has been achieved v,
grows quite steeply.

The first threshold intensity (at which there follows the
steep increase in population of the lowest-frequency
mode) is not strongly dependent on A, which, we recall,
measures the strength of the anharmonic interaction re-
sponsible for the nonlinear terms in the equations of evo-
lution. This is shown in Fig. 5. Hence, the effect follows
an intense form even at weak nonlinear contributions in
the relevant (nonlinear) term that needs to be present for

252’ T I T
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1 =
) w
a 2
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FREQUENCY (10'2 Hz)

FIG. 7. The population of the modes in the band containing
their frequencies of vibration, namely, w,—a(7/a)* < © < wq.
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the phenomenon to arise.

Also, as previously mentioned, it has been argued that
the anharmonic contribution contained in the fourth
term in the Hamiltonian of Eq. (1) opposes and may even-
tually cancel the Frohlich effect [21]. Frohlich has re-
plied that this is not so because the term should involve
less important contributions to the kinetic equations [22].
Our calculations show this clearly; furthermore, for the
particular numerical values of the parameters we use, the
contribution from that term vanishes, because in the
scattering events it produces it cannot be simultaneously
satisfied by the conservation of energy and momentum.

Our results then show that protein polymers of the
type considered by Davydov [13-15] display complex
behavior manifested in the emergence of the Frohlich
effect.

As already noted, the Frohlich effect seems to be ac-
companied by the formation of an electret state [8,9] and
the propagation of undamped waves [10,13—15]. There-
fore, it is of relevance to determine the transient time.
For that purpose, we solve the equations of evolution
(22), using as an initial condition the values for the popu-
lations in equilibrium, resorting to an adaptation of a
known computer program [25]. Figure 6 shows the evo-
lution of the population of the six modes for case A=1
and S =5000 (slightly above the critical value for the
condensation to follow). We are then in a condition to
evaluate the transient time before the steady state is
reached. Comparing Egs. (12) and (19b) we find that

74 '=LIV,*y(@)/#svi=y(g) /)T . (26)

Assuming these relaxation times to the bath being of the
order of tens of picoseconds [7,16], we estimate the scale
factor 7 to be roughly 20 psec, and so the transient times
are of this order or smaller (see Fig. 4).

Finally, after solving the set of 12 coupled equations
for several different sets of 12 coupled modes, we are able
to show in Fig. 7 the dependence of the mode populations
along the interval of frequencies in the polar branch of vi-
brations. The region of low frequencies privileged by the
onset of the Frohlich effect is evident. We have already
noted that the results described in the series of figures re-
tain their qualitative characteristics when the numerical
values of the parameters of the system are changed. Con-
sider, for example, the case when theo cell parameter is re-
duced by a factor of 4 (i.e., a =25 A). To maintain the
width of the frequency dispersion spectrum of the vibra-
tions, parameter a needs to be reduced by a factor of 16.
But now the number of coupled modes is 48. Numerical
results are similar, but the main change is that the length
of the region in frequency space (cf. Fig. 7) that includes
the modes in the condensate is stretched by a factor of 4.

Furthermore, using the given value of 7, we find that
for the critical intensity (for the onset of Frohlich effect)

*=TI*7 being roughly 5000 (cf. Figs. 3 and 4), the value
of the critical intensity I* is roughly 5X10'* sec™!,
which implies for w,=10"® sec™! a pumping power of
5X107% W per mode. Since the number of modes is
LQy/m (where L is the length of the chain), for the num-
bers used this is 10°L, and then the total pumped power
is 5X1072L W. Assuming that this power is provided
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through the hydrolysis of adenosine 5'-triphosphate
(ATP), which produces 7.3 kcal/mol, in the event of ab-
sorption of a fraction f of this metabolic energy, to main-
tain the power intensity required would imply a rate of
~(L/£)(1.6X107°) mol/sec or (Lf) mg/sec of ATP. To
obtain the stationary Frohlich condensate, as seen, a time
interval of the order of 10 psec is required, and then an
expense of ~(L /f)(107!4) g of ATP, which seems to be
very accessible values for the phenomenon to occur.
Moreover, we have considered here that the source
creates single excitations in the vibrational modes [cf. Eq.
(2g)] but multiple excitations are also energetically possi-
ble, which, furthermore, are enhanced by the same effect
of condensation when the modes lowest in frequency are
externally pumped.

In the next section we summarize and comment on the
relevance of the phenomenon evidenced in this section.

III. CONCLUDING REMARKS

We have studied a model of a biological polymer,
namely a chain of biomolecules such as the a-helix con-
sidered by Davydov [15], which is expected to possess po-
lar modes of vibration. The latter are assumed to receive
energy from an external pumping source, say, a metabolic
feeding of these modes. At the same time, the polar
modes interact with an elastic continuum via a nonlinear
anharmonic-type potential. Equation (1) presents the
Hamiltonian of this system. We studied the dissipative
nonequilibrium state of the polar modes which is charac-
terized by the populations of these modes of vibration.
We derived for them the corresponding equations of evo-
lution resorting to the nonequilibrium statistical operator
method [17], but in the approximation SOART for the
nonlinear transport equations that can be built within the
framework of NSOM [18]. Even though the equations
couple, in principle, all the modes characterized by the
wave vector q running over the whole Brillouin zone,
conservation of energy and momentum in the scattering
events allows for the separation of the whole set of cou-
pled equations in reduced independent sets of equations
composed of a certain number of modes. The equations
of evolution for the populations of the polar modes of vi-
bration are solved under the assumption of a constant
pumping of energy by the external source, and that the
thermal bath of acousticlike vibrations is constantly kept
in equilibrium with a reservoir at a constant temperature
T (i.e., it is regulated by an efficient homeostatic mecha-
nism).

We have been able to demonstrate that such a system
displays a complex behavior, namely, that at a certain
distance from equilibrium, i.e., for a threshold value of
the pump intensity, there occurs a steep increase in the
population of the modes with the lowest frequencies, in a
way reminiscent of a Bose-Einstein condensation that we
term Frohlich effect. There is a kind of self-organization
in the system, governed by the nonlinear effects in the
equations of evolution and, thus, this phenomenon may
be considered as the emergence of a dissipative structure
in Prigogine’s sense [26].

Clearly, a very large population in certain modes im-
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plies large amplitudes of vibrations, which may lead to a
coherent effect among the vibrating units and to forma-
tion of some kind of space ordering; it has been suggested
that this is an electretlike state, however, of a metastable
character [8,9].

Furthermore, as is also shown elsewhere [10], a restudy
of the propagation of the excitations in this media, not at
the quantum-mechanical level but at the nonequilibrium
statistical mechanical level that may describe, within
NSOM, the far-from-equilibrium thermodynamic state of
the open system, seems to indicate that beyond the point
of emergence of Frohlich’s effect, polar waves propagate
with a very weak damping. This appears to be of large
interest for an eventual explanation of the effective ener-
gy transfer at the biomolecular level. At normal life-
times, estimated in the picosecond range, vibrations can-
not propagate further than a few micrometers, but
beyond the critical point, as noted, the vibration lifetime
is markedly increased and can propagate energy at long
distances. Therefore, it is of relevance to determine the
time interval (transient time) between the onset of excita-
tion of the modes and the establishment of the steady
state after the threshold for the Frohlich effect: as shown
in the last section it is estimated to be of the order of the
relaxation time to the bath; if the latter is, as expected, in
the tens of picosecond time scale, then the time of the
transient is of the order of a few tens of picoseconds.
Also, the threshold for Frohlich effect, as our estimative
presented in last section shows, may be attained with the
use of the expending of low levels of power, i.e., a exceed-
ingly small fraction of a mol of ATP molecules partici-
pating in energy-providing hydrolysis reactions.

The Frohlich effect is then demonstrated to be present
in biopolymers, like a large chain of protein molecules,
that can sustain polar vibrations—like those originating
in peptide groups. Its occurrence implies that the leading
term for the phenomenon to arise—namely the nonlinear
terms in Eq. (22)—whose origin was the anharmonic
contribution contained in the term H,, of Eq. (2f)—
overcomes the opposing effects of relaxation to the
thermal bath, arising out of H,; and H, of Egs. (2¢c) and
(2d), and the contribution from the anharmonic interac-
tion in H,; of Eq. (2e), which, we recall, has a null contri-
bution in the particular case we used for numerical calcu-
lations. We stress that the Frohlich effect is of purely
quantum-mechanical origin, i.e., the Planckian form of
the mean populations of the vibrations of the bath and
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the zero-point energy of their states: Taking the classical
limit in Eq. (6) results in the cancellation of the nonlinear
Frohlich term. Finally, as shown, .the phenomenon is
dependent on the value of the coupling intensity, i.e., pa-
rameter A, but it may follow even for very small values of
it, and then it is possible under very broad circumstances.

It has been suggested as experimental evidence of the
phenomenon [7] the investigation of the buildup of the
reaction rate of enzyme molecules as a function of the en-
zyme density. In principle, it can be evidenced by direct
observation of the excited vibrations, for example, with
the use of scattering effects, since the intensity of the Ra-
man line is proportional to the population of the mode.
It should be noticed that Raman scattering allows us to
probe only long-wavelength modes, because of the small
value of photon wave number in the visible, IR, and UV
regions of the spectrum. The nonthermal amplification
of polar modes has been determined in several experi-
ments in materials displaying biological activity [27].
Additional possible experimental evidences have been dis-
cussed in Refs. [6], [7], [12], [16], and [28].

In conclusion, we can summarize the result by saying
that, the Frohlich effect, which can be related to impor-
tant biophysical aspects in biopolymers (i) may be of easy
realization (it suffices to have even a very weak nonlinear
anharmonic coupling strength of the type described, and
a weak threshold of pumping power), (ii) is produced very
rapidly after the initial release of the pumping (metabolic)
energy, and (iii) also, as preliminary calculations seem to
indicate [10], once in its domain, signals can be propagat-
ed in the medium with almost no decay, and, then, at
very long distances (the lifetime of the excitation is very
large). Furthermore, it can be shown [10] that the vibra-
tions propagate in a coherent way, and then all the
characteristics for the propagation of biochemical energy
in this kind of biosystem formally resemble the situation
one finds for the case of electromagnetic waves in laser
devices.
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