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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 124, Number 11, November 1996 

COMBINATORICS OF A CERTAIN IDEAL 
IN THE SEGRE COORDINATE RING 

PAULO BRUMATTI, PHILIPPE GIMENEZ, AND ARON SIMIS 

(Communicated by Wolmer V. Vasconcelos) 

ABSTRACT. We focus on a "fat" model of an ideal in the class of the canonical 
ideal of the Segre coordinate ring, looking at its Rees algebra and related 
arithmetical questions. 

1. INTRODUCTION 

Let 6 be the image of the Segre map 

ff 
= Un-i,m-i 

,n-1 X pm-1 ,nm-1 

the so-called Segre variety. As a toric variety, 6 admits k[tisj] (1 < i < n, 1 < 
j < m) as coordinate ring. This ring can be presented over the polynomial ring 
k[X] = k[Xij] (1 < i < n, 1 < j < m) by the ideal I2(Xij) generated by the 2 x 2 
minors of the generic n x m matrix (Xij). It is well known that the canonical class 
of the latter is (m - n)[A], where A C S = k[X]/I2(Xij) is the ideal generated by 
(the residues of) the entries in the first column of the matrix (Xij) (cf. [BV], (8.4)). 

Now, given an integer d > 1, let q[d] denote the ideal generated by the dth 
powers of the generators of A. The main purpose of this paper is to investigate the 
algebraic-combinatorics of the blowup of 6 along the locus Of A[d]. Algebraically, 
we are therefore looking at the Rees algebra of the ideal A[d]. Using the toric 
representation, this algebra is simply the k-subalgebra 

k[ti8j, (t Sl)d T, ... , (tnSl)d T] C k[t, s][T], 
where 1 < i < n, 1 < j < m. Since s1 is fixed in the dth powers, it is not difficult 
to see that this algebra is isomorphic to the k-algebra R[d] = k[tisj, td,... ,td] C 
k[t, s]. 

As it turns out, R[d] is presented over a polynomial ring A = k[X, U], with 
X = {Xij }, U = {U1, ... , Un4, by a sum of determinantal ideals, each generated 
by certain 2 x 2 minors, so our toric variety is a sort of determinantal locus lacking 
the generic codimension. It can be looked at as the generic version of a few classes 
of ideals appearing in the recent literature (cf. [Hu], [HuHu], [Sch] and [MoSi]), 
obtained thereof by specialization and by taking suitable free ring extensions. 
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3286 PAULO BRUMATTI, PHILIPPE GIMENEZ, AND ARON SIMIS 

2. A PSEUDO-DETERMINANTAL LOCUS 

We will fix the following notation: 
Ir(L) the ideal generated by r x r minors of the matrix L. 
t, s sets of (toric) variables t1, . , t, , s,.... , sm over a field k. 
S the coordinate ring k[xij] = k[Xjj]/I2(Xjj) of the Segre embedding. 
q[d] the ideal (row-matrix) in S generated by the dth powers of x1j,... 

Xnl . 

ft[d] the toric ring k[tisj, ti, ... I tn 

M(Y) a monomial in the variables Y. 
M(y) the residue of the monomial M(Y) modulo some ideal. 
M (d, Y) the set (row, ideal) of all monomials of degree d in the variables Y. 
M(d, y) the set of residues of M(d, Y). 

2.1. The defining equations. One needs the following lemmata. In order to 
save on notation, we set sometimes Xi = Xi1,... , Xim and, correspondingly, xi = 

Xij,. . . 

(2.1.1) Lemma. For any pair of indices 1 < i1, i2 < n, consider the involutive 
k-algebra automorphism 4i = 4)il,i2 of the polynomial ring k[Xij] = k[Xi,... , Xn] 
such that 

= Xij if i= i, 
4p(Xi,j) = }Xi,,j if i = i2, 

Xi,j otherwise. 

Then: 

(i) 41 induces an automorphism of S = k[Xij]/I2(Xij). 
(ii) For any two monomials M = M(Xi1), N = N(X1) E k[Xil] of the same 

degree, one has M4il,i2(N) _ jl,i,(M) (mod I2(Xij)). 

Proof. (i) Clearly, the ideal I2(Xij) is invariant under 4'. Since 4' is an involution 
(i.e., 4' = 4-1), it then induces an automorphism of S. 

(ii) One proceeds by induction on the common degree of M and N. The result is 
trivial if M = N, so assume these are distinct monomials. Now write M = Xi,,jl Ml 
and N = Xi1,i2Ni, with ji ?7 i2. Then, with 4' = 4Dij,i2 and by the inductive 
hypothesis: 

M4b(N) = Xi1,J1 X2,J2M14D(N1)) XilJ,2Xi2,Al1(Ni) 

Xt1,12Xi2,J1Ni4(M1) = N(M), 

as required. O 

(2.1.2) Remark. Part (ii) of Lemma (2.1.1) has been used before in different forms 
(cf., e.g., [Gim, Lemme 5.12.1]). 

(2.1.3) Lemma. The first syzygies of the ideal A[d] C S are generated by the first 
syzygies of all pairs {<x,j, x4,}, 1 < ili i2 < n and these are generated by those 
syzygies whose coordinates are terms axM, ae e k and M a monomial. 

Proof. This is a direct consequence of the fact that S is defined by a binomial ideal 
[EiSt, Corollary 1.7 (b)]. O 
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A CERTAIN IDEAL IN THE SEGRE COORDINATE RING 3287 

Here is the basic technical result of this section: 

(2.1.4) Proposition. Let d > 1. The ideal A[d] c S has the following presentation 
as an S-module: 

(A Sn)ec(rnd) [ ] Sn fj Si 

where C(m, d) = (m-l+d) q[d] stands for the map given by the row-matrix 
(Xdl ... Xl) and 14[d] is given by the matrix 

-M(d,x2) -M(d,x3) - -M(d,xn) 0 0 ... O O 
M(d,xi) o ... o -M(d,x3) -M(d,x4) * -M(d,Xn) ... O 

0 M(d,xi) O M(d,X2) 0 0. O ... 0 

I o .. o 0 M(d,X2) ...d,x...) 

0 O ... M(d,xi) 0 0 ... M(d,x2) M(dxn) 

Proof. The containment Im 14[d] C ker q[d] is a straightforward consequence of 
Lemma (2.1.1), (ii). 

For the reverse inclusion, by Lemma (2.1.3) and by an obvious symmetrical 
argument we may assume that we are given a relation of the form 

(2-1) XldM +X2d N 0 (mod 12(Xij)), 

where M and N are terms in k[X]. 
The crucial point is to establish that degX2 M > d. At any rate, one has 

degx2 M > 1, otherwise by setting to zero all the variables in X2, it would fol- 
low that Xd1M E I2(Xij)(i 7& 2) which is absurd. 

We proceed by induction on d, the assertion for d = 1 having just been shown. 
Thus, let d > 2 and assume that degX2 M = do < d. By the preceding, do ? 1, 
hence d - do < d - 1. Write M = MM1, with M E M(do, X2). By Lemma (2.1.1), 
(ii), one has XdMo X do ID12(M), hence (2-1) yields 

-X2dN - Xdo.Xddo M MM1 Xdo.Xdo 12(M)Ml, 

from which it follows that Xfd-do 4Xi2(M)Ml +X2dodN _ 0. Then, by the inductive 
hypothesis we know that degX2 412(M)M1 > d - do > 0. But since 412(M) E 

M(do, X1), we see that degX2 4D12(M)M1 = degX2 M1 = 0, a contradiction. 
Thus, we can write M = MM1, where M E M(d,X2). By Lemma (2.1.1), (ii), 

we have Xd M_ X2d 412(M), from which it follows that XdM =X d 
Using (2-1), one then obtains X2d1(412(M)M1 + N) 0, hence N-= M 
because 12(Xij) is a prime ideal. Since M E M(d, X2), it follows that 112(M) E 
M(d, X1). 

Altogether, one gets 

(M(x)) 1( ) M(X2) E IM V,[d]) 

as was to be shown. L 

Here is the main result of this section. 

(2.1.5) Theorem. Let d > 1 be an integer and let A[d] c S = k[Xij]/I2(Xij) as 
before stand for the ideal generated by the dth powers of the generators of the ideal 
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A of S. Also let Rid] = k[tisj,td... td ]c k[t, s] (I < i < n, I < j < m). Then: 

(i) The ideal A[d] is of linear type. 
(ii) There is a presentation 

R[d] k[X,, X2, . . , Xni U]/ E I2(Li Ii2) 
1<il <i2<n 

where 

L _ rXilXl . .. Xil ,m Uil *M(d - X1 Xi2 ) 
7,1,72 

VXi2,1 . .. Xi2,M Ui2 *M(d - 1 Xi1 J 

with Uil M(d - 1, Xi) designating the row whose entries are the entries of 
M(d - 1, X) multiplied by the variable Ui . 

Proof. (i) We show that the generators x1,d... ,xd1 of A[d] form a d-sequence. For 
that, we use the characterization of such sequences as given in [HSV, Section 6] to 
the effect that 

((xl,... ,xdl): xd1 1) n Ad] = (xll,... ,xd1) for O<s< n-1. 

By Proposition (2.1.4), one sees that 

((Xd. .. Xd ) = ( M(d,xi), M(d,x2), . .. , )) 

hence we are to prove that 

(M(d,xi), M(d,x2), ., M(d,x,)) n (xd1,. ... ,ixd) c (xd. . d. 

Set Ji = (M(d, xi), M(d,X2), * , M(d,x,)) and J2 = (x d X* * 

To compute the above intersection of monomial ideals modulo the binomial ideal 

I2(Xij) we follow the prescription given in [EiSt, Proof of Corollary 1.6]: choose a 
monomial order on the polynomial ring A = k[Xij] and take the standard mono- 
mials mod I2(Xij); then, M(x) c A/I2(Xij), the set of residues of the standard 
monomials, is a vector space basis of A/I2(Xij); next, one takes a vector space 
basis J1 (resp J2) of J1 (resp. J2) modI2(Xij) which is contained in M(x); at the 
outset, J1 n J2 is a vector space basis of the ideal J1 n J2. 

Now, in the present case, choosing a suitable order, the 2 x 2 minors already 
form a Gr6bner basis of the ideal I2(Xij) (cf., e.g., [Stu]). Therefore, a monomial 
in M(x) is characterized by the property that it involves indeterminates belonging 
to one and only one row or to one and only one column of the matrix (xij). It 
follows from this that 

j1 ( U (r, xi) U d3 M(xJ) I 1 < i < s, 1 < j < m} 

\r>d 

is a vector basis of J1, where M(xJ) designates a monomial involving only variables 
along the jth column. 

By a similar token, 

32 = {4M(xj), Xd4M(x,) I I < i < n} 

is a vector basis of J2, where M(xi) designates a monomial involving only variables 
along the ith row. One clearly has Ji n 32 = {fxdAM(xi), xdM(xi) I1 < i < s } 
Therefore, the ideal J1 n J2 is generated by {4 ,d 7 1 1 < i < S}, as was to be shown. 
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(ii) By part (i), the canonical surjection SR([d]) zq[d]) is an isomorphism, 
where S(A[d]) and g(A[d]) denote the symmetric and the Rees algebra of the ideal 
A[d], respectively. On the other hand, by Proposition (2.1.4), S(A[d]) admits the 
presentation that is being proposed for R[d]. Therefore, it suffices to show that R[d] 
is isomorphic to Z(A[d]). Clearly, 

R(.q[d] ) _ SL[q[d]T] - k[tisj, (t sl)dT, .. (tnsl )d T] C k [t , s] [T]. 

Since sd is a common factor throughout the terms tdsldT and these have a fixed de- 
gree, we see that there is an isomorphism k[ti,sj, td.... tn] k[tis3, (ttsi)dT,... I 
(tnSI )dT] *I 

2.2. Hilbert function data of R[d]* The reader is referred to [HUT] and [STV] 
for the background needed in this portion. Again, one considers the Segre ring 
S = k[X]/12(X), which will be thought of as the current base ring. By Theorem 
(2.1.5), R[d] is isomorphic to the Rees algebra of the ideal A(d] C S and, moreover, as 
such, it has a natural structure of standard bigraded k-algebra, its presentation ideal 
over S being bihomogeneous with respect to the two sets of variables X = {Xij} 
andU={U1,... ,Un7}. 

Consider an Nn+1-gradation on S[U] by setting 

S[U](ao,ai,... ,a,) := SaoUla1 * ... Unan 

Let >- be the graded lexicographic order on the monoid Nn+l. It induces a filtration 
Y on S[U], with Ya := b>-aS[U]b, hence also on the residue ring Rf[d] - S[U]/J 
which we still denote by F. Letting J* denote the ideal generated by the initial 
forms of J, one has gr,,((R[d])) - S[U]/J* as bigraded k-algebras. 

By Proposition (2.1.4) (or by the proof of Theorem (2.1.5), (i)) and [HUT, 
Lemma 1.1], one obtains 

= (M(d, xi) U2, (M(d, xl), M(d, X2)) U3, ... * (M(d, xi),... , (d, Xn1)) Un) 

(2.2.1) Proposition. With the preceding notation and considering R[d] and 

gr,F((R[d])) as N-graded rings (via the homomorphism N2 -* N, (a, b) X-+ a + b), 
one has: 

(i) R[d] and gr,,((R[d] )) admit the same Hilbert function. 
(ii) The multiplicity of R[d] is 

e(R[d]) z ndi( Z j -l) 
j=O 

Proof. (i) This is easy and holds quite generally. 
(ii) We apply [HUT, Theorem 1.4] (or rather, its recipe), for which we first check 

its hypotheses. In the present situation, they boil down to the equalities 

dimS/Ij=dimS-j, 1<j<n-1, 

where Ij = (M(d,xi),... ,M(d,xj)). To verify these, we show that htIj - j for 
1 < j < n - 1 (recalling that S is Cohen-Macaulay). For every such j, consider the 
prime ideal 

Pj = ({Xkl 11 < k < j, 1 < 1 < m}) + 12({Xk/l t i + 1 < k' < n, 1 < 1 < m}) 
= (fXl..I Xj}4; + 2 \ fXj..I Xj 1) C k[X] 
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Clearly, PjS is a prime as well and contains Ij. It follows that 

ht I3 < ht P3S = htP3 -ht I2(X) 

= ht({X1, ... ,Xj}) + htI2(X \ {X1, ... , Xj})-(n-1)(m-1) 
= jm + (n-j-1)(m-1)-(n-1)(m-1) = j 

On the other hand, it is easy to see that every prime ideal of S containing Ij already 
contains PjS. This leads to ht Ij = j, as required. 

We now compute the multiplicity e(S/1j) by the associativity formula. By the 
above calculation, this formula reduces to 

e(S/Ij) = i(Sp s/Iips)e(S/PjS). 

To simplify the notation, set P = Pj, I = Ij. Observe that the ideal PSps/Ips is 
generated by the images of the variables X11,... , Xj1. Indeed, typically, XklXnl,- 
XklXnl 0 (mod I2(X)). Since Xn1 is invertible, the image of Xkl belongs to 
the ideal generated by the image of Xkl, for 1 < k < j. The above length is then 
given by the number of monomials {X" ** 1 < ak < d- 1 < k < j}. This 
number is clearly di. 

Next, one has S/P4S = k[X]/P - k[X \ {X1 ... ,Xj}]/12(X \ {X1, ... Xj ) 
which is a Segre ring of size (n - j) x m. Therefore, e(S/P) = (mTn-j -h2) by a 
well-known formula (cf., e.g., [STV, Remark 2.5]). 

To piece everything together, [HUT, Theorem 1.4] tells us that e(R[d]) - 

n;'i1 e(S/Ij), hence we are through. [1 

(2.2.2) Remark. By Proposition (2.2.1), (i), it is in principle possible to compute 
the Hilbert function of R[d], but it is hardly the case that it may be of any uselfuness 
here. Thus, for example, dim R[dl = m + n follows directly from the fact that R[d] 
is a Rees algebra of an ideal in the m + n - 1-dimensional domain S. 

3. THE DEFINING EQUATIONS OF THE SPECIAL ALGEBRA 

As above, let I = 1[d] C k[X, U] denote the presentation ideal of the k-algebra 
R[d] and let I = IS[U] C S[U], an ideal generated in bidegree (d, 1). We consider 
the Rees algebra ls1u (I): geometrically, one is looking at the blowup of the 
product 6 x pn-71 along the subvariety B#r(6), where K denotes the subvariety of 
6 defined by the ideal A[d]. 

The special algebra (or fiber cone algebra) of an ideal (resp. homogeneous 
ideal) a in a local (resp. positively graded) ring A is the residue ring F(a) := 
7ZA(a)/mJZA(a), with m standing for the maximal (resp. maximal graded) ideal of 
A. 

We will take A = S[U] and a = I. As it will turn out, .F(I) is a nice determi- 
nantal locus which, in the case where n = 2, is the coordinate ring of a Veronese 
variety. The reason for that is a far more reaching principle which may have an 
independent interest outside the scope of the present work. 

(3.1) Theorem. Let X, Y be mutually independent sets of variables over a field k 
of characteristic zero, with X and Y having the same number of elements, and let 
fi,... , fr be homogeneous polynomials in the X-variables, of the same degree. Let 
U, V be two additional variables and set A = k[fV - 4(f1)U, ... , frV - 4'I(fr)U] C 
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k[X, Y, U, V], where 4J as in Lemma (2.2.1) denotes the involutive k-isomorphism 
Xi -+ Yi. Then 

k[fil ... I,fr] A/A n I2(X, Y) k[X, Y, U,V] 
as graded k-algebras, where I2(X, Y) denotes the ideal of k[X, Y] generated by the 
2 x 2 minors of the generic matrix whose rows are X and Y. 

Proof. Let T1,... ,Tr be presentation variables over k for both algebras. It will 
suffice to show that they have the same presentation ideal. We show, namely, that 
any homogeneous polynomial relation of one of the two algebras is a polynomial 
relation of the other. We need the notion of polarization. 

Consider a polynomial ring k[T, U] in two sets of indeterminates T = T1, . . . , Tr 
and U = U1,.. , Ur. Clearly, k[T, U] is a free k[U]-module with basis the mono- 
mials in T. 

(3.2) Definition. The polarization of T by U is the (unique) k[U]-homomorphism 
P of the k[U]-module k[T, U] such that P(1) = 0 and 

P(Ta) = > ajUjTal ... ?Tla' ... Tfr 
aj AO 

for T' = Tlal . . Tar 

One sets Po(Ta) Ta and P1(Ta) = P1_1(P(Ta)). Next, consider the k- 
algebra homomorphism T': k[T,U] -4 k[fl ,... I fr, I(fi)I... , 4(fr)] such that 
T'(Tj) = fj, F'(Uj) = 1(fj), and let T denote the restriction of T' to k[T]. 

Let F(T) = Ea aaTa E k[T] be a homogeneous polynomial of degree t, with 
a = (ai,... ,ar), lal = t and Ta = Tlal . -Tra,, and let s denote the common 
degree of the f's. We claim that XsT'(P(F(T))) _ tYlsT(F(T)) (mod I2(X,Y)). 
Indeed, it follows from Lemma (2.2.1) that, for a given term OeaTa of F(T) (aa #4 0), 
one has 

V(P(T ))--(ai(a) + ... + ar)4>(fi (a))fi fa j . .. fara 

where ai(a) 8 0, ai = 0 (i < i(a)) (mod 12(X, Y)). By summing up over all terms 
of F(T), one obtains 

fi(a) a()-1 ai(a)+1.. a 'I'(P(F(T))) _ t Eota4>(fi()fi) \ fza(i() .. . f ar (mod 12 (X Y)) 
I(a) i(a)+1l J a 

Again by Lemma (2.2.1), one has XlsD(fj) = YlSfj. Substituting yields the desired 
result. 

Next, by iterating the polarization, one easily gets 

(3-1) X's ' (Pi (F(T)))- Ylls TI(F(T)) (mod 12 (X, Y)) 1 ~ ~ -(t -l)! 

where Pi(F(T)) = 0 if I > t. 
On the other hand, a computation yields 

t 

F(fi V - (fi)U,... I frV - (fr)U) = Z(- 1) "(Pi (F(T))) Vt1Uul. 
1=0 

Using (3-1) with I = t, one gets 

XIsF(fiV - (D(fi)U,... XfrV - 'I(fr)U) _ g I(F(T)) (mod 12(X, Y)), 
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where 
t t 

g-= Z(-1)'t X(t-l)St!lsVt 
1=0( (tl) 1 1s Vt- U' fI2(X,Y)[X,Y,U,V]. 

One concludes that F(fiV - (fi)U, ... , frV - 4(fr)U) E 12(X, Y)[X, Y, U, V] if 
and only if xI(F(T)) E i2(X,Y)[X, Y, U,V] vn k[X] = (0). 

This finishes the proof. [ 

(3.3) Corollary. Notation as in the beginning of the section. Moreover, let n = 2. 
Then .F(I) is isomorphic to the homogeneous coordinate ring of the duple Veronese 
model of PDm-1. In particular, F(I) is normal and Cohen-Macaulay. 

Proof. By Proposition (2.2.3), F(I) k[M,], where M, runs through the mono- 
mials of degree d in the variables X. O 
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