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We have investigated the effects of disorder correlations on light propagation and Anderson localization in
one-dimensional dispersive metamaterials. We consider and compare the cases where disorder is uncorrelated
to situations where it is totally correlated and anticorrelated. The photonic gaps of the corresponding periodic
structure are not completely destroyed by the presence of disorder, which leads to minima in the localization
length. In the vicinities of a gap, the behavior of the localization length depends crucially on the physical origin
of the gap (Bragg or non-Bragg gaps). Within a Bragg gap, the localization length increases as the degree of
disorder increases, an anomalous behavior that only occurs for the uncorrelated and completely correlated cases.
In these cases, minima of the localization length at the positions of Bragg gaps are shifted by increasing disorder,
which does not occur for the anticorrelated case, where the positions of the minima remain unaltered. Minima in
the localization length corresponding to non-Bragg gaps are not shifted by increasing disorder, albeit the widths
of these minima are changed. We have found that the asymptotic behavior for the localization length ξ ∝ λ6 for
disordered metamaterials is not affected by correlations. Finally, we have investigated the role of absorption on the
delocalized Brewster modes and argue that it could be mitigated in light of the state-of-the-art of metamaterials
research.
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I. INTRODUCTION

After more than 50 years of the pioneer work of Anderson,1

strong localization remains a lively topic of research. This can
be partly explained by its interdisciplinary character and by
the many aspects remaining to be understood. On the one
hand, the concept of Anderson localization, an interference
wave phenomenon originally conceived as the vanishing of
electronic diffusion in disordered systems, was extended to
classical wave systems. Without being hampered by interac-
tions, as in electronic systems, Anderson localization has been
observed in classical wave systems, such as microwaves, light,
and ultrasound.2 The impact of disorder on light propagation
and localization in photonic crystals has been investigated both
theoretically and experimentally.3 In quantum systems, Ander-
son localization has recently been observed in Bose-Einstein
condensates.2 As a result, Anderson localization is today
a truly interdisciplinary topic, and important contributions
have emerged from different areas, ranging from condensed
matter, photonics, acoustics, atomic physics, and seismology.
On the other hand, a complete understanding of Anderson
localization is still far from being achieved, especially in higher
dimensions (d > 1), both in quantum and classical systems.
While in the former the interplay between interaction and
localization effects remains a challenge, in the latter, the roles
of absorption,4–6 gain,7 and polarization8 are the subject of
intense research.

The interest in Anderson localization has also been aroused
by the development of new materials supporting (classical
and quantum) wave propagation in disordered systems. For
electronic systems, the investigation of Anderson localization
in graphene has revealed a wealth of new physics and

stimulated a lively debate.9 For classical systems, and for
light in particular, the rapid progress in the new field of
metamaterials also leads to interesting peculiarities in Ander-
son localization. Metamaterials, which are artificial structures
with electromagnetic properties that can be engineered, can
exhibit negative refraction,10 resolve images beyond the
diffraction limit,11 exhibit optical magnetism,12,13 act as an
electromagnetic cloak,14,15 and yield slow light propagation.16

The presence of negative refraction in one-dimensional (1D)
disordered metamaterials strongly suppresses Anderson lo-
calization due the lack of phase accumulation during wave
propagation, thus weakening interference effects necessary for
localization;17,18 this mechanism leads to an unusual behavior
of the localization length ξ at long wavelengths λ, ξ ∝ λ6

instead of the well-known19 ξ ∝ λ2 asymptotic behavior.
More recently, it was established20 that other routes to

suppress Anderson localization of light in one-dimensional
disordered metamaterials are possible through a combination
of oblique incidence and dispersion. The effects of polarization
and oblique incidence on light propagation in disordered meta-
materials were also treated in Ref. 21. On the one hand, oblique
incidence allows a polarization-induced delocalization effect,
known as Brewster anomalies,22 to set in for one-dimensional
disordered structures; on the other hand, metamaterials are
necessarily dispersive to ensure positiveness of the electromag-
netic energy density.23 Reference 20 demonstrates that, indeed,
for specific combinations of angle of incidence and frequency,
Brewster anomalies are present (for both states of polarization,
and not necessarily in the negative refraction regime), thus
effectively delocalizing light. It was also established that the
λ6 asymptotic behavior of the localization length does not
hold for sufficiently large angles of incidence. Finally, it was
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demonstrated that delocalization associated with the Brewster
anomaly may occur in the frequency region corresponding to
the very edge of a band gap of the periodic structure.20

Notwithstanding the wide range of new aspects of Anderson
localization of light, unveiled by the presence of metamaterials,
consideration of the effects of correlation on disorder has not
been addressed in this context so far. Correlated disorder
is generally known to induce an anomalous delocalization
in 1D systems,24–26 for which the vast majority of states is
localized in the case of uncorrelated disorder.19 While the
effect of correlations in disordered photonic crystals has been
investigated in Ref. 3, the impact of disorder correlations in
metamaterials exhibiting negative refraction remains, as far as
we know, unexplored.

The purpose of this paper is thus to investigate Anderson
localization and light propagation through randomly perturbed
1D photonic heterostructures composed of alternating layers
of nondispersive right-handed (RH) materials (labeled A)
and dispersive left-handed (LH) metamaterials (label M). By
allowing for dispersion of both dielectric permittivity and
magnetic permeability of the M layers, together with oblique
incidence, we will establish the impact of disorder correlations
and anticorrelations in light propagation through disordered
metamaterials exhibiting negative refraction.

This paper is organized as follows. Section II is devoted
to the description of the model and of the methodology. In
Sec. III, the results are presented and discussed, while Sec. IV
is reserved for a summary of conclusions.

II. MODEL

We model our system as a stack of alternating layers
of air (εA = μA = 1) and of a Drude-type metamaterial,
with responses for the dielectric permittivity and magnetic
permeability of the M layer given as27

εM (ω) = ε0 − ω2
e

ω2
, μM (ω) = μ0 − ω2

m

ω2
, (1)

such that νe = ωe/(2π
√

ε0) and νm = ωm/(2π
√

μ0) are the
frequencies associated with the electric and magnetic plasmon
modes, respectively. The electric and magnetic plasma fre-
quencies are ωe

p = ωe/
√

ε0 and ωm
p = ωm/

√
μ0, respectively.

We have followed previous work27 and use ε0 = 1.21 and
μ0 = 1.0 in Eq. (1). Disorder is introduced by allowing the
widths of the A and M components at the j th layer to
fluctuate around their respective mean values a and b: aj =
a + δA

j and bj = b + δM
j , where the random variables δ

A,M
j

are homogeneously distributed in the interval [−	/2,	/2].
Here, we take a = b = 12 mm and ωe = ωm = 6π GHz.
The localization length ξ is calculated numerically using the
standard definition19

ξ−1 = − lim
L→∞

〈
ln |T |

L

〉
, (2)

where T is the transmission coefficient and L is the total stack
length L = ∑N

j=1(aj + bj ), with N being the total number of
double layers; 〈. . .〉 denotes configurational average.

The transmission coefficient is given by28

T = 2Z

Z(M22 + M11) − Z2M12 − M21
, (3)

where Z = cos θ , with θ being the angle of incidence, and the
elements of the transfer matrix Mij are defined as

M =
[

M11 M12

M21 M22

]
, M =

N∏
j=1

M(A)
j M(M)

j , (4)

with

M(x)
j =

[
cos qxx if −1

x sin qxx

ifx sin qxx cos qxx

]
, x = A,M (5)

qx = (ω/c)ux(ω,θ ), ux(ω,θ ) ≡
√

εx(ω)μx(ω) − sin2 θ ; for
incident transverse electrical (TE) and transverse magnetic
(TM) waves, the coefficients fx are

f TE
x = ux(ω,θ )

μx(ω)
, f TM

x = ux(ω,θ )

εx(ω)
. (6)

For an infinitely periodic structure without disorder, Eqs. (5)
and (6) lead to the dispersion relation

cos(kd) = cos(qAa) cos(qMb) − F+
2

sin(qAa) sin(qMb), (7)

where F± = (fA/fM ) ± (fM/fA), with fx corresponding to
TM or TE waves; d = a + b is the period of the system and k

is the Bloch wave vector along the direction of the axis of the
periodic photonic crystal.

The numerical simulations are supplemented by a gener-
alization (to the case of oblique incidence) of an analytic
expression for ξ derived by Izrailev and Makarov (IM) for
bilayered photonic structures,29 valid for weak disorder (small
fluctuating widths in our case)

ξ−1 = F 2
−

8d sin2(kd)

[
q2

Aσ 2
A sin2(qMb) + q2

Mσ 2
M sin2(qAa)

− 2qAqMσAM sin(qAA) sin(qMM) cos(kd)
]
, (8)

where

σ 2
A = 〈

δ2
A

〉
, σ 2

M = 〈
δ2
M

〉
, σAM = 〈δAδM〉. (9)

It is important to mention that Eq. (8) was obtained by the
inverse of the Lyapunov exponent.29 For the vast majority of
one-dimensional disordered systems, the localization length
and the inverse Lyapunov exponent coincide. A unique
exception so far is a random structure composed of alternate
layers of positive and negative refractive materials, where it has
been recently shown that the inverse Lyapunov exponent and
the localization length may differ by a numerical prefactor
in the long-wavelength limit.18 For homogeneous random
perturbations with the same amplitude on both layers, one
has σ 2

A = σ 2
M = 	2/12. In the case of uncorrelated disorder,

σAM = 0. For completely correlated disorder, where the
widths of both layers of the double stack are simultaneously
changed by the same amount, σAM = 	2/12. For completely
anticorrelated disorder, when the total width of the double
stack is constant, we take σAM = −	2/12.
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III. RESULTS AND DISCUSSIONS

First, it is instructive to compare the analytical IM ap-
proximation for the localization length ξ [Eq. (8)] with
the numerical simulations [Eq. (2)]. Figure 1 exhibits the
normalized localization length as a function of frequency,
calculated using both methods, for the cases of uncorrelated
and correlated disorder, and incidence angle θ = π/6. It is
important to mention that we have confirmed in the numerical
simulations that the system is self-averaging, i.e., the behavior
of ξ calculated from a single realization of disorder for a system
made up of a sufficiently large number of layers does not differ
significantly from that obtained through Eq. (2), considering
many disorder realizations for a system not so large. We have
considered 100 realizations of the system consisting of 5000
double layers.

In Ref. 20, we mentioned briefly that the IM approximation
fails in the cases of moderate to strong disorder, as expected;
we now take a closer look at this. From Fig. 1(a), we see that
the IM approximation leads to dips in the localization length
at three different frequencies. The lowest one corresponds to

FIG. 1. (Color online) Comparison between the localization
length (in units of the system size), given by the IM approximation
[Eq. (8)] (open red squares) and numerical simulations with 	 =
24 mm (open black circles), as a function of normalized frequency for
an angle of incidence θ = π/6 and TE polarization: (a) uncorrelated,
and (b) correlated disorder. The horizontal dashed line marks the
transition from Anderson localized to delocalized situations.

the vanishing of the average refraction index of the periodic
structure 〈n(ω)〉 = 0, which occurs when

anA(ω) + bnM (ω) = 0, (10)

where nx = √
εx(ω)μx(ω) (x = A,M) is the refractive index

of each stack composing the double layer; from now on,
we will refer to this as the 〈n(ω)〉 = 0 gap. For the specific
case of Fig. 1(a), this dip occurs at ω/ωm

p ≈ 0.67. Our
numerical simulations show that this behavior is an artifact
of the approximation, as it becomes a shoulder; in the
correlated case [Fig. 1(b)], the IM approximation predicts
a smooth behavior at this frequency, while the simulations
show a dip. The localization length also dips at the so-called
plasmon-polariton gaps, which correspond to the excitation
of electric and magnetic (for incident TM and TE waves,
respectively) plasmon polaritons;30 they only show up at
oblique incidence (θ 
= 0) at frequencies for which μM (ω) = 0
for TE waves, and εM (ω) = 0 for TM waves, so that this
takes place at ω/ωm,e

p = 1. For these gaps, we note that the
agreement between the IM approximation and the simulations
is good for both uncorrelated and correlated disorder, even for
an extremely large random perturbation (	 = 24 mm). The
most serious disagreement between the IM approximation
and simulations lies in the behavior at, and near, the Bragg
gap, which in the present case occurs at ω/ωm

p ≈ 2.5; we
will discuss their behavior with disorder strength below. The
peaks in the localization length correspond to Brewster modes,
which, for dispersive magnetic metamaterials, can occur for
both TM and TE modes, and at the vicinities of a band
gap.20 Figure 1 indicates that the IM approximation correctly
predicts the positions in frequency for the occurrence of a
Brewster mode at a given incidence angle. Within the IM
approximation, the Brewster anomalies correspond to the
situation where the localization length diverges, which occurs
at the zeros of the function F−, defined below Eq. (7).
Since the IM approximation breaks down near two of the
gaps (even for small values of the disorder strength), from
now on we calculate the localization length using solely
numerical simulations; nonetheless, the fact that the IM
approximation correctly predicts the positions of the Brewster
anomalies justifies the use of Eq. (8) to discuss this
effect.

In Fig. 2, we show the localization length ξ as a function of
2πc/ω [which from now on we will refer to as the (vacuum)
wavelength λ] for normal incidence θ = 0 and for four
different values of the disorder strength 	. Figure 2 illustrates
that the asymptotic behavior ξ ∝ λ6, in the long-wavelength
limit, remains valid for the cases of totally correlated dis-
order and anticorrelated disorder, similar to what occurs
for the uncorrelated case.17,18,20 This anomalous behavior
is in contrast to what is generally expected for disordered
systems,19 and results from the lack of phase accumulation
as light propagates through stacks alternating positive and
negative refraction.17,18,20 It is important to emphasize that
this asymptotic behavior does not occur for sufficiently large
incidence angles.20

In Fig. 3, the localization length for uncorrelated disorder
and oblique incidence is shown as a function of frequency
for different disorder strengths 	 for both TM and TE
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FIG. 2. (Color online) Localization length ξ (in units of the
system size) as a function of the vacuum wavelength λ, obtained from
numerical simulations, for different values of the disorder strength
	 = 0.5, 6, and 12 mm. The case of anticorrelated disorder is also
shown (	 = 24 mm). The dashed line corresponds to the asymptotic
behavior ξ ∝ λ6. The horizontal dashed line marks the transition from
Anderson-localized to delocalized situations.

polarizations. It is clear that the gaps corresponding to perfectly
periodic systems are not completely washed out, even for sig-
nificantly large disorder strengths (e.g., 	 = 12 mm), resulting
in dips of the localization length. However, for the strongly
disordered case 	 = 24 mm, the Bragg gap is completely
destroyed. The overall effect of increasing 	 is to decrease ξ ,
as expected, except at the vicinities of photonic band gaps. For
the Bragg gaps occurring in the region of positive refraction of
the metamaterial, one can see that the increase of 	 results in
an increase of ξ , in contrast to what is generally expected. This
anomalous effect has already appeared in Ref. 3; we attribute it
to the fact that, within the Bragg gap of the periodic structure,
disorder weakens the interference effect, which suppresses
light transmission. As a result, light transmission is enhanced
within Bragg gaps and consequently ξ increases. It is also
important to notice that the position of the Bragg gaps shifts
toward smaller frequencies as 	 increases. This phenomenon
occurs because modifying 	 implies changing the width of
the double stack, hence altering the interference conditions
necessary for the formation of a Bragg gap. As a result, the
Bragg gaps will show up at different frequencies for different
values of 	. By comparing Figs. 2(a) and 2(b), one can notice
that this shift is more evident for TM polarization than for the
TE one. This fact can be explained since, for TM polarization,
the localization length maxima associated with the Brewster
anomaly occur far from the Bragg gap.

For gaps whose origin does not rely on the geometry
of the structure, such as the plasmon-polariton gap, the
effect of disorder on ξ is different. Indeed, from Fig. 3,
it is clear that the position of the plasmon-polariton gap
at ω/ωp = 1 is not modified by the presence of disorder
since, within our model, disorder is only incorporated on
the widths of the stacks, and not on the optical properties.

FIG. 3. (Color online) Localization length ξ (in units of the
system size), obtained by numerical simulations, as a function of
the normalized frequency for uncorrelated disorder and for different
values of the disorder strength 	 = 0.5, 6, 12, and 24 mm for both
(a) TE and (b) TM polarizations. The incidence angle is θ = π/6. The
horizontal dashed line marks the transition from Anderson-localized
to delocalized situations.

Except for very large disorder strengths (	 = 24 mm),
the value of ξ is not significantly altered by increasing the
degree of disorder within the plasmon-polariton gap. At the
plasmon-polariton gap edges, ξ decreases as 	 increases, as
expected, leading to a widening of the gap. Similarly, the
〈n(ω)〉 = 0 gap is not significantly affected by the presence of
disorder: it occurs at approximately the same frequencies as
for the corresponding perfectly ordered structure, obtained by
condition (10). Disorder tends to slightly deform 〈n(ω)〉 = 0
gaps, making them shallower and wider. Even strong disorder
does not obliterate it completely. The reason for the robustness
of this non-Bragg gap is exactly the uncorrelated nature of
disorder. However, as it will be shown below, the impact
of correlated and anticorrelated disorder in the behavior of
〈n(ω)〉 = 0 gaps is different from the uncorrelated case. From
Fig. 3, it is possible to notice that the position of the Brewster
modes are not affected by increasing 	. Again, this can be
explained by our model of disorder, in which the randomness
is included in the widths of the stacks and not in the optical
properties.
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FIG. 4. (Color online) Localization length ξ (in units of the
system size), obtained by numerical simulations, as a function of
the normalized frequency for correlated disorder and for different
values of the disorder strength 	: (a) TE and (b) TM polarizations;
the parameters used are the same as in Fig. 3.

Data for the case of totally correlated disorder are shown
in Fig. 4, for both TM and TE polarizations. Again, it is
possible to notice that the photonic gaps are not completely
obliterated by the presence of not so large disorder strengths.
While the robustness of the plasmon-polariton gap against
disorder can be explained by the absence of disorder in the
optical properties, the preservation of the 〈n(ω)〉 = 0 gap is a
consequence of the fact that the widths of both metamaterial
and air are chosen to be equal. Indeed, the average of the
refractive index on the j th air-metamaterial double stack is

〈n(ω)〉(j ) = nA(ω)
(
a + δA

j

) + nM (ω)
(
b + δM

j

)
a + b + δA

j + δM
j

, (11)

where nx(ω) = √
εx(ω)μx(ω). For the completely correlated

disorder, one has δA
j = δM

j , and taking a = b, one immedi-
ately gets 〈n(ω)〉(j ) = [nA(ω) + nM (ω)]/2, so that the average
refraction index of the double stack does not depend on
disorder. As in the case of uncorrelated disorder, ξ exhibits
an anomalous behavior in the vicinities of the Bragg gap: ξ

increases as 	 increases. Far from the original gaps of the
corresponding periodic structure, ξ decreases as 	 increases.
If compared with the situation of totally uncorrelated disorder

FIG. 5. (Color online) Localization length ξ (in units of the
system size), obtained by numerical simulations, as a function of
the normalized frequency for anticorrelated disorder and for different
values of the disorder strength 	: (a) TE and (b) TM polarizations;
the parameters used are the same as in Fig. 3.

(Fig. 3), one can see that the overall effect of introducing
correlations in disorder is to enhance delocalization in regions
far from the original gaps, as expected.

In Fig. 5, ξ is displayed as a function of frequency for the
case of anticorrelated disorder and for distinct values of the
disorder strength 	. Since a = b and δA = −δM , the width of
the double-stack air-metamaterial remains constant (equals to
2a) as 	 varies. As a result, the interference conditions nec-
essary for the formation of a Bragg gap, being sensitive to the
width of the double stack, are hardly affected by increasing 	,
even for large 	 (	 = 24 mm). This also explains why Bragg
gaps are more robust against disorder in the anticorrelated
case, in comparison with both uncorrelated and completely
correlated cases. On the other hand, it is exactly this feature
that leads to the destruction of minima corresponding to the
non-Bragg 〈n(ω)〉 = 0 gaps. Figure 5 also shows that, except
for very large values of the disorder strength (	 = 24 mm),
both the 〈n(ω)〉 = 0 and the plasmon-polariton gaps are not
completely destroyed by the presence of disorder.32–35

We now discuss how absorption affects the behavior
of the localization length. Absorption may be introduced
phenomenologically in the current Drude-type model through
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FIG. 6. (Color online) Localization length ξ (in units of the
system size), obtained by numerical simulations, as a function of
the normalized frequency for uncorrelated disorder, TE polarization,
and different values of the absorption coefficient γ /ωp = 0, 0.0001,
and 0.001. The horizontal dashed line marks the transition from
Anderson-localized to delocalized situations.

the replacement ω2 → ω(ω + iγe,m), where γe,m are the
electric and magnetic loss factors. Attributing different, though
realistic, values for the absorption loss factors, we resort to
numerical simulations to calculate the frequency dependence
of ξ ; the results are displayed in Fig. 6. While regions far from
Brewster modes are hardly affected by absorption, one can see
that absorption is detrimental to the Brewster modes, as well
as to the delocalized high-frequency region. Nevertheless, the
peaks in the localization length are not washed out completely,
especially those near the 〈n(ω)〉 = 0 gaps. For this reason, we
conclude that delocalization effects at the very edge of the
band gap might be observable, especially if one considers the
existing mechanisms to mitigate losses in metamaterials, such
as the inclusion of gain36,38 and the use of optical-parametric
amplification.37

IV. CONCLUSIONS

We have considered the impact of three kinds of disorder,
namely, uncorrelated, correlated, and anticorrelated, on light
propagation through 1D disordered structures composed of al-
ternating layers of nondispersive and dispersive metamaterials;
the disorder consists in allowing for randomness in the layer
widths. In order to appreciate the effects of disorder, we recall
that the otherwise nonrandom structure displays the following
three gaps for light propagation, in order of decreasing
frequency: the usual Bragg gap, the plasmon-polariton gap
(which only occurs for oblique incidence, and is a consequence
of the excitation of electric and magnetic plasmon polaritons,
for incident TM and TE waves, respectively), and the 〈n(ω)〉 =
0 gap (i.e., the one occurring at a frequency leading to a

vanishing average index of refraction); for frequencies away
from these gaps, all modes are propagating (see, e.g., Refs. 30
and 31). In general, the localization length dips at the Bragg
gap, but the evolution with disorder strength is quite distinct,
depending on the nature of disorder. For both the uncorrelated
and the correlated cases, the dips at the Bragg gap broaden
as the strength of disorder increases; for the TE modes, the
dips hardly shift in frequency, but are completely washed out
for sufficiently large disorder, while for the TM modes, the
shift toward smaller frequencies is pronounced, but a signature
of the dip survives until larger disorder strength. Further,
within the Bragg gap in these cases, the localization length
increases as the degree of disorder increases, in contrast to
what is generally expected. For the anticorrelated case, the dip
hardly broadens with increasing disorder, although its depth
decreases; also, there is no noticeable shift in frequency, up to
the largest values of disorder we considered.

Due to the geometrical nature of the Bragg gap, the
frequency at which it occurs is more sensitive to the disorder
strength than the nongeometrical ones; however, this does not
hold for the anticorrelated case since an overall periodicity
of the structure is restored when the double layer is taken as
the repeating unit. Indeed, we have found that the non-Bragg
gaps are much more robust against disorder of the three kinds
considered here: only for the largest values of disorder some
broadening becomes noticeable. In summary, the effect of
correlated disorder on the behavior of the localization length
depends crucially on the physical origin of the gap and on the
type of disorder.

On the other hand, delocalization effects occur at the
Brewster modes, which result from the vector character
of electromagnetic waves. For uncorrelated, correlated, and
anticorrelated cases, the frequency at which these anomalies
occur does not depend on the disorder strength. This result
shows that disorder, intrinsically present in the fabrication
processes of photonic structures, does not prevent a possible
exploration of the Brewster anomaly in applications. We have
also established that correlations in disorder do not modify the
asymptotic behavior of the localization length. Finally, we have
investigated the role of absorption, and found that it tends to
suppress delocalized Brewster modes; nonetheless, we argue
that they may not hinder the developments of applications,
especially in light of the state-of-the-art of metamaterials
research.
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