

Density of Infimum-Stable Convex Cones Author(s): João B. Prolla Source: Proceedings of the American Mathematical Society, Vol. 121, No. 1 (May, 1994), pp. 175-178 Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2160379</u> Accessed: 02/12/2014 13:08

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

DENSITY OF INFIMUM-STABLE CONVEX CONES

JOÃO B. PROLLA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let X be a compact Hausdorff space and let A be a linear subspace of $C(X; \mathbb{R})$ containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in $C(X; \mathbb{R})$. We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny.

Let X be a compact Hausdorff space and let $C(X; \mathbb{R})$ the space of all continuous real-valued functions be endowed with the sup-norm. Let A be a linear subspace of $C(X; \mathbb{R})$, containing the constant functions. Let

$$A_m = \{ \inf(f_1, \dots, f_n); f_i \in A, 1 \le i \le n, n \in \mathbb{N} \}, A_M = \{ \sup(f_1, \dots, f_n); f_i \in A, 1 \le i \le n, n \in \mathbb{N} \}.$$

Then A_m (resp. A_M) is a convex conic inf-lattice (resp. sup-lattice), and McAfee and Reny [3] proved that $\overline{A_m} = \overline{A_M} = C(X; \mathbb{R})$ if and only if A separates points from probability measures, in the case X is a metric space. Our aim is to give a simpler proof of the above result, which is valid even without the restriction of X being a metric space. The proof is based on the classical Choquet-Deny Theorem (see Choquet-Deny [1] or Nachbin [4, §21]). We present the proof of an improved version of this result (see Theorem 1). Our proof follows closely the arguments of Nachbin [4].

Let us recall that a subset S of $C(X; \mathbb{R})$ is called an *inf-lattice* (resp. suplattice) or *infimum-stable* (resp. supremum-stable) subset if $f, g \in S$ implies $f \land g \in S$ (resp. $f \lor g \in S$). Here $(f \land g)(x) = \inf(f(x), g(x))$ and $(f \lor g)(x) = \sup(f(x), g(x))$, for all $x \in X$. On the other hand, $S \subset C(X; \mathbb{R})$ is a convex cone if and only if $f, g \in S$ and $\lambda \ge 0$ imply $f + g \in S$ and $\lambda f \in S$.

Lemma 1. Let $S \subset C(X; \mathbb{R})$ be an infimum-stable subset and, for each point $x \in X$, let $P_x = \{f \in C(X; \mathbb{R}); f \ge 0, f(x) = 0\}$. Then

$$\overline{S} = \bigcap \{ \overline{S - P_x} \, ; \, x \in X \}.$$

Proof. For each $x \in X$, we have $0 \in P_x$. Hence $\overline{S} \subset \overline{S - P_x}$, for each $x \in X$. Conversely, assume that $f \in \overline{S - P_x}$, for each $x \in X$. Let $\varepsilon > 0$ be given. For each $x \in X$, there are $g_x \in S$ and $h_x \in P_x$ such that $||g_x - h_x - f|| < \varepsilon$

©1994 American Mathematical Society 0002-9939/94 \$1.00 + \$.25 per page

Received by the editors August 20, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B28.

 $\varepsilon/2$. Let $V_x = \{t \in X; h_x(t) < \varepsilon/2\}$. Then V_x is open and contains x. By compactness, there are $x_1, \ldots, x_n \in X$ such that $X = V_{x_1} \cup \cdots \cup V_{x_n}$. Let $g = \inf\{g_{x_1}, \ldots, g_{x_n}\}$. Then $g \in S$. Let $t \in X$. Then, for each $j = 1, \ldots, n$, we have

$$g_{x_i}(t) \ge g_{x_i}(t) - h_{x_i}(t) > f(t) - \varepsilon/2.$$

Hence $g(t) > f(t) - \varepsilon$. On the other hand, there is some index *i* such that $t \in V_{x_i}$, and then $h_{x_i}(t) < \varepsilon/2$ and $g(t) \le g_{x_i}(t)$ imply $g(t) - \varepsilon/2 < g_{x_i}(t) - h_{x_i}(t) < f(t) + \varepsilon/2$. Hence $g(t) < f(t) + \varepsilon$. Therefore $||f - g|| < \varepsilon$ and $f \in \overline{S}$. \Box

Lemma 2. Let φ be a nonzero continuous linear form on $C(X; \mathbb{R})$ and let $x \in X$. If φ is positive on $P_x = \{f \in C(X; \mathbb{R}); f \ge 0, f(x) = 0\}$, there is $r \in \mathbb{R}$ such that r < 0 and $\varphi \ge r\delta_x$.

Proof (Nachbin [4, §21]). Assume that $\varphi(f) \ge 0$ for all $f \ge 0$ such that f(x) = 0. Let

$$B = \{ f \in C(X; \mathbb{R}); f \ge 0, f(x) = 1 \}.$$

For any $f \in B$, notice that $g = f - \inf(1, f)$ belongs to P_x . Hence $\varphi(g) \ge 0$ and so $\varphi(f) \ge \varphi(\inf(1, f))$. Now $0 \le \inf(1, f) \le 1$ and therefore $|\varphi(\inf(1, f))| \le ||\varphi||$. Hence $\varphi(f) \ge -||\varphi||$, for all $f \in B$. Let $r = -||\varphi||$.

Let $f \ge 0$ be given in $C(X; \mathbb{R})$. If f(x) > 0, then $\varphi(f/f(x)) \ge r$ and so $\varphi(f) \ge rf(x)$. If f(x) = 0, then $f \in P_x$ and so $\varphi(f) \ge 0 = rf(x)$. Hence, $\varphi \ge r\delta_x$. \Box

If $S \subset C(X; \mathbb{R})$ is an infimum-stable convex cone, let $\Gamma(S)$ be the set of all pairs (x, φ) , where x belongs to X and φ is a positive linear form on $C(X; \mathbb{R})$, such that

$$\varphi(g) \leq g(x)$$
, for all $g \in S$.

Let $\widehat{K}(S)$ be the set of all functions $f \in C(X; \mathbb{R})$ such that $\varphi(f) \leq f(x)$, for all $(x, \varphi) \in \Gamma(S)$. With this notation, the following improved version of the Choquet-Deny Theorem is true.

Theorem 1. Let $S \subset C(X; \mathbb{R})$ be an infimum-stable convex cone. Then $\overline{S} = \widehat{K}(S)$.

Proof. It is easy to see that $\widehat{K}(S)$ is a closed subset containing S. Hence $\overline{S} \subset \widehat{K}(S)$.

Conversely, let $f \in C(X; \mathbb{R})$ be such that $f \notin \overline{S}$. By Lemma 1, there exists some $x \in X$ such that $f \notin \overline{S-P_x}$. Since $S-P_x$ is convex, by the Hahn-Banach Theorem there is a nonzero continuous linear form ψ on $C(X; \mathbb{R})$ and $c \in \mathbb{R}$ such that $\psi(g-h) \leq c < \psi(f)$ for all $g \in S$ and $h \in P_x$. Since $0 \in S$, we have $\psi(-\lambda h) \leq c$, for all $\lambda > 0$. Dividing by λ and letting $\lambda \to \infty$ we get $\psi(h) \geq 0$, for all $h \in P_x$. By Lemma 2, there is $r \in \mathbb{R}$ such that r < 0 and $\psi \geq r\delta_x$. Then $\varphi = \delta_x - r^{-1}\psi$ is positive. Since $0 \in P_x$, we have $\psi(g) \leq c < \psi(f)$, for every $g \in S$. Hence

$$\varphi(g) - g(x) = -r^{-1}\psi(g) \le -r^{-1}c < -r^{-1}\psi(f) = \varphi(f) = f(x)$$

Since $\lambda g \in S$, for all $\lambda > 0$, we have $\varphi(\lambda g) - \lambda g(x) \leq -r^{-1}c$. Dividing by λ and letting $\lambda \to \infty$, we get $\varphi(g) - g(x) \leq 0$, for all $g \in S$. On the other hand,

 $0 \in S$ implies $0 = \varphi(0) - 0 \le -r^{-1}c < \varphi(f) - f(x)$, and so $f(x) < \varphi(f)$. Hence $f \notin \widehat{K}(S)$. \Box

Corollary 1. Let $S \subset C(X; \mathbb{R})$ be an infimum-stable convex cone. Then S is uniformly dense if and only if the following is true: for every $f \in C(X; \mathbb{R})$, one has $\varphi(f) \leq f(x)$ whenever $(x, \varphi) \in \Gamma(S)$.

Let us recall that A is said to separate points from probability measures if for any probability measure μ on X, and any $x \in X$, such that $\mu(g) = g(x)$, for all $g \in A$, then necessarily $\mu = \delta_x$, the Dirac measure at x.

Theorem 2. Let A be a linear subspace of $C(X; \mathbb{R})$ such that $1 \in A$. Then A_m is uniformly dense if, and only if, A separates points from probability measures. *Proof.* Let $S = A_m$. Then S is an infimum-stable convex cone.

 (\Rightarrow) Assume \ddot{S} is dense, and let $x \in X$ and μ a probability measure on X be given such that $f(x) = \mu(f)$, for all $f \in A$. Then $g(x) \ge \mu(g)$, for all $g \in S$. Let $h \in C(X; \mathbb{R})$. By Theorem 1, $h(x) \ge \mu(h)$ and $-h(x) \ge \mu(-h)$. Hence $h(x) = \mu(h)$. This shows that A separates points from probability measures.

 (\Leftarrow) Conversely, assume that the subspace A separates points from probability measures. Let $(x, \varphi) \in \Gamma(S)$. For each $g \in A$, both g and -g belong to $\widehat{K}(S)$, since $A \subset S$, and therefore $g(x) = \varphi(g)$, for all $g \in A$. The fact that $1 \in A$, implies $1 = 1(x) = \varphi(1)$. Therefore φ is a probability measure on X, and then $f(x) = \varphi(f)$, for all $f \in C(X; \mathbb{R})$. Hence $\widehat{K}(S) = C(X; \mathbb{R})$ and by Corollary 1, S is uniformly dense. \Box

Corollary 2. Let A be a linear subspace of $C(X; \mathbb{R})$ such that $1 \in A$. Then $\overline{A_m} = \overline{A_M} = C(X; \mathbb{R})$ if, and only if, A separates points from probability measures.

Proof. This follows from Theorem 2 and the fact that $A_M = -(-A)_m =$ $-A_m$. \Box

Remark 1. Let us recall the notion of the *Choquet boundary* of a linear subspace A of $C(X; \mathbb{R})$, denoted by $\partial_A X$. By definition,

$$\partial_A X = \{ x \in X ; A(x) = \{ \delta_x \} \}$$

where $A(x) = \{\mu \in \Delta; \mu(g) = g(x), \text{ for all } g \in A\}$, and Δ is the set of all probability measures on X.

Theorem 3. Let A be a linear subspace of $C(X; \mathbb{R})$ such that $\mathbf{1} \in A$. The following are equivalent:

- (1) $\overline{A_m} = \overline{A_M} = C(X; \mathbb{R}).$
- (2) A separates points from probability measures.
- (3) $\partial_A X = X$.

Proof. By Corollary 2, (1) \Leftrightarrow (2). (2) \Rightarrow (3) Let $x \in X$ be given. Let $\mu \in A(x)$. Then $\mu(g) = g(x)$, for all $g \in A$. Since A separates points from probability measures, this implies that $\mu(f) = f(x)$, for all $f \in C(X; \mathbb{R})$, i.e., $\mu = \delta_x$. Hence $x \in \partial_A X$, and so $X = \partial_A X$

(3) \Rightarrow (2) Let $f \in C(X; \mathbb{R})$ be given. Let $x \in X$ and $\varphi \in \Delta$ be such that $\varphi(g) = g(x)$, for all $g \in A$. Then $\varphi \in A(x)$. Since $x \in \partial_A X$, it follows

177

that $\varphi = \delta_x$. Hence $\varphi(f) = f(x)$, and A separates points from probability measures. \Box

Remark 2. The equivalence $(1) \Leftrightarrow (3)$ is due to Flösser, Irmisch, and Roth [2]. (See Example 4.2 of [2].) Since the equivalence $(2) \Leftrightarrow (3)$ is almost obvious, the paper [2] gives an alternative proof of the equivalence $(1) \Leftrightarrow (2)$.

References

- 1. G. Choquet and J. Deny, Ensembles semi-réticulés et ensembles réticulés de fonctions continues, J. Math. Pures Appl. 36 (1957), 179-189.
- 2. H. O. Flösser, R. Irmisch, and W. Roth, *Infimum-stable convex cones and approximation*, Proc. London Math. Soc. (3) **42** (1981), 104–120.
- 3. R. P. McAfee and P. Reny, A Stone-Weierstrass theorem without closure under suprema, Proc. Amer. Math. Soc. 114 (1992), 61-67.
- 4. L. Nachbin, *Elements of approximation theory*, Van Nostrand, Princeton, NJ, 1967; reprinted by Krieger, Huntington, NY, 1976.

DEPARTMENT OF MATHEMATICS, IMECC, UNICAMP, CAIXA POSTAL 6065, CAMPINAS, BRAZIL *E-mail address*: prolla@ime.unicamp.br