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DENSITY OF INFIMUM-STABLE CONVEX CONES

JOAO B. PROLLA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let X be a compact Hausdorff space and let 4 be a linear subspace
of C(X;R) containing the constant functions, and separating points from
probability measures. Then the inf-lattice generated by A is uniformly dense in
C(X; R) . We show that this is a corollary of the Choquet-Deny Theorem, thus
simplifying the proof and extending to the nonmetric case a result of McAfee
and Reny.

Let X be a compact Hausdorff space and let C(X; R) the space of all con-
tinuous real-valued functions be endowed with the sup-norm. Let A be a linear
subspace of C(X; R), containing the constant functions. Let

Am ={inf(fi, ..., fn); fi€ed, 1<i<n, neN},
Ay ={sup(fi,..., fa); fi€A, 1<i<n, neN}L

Then A,, (resp. Ay) is a convex conic inf-lattice (resp. sup-lattice), and McAfee
and Reny [3] proved that 4,, = Ay = C(X; R) if and only if A separates
points from probability measures, in the case X is a metric space. Our aim
is to give a simpler proof of the above result, which is valid even without
the restriction of X being a metric space. The proof is based on the classi-
cal Choquet-Deny Theorem (see Choquet-Deny [1] or Nachbin [4, §21]). We
present the proof of an improved version of this result (see Theorem 1). Our
proof follows closely the arguments of Nachbin [4].

Let us recall that a subset S of C(X; R) is called an inflattice (resp. sup-
lattice) or infimum-stable (resp. supremum-stable) subset if f, g € S implies
fAg €S (resp. fVg € S). Here (fAg)(x) = inf(f(x), g(x)) and (fVg)(x) =
sup(f(x), g(x)), for all x € X. On the other hand, S Cc C(X; R) is a convex
coneif and only if f, g€ S and A >0 imply f+ g€S and Af€S.

Lemma 1. Let S ¢ C(X; R) be an infinmum-stable subset and, for each point

xeX,let PL,={feCX;R); f>0, f(x)=0}. Then
S=({S-P:;xeXx}

Proof. Foreach x € X, we have 0 P,. Hence Sc S — P, foreach x € X .

Conversely, assume that f € S — P,, for each x € X. Let ¢ > 0 be given.
For each x € X, there are g, € S and h, € P, such that ||gy — A — f|| <
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176 J. B. PROLLA

e/2. Let Vi = {t € X; he(t) < €/2}. Then Vy is open and contains X .

By compactness, there are Xx;, ..., X, € X such that X =V, U---UV,, . Let
g=inf{gy,,..., &,}. Then g€ S. Let t € X. Then, foreach j=1,...,n,
we have

ng(t) > ng(t) - hxj(t) > f(t) —¢/2.
Hence g(t) > f(t) —&. On the other hand, there is some index i such that
t € Vy,, and then hy(f) < &/2 and g(t) < gx,(t) imply g(¢) — &/2 < gx,(t) —
hy,(t) < f(t) + €/2. Hence g(t) < f(t) +&. Therefore || f - gl < & and
feS. O

Lemma 2. Let ¢ be a nonzero continuous linear form on C(X;R) and let
x € X. If ¢ is positive on P, = {f € C(X;R); f >0, f(x)=0}, thereis
r €R such that r <0 and ¢ > rd.
Proof (Nachbin [4, §21]). Assume that ¢(f) > 0 for all f > O such that
f(x)=0. Let
B={feC(X;R); f20, f(x)=1}

For any f € B, notice that g = f —inf(1, f) belongs to Px. Hence ¢(g) >
0 and so ¢(f) > ¢(inf(1, f)). Now 0 < inf(1, f) < 1 and therefore
le(inf(1, f))| < ll¢|l. Hence ¢(f) > —|l¢||, forall f€ B. Let r=—|lg|.

Let f >0 be givenin C(X; R). If f(x) >0, then ¢(f/f(x)) > r and so
o(f)>rf(x). If f(x)=0,then f€ P and so ¢(f)>0=rf(x). Hence,
p>rd. O

If S ¢ C(X;R) is an infimum-stable convex cone, let I'(S) be the set of -
all pairs (x, ¢), where x belongs to X and ¢ is a positive linear form on
C(X; R), such that

p(g) < g(x), forallges.

Let K (S) be the set of all functions f € C(X; R) such that ¢(f) < f(x), for
all (x, ¢) € I'(S). With this notation, the following improved version of the
Choquet-Deny Theorem is true.

Theorem 1. Let S C C(X; R) be an infimum-stable convex cone. Then S =
K(S).

Proof. Tt is easy to see that K (S) is a closed subset containing S. Hence
ScK(s).

Conversely, let f € C(X; R) be such that f ¢ S. By Lemma 1, there exists
some x € X such that f ¢ S— P.. Since S — Py is convex, by the Hahn-
Banach Theorem there is a nonzero continuous linear form y on C(X; R)
and c € R such that w(g—h) <c < y(f) forall g€ S and & € P . Since
0 €S, we have w(—Ah) < c, for all A > 0. Dividing by 4 and letting 1 — oo
we get w(h) > 0, for all & € P,. By Lemma 2, there is » € R such that
r<0 and y > rd,. Then ¢ = J, — r~ly is positive. Since 0 € P, , we have
v(g) <c<wy(f), forevery g €S. Hence

0(g)—glx)=-r"y(g) < —rle<—rly(f) =o(f) = f(x).

Since Ag € S, for all A > 0, we have ¢(Ag) —Ag(x) < —r~!c. Dividing by 4
and letting A — oo, we get ¢(g)— g(x) <0, forall g € S. On the other hand,

This content downloaded from 143.106.108.153 on Tue, 2 Dec 2014 13:08:28 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

DENSITY OF INFIMUM-STABLE CONVEX CONES 177

0 €S implies 0 = ¢(0) -0 < —r~lc < o(f) — f(x), and so f(x) < o(f).
Hence f ¢ K(S). O '

Corollary 1. Let S C C(X; R) be an infimum-stable convex cone. Then S is
uniformly dense if and only if the following is true: for every f € C(X; R), one
has o(f) < f(x) whenever (x, ¢) € I'(S).

Let us recall that A4 is said to separate points from probability measures if
for any probability measure 4 on X, and any x € X, such that u(g) = g(x),
for all g € A, then necessarily i = Jy , the Dirac measure at x .

Theorem 2. Let A be a linear subspace of C(X ; R) such that 1€ A. Then Ay,
is uniformly dense if, and only if, A separates points from probability measures.

Proof. Let S = Ay, . Then S is an infimum-stable convex cone.
(=) Assume S is dense, and let x € X and u a probability measure on

X be given such that f(x) = u(f), forall f€ 4. Then g(x) > u(g), for all
ge€S. Let he C(X;R). By Theorem 1, A(x) > u(h) and —h(x) > u(-h).
Hence h(x) = u(h). This shows that A separates points from probability

measures. .
(<) Conversely, assume that the subspace A separates points from proba-

bility measures. Let (x, ¢) € I'(S). For each g € 4, both g and —g belong
to I?(S) , since A C S, and therefore g(x) = ¢(g), forall g € A. The fact
that 1 € 4, implies 1 = 1(x) = ¢(1). Therefore ¢ is a probability measure
on X, and then f(x)=¢(f), forall f€ C(X; R). Hence I?(S) =C(X; R)
and by Corollary 1, S is uniformly dense. O

Corollary 2. Let A be a linear subspace of C(X;R) such that 1 € A. Then
Am = Ay = C(X; R) if and only if, A separates points from probability mea-
sures.

Proof. This follows from Theorem 2 and the fact that Ay = —(—A4), =
-A,. O

Remark 1. Let us recall the notion of the Choquet boundary of a linear subspace
A of C(X; R), denoted by 84X . By definition,

94X ={x € X; A(x) = {0x}}
where A(x) = {u € A; u(g) = g(x), for all g € A}, and A is the set of all
probability measures on X .

Theorem 3. Let A be a linear subspace of C(X; R) such that 1 € A. The
Jfollowing are equivalent :

(1) 4y =14 =C(X;R).

(2) A separates points from probability measures.

(3) o X=X.
Proof. By Corollary 2, %@ (2).

(2) = (3) Let x € X be given. Let u € A(x). Then u(g) = g(x), for all
g € A. Since A separates points from probability measures, this implies that
u(f) = f(x), forall fe C(X;R), ie, u =9Jdx. Hence x € 94X, and so

X=0,X.
(3) = (2) Let fe€ C(X;R) begiven. Let x € X and ¢ € A be such that
p(g) = g(x), for all g € A. Then ¢ € A(x). Since x € 94X, it follows
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that ¢ = J,. Hence ¢(f) = f(x), and A separates points from probability
measures. 0O

Remark 2. The equivalence (1) < (3) is due to Flosser, Irmisch, and Roth [2].
(See Example 4.2 of [2].) Since the equivalence (2) < (3) is almost obvious,
the paper [2] gives an alternative proof of the equivalence (1) < (2).
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