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Coherent population trapping in intersubband photocurrent spectra
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We present results from numerical simulations of the photocurrent generated by intersubband optical transitions
in a double quantum well coupled with a continuum of extended states. The photocurrent spectra are obtained
directly from the time-dependent Schrödinger equation for the coherent regime without any adjusting parameters
in the calculations other than the ones that define the physical system, also in a nonperturbative way and without
basis-set expansions or truncations. A realistic representation of a three-level system in the Lambda (“�”)
configuration is investigated when two bound states in each quantum well are coupled by exciting fields via
an excited quasibound state. Resonance between the exciting fields and the quantum states leads to coherent
effects such as Rabi-dressed states, electromagnetically induced transparency, and population trapping, which
are investigated in terms of the photocurrent spectral changes; that is, the coherent optical dynamics can be seen
from the photocurrent signal. An excitation scheme involving two-photon absorption was proposed to produce
the population-trapping effects using only one exciting field.
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I. INTRODUCTION

The process of optical excitation is often described by
two-level systems driven by external fields.1 Nowadays, with
the advances in the growth of semiconductor structures,
the coherent dynamics of the optical excitation has been
experimentally observed with astonishing details2–5 in solid-
state systems. Semiconductor quantum dots and quantum wells
are some of these systems due to their well-separated energy
levels and improved optical qualities. Besides, they have a
great advantage over similar optical systems, such as atomic or
impurity level states, in which traditionally the coherent optical
excitation has been investigated, since their optoelectronic
properties can be tailored by structural design.

Not only the two-level systems are good models for
the coherent optical excitation dynamics, but other few-
level systems have fulfilled the role, especially when the
dynamics investigated has nonlinear behavior, such as happens
in intense excitation regimes.6 As common examples are
the models of three-level systems in vee (“V”) or Lambda
(“�”) configurations, which show a very rich dynamics when
multiresonances are set in. Very often, photonic cavities
enclosing the semiconductor few-level system contribute in
the investigations by improving both frequency selection
and intensity enhancement of the exciting fields.7 Optical
cavity fields have also been used to couple spatially separated
quantum dots.8

A very common theoretical framework to deal with these
multilevel systems is based on the solutions of the optical
Bloch equation for the density matrices, ih̄

dρ

dt
= [H,ρ] +

decay terms.1,9 The density-matrix components give both the
occupation (diagonal) terms and the coherence (off-diagonal)
terms, and different decay mechanisms can be incorporated
as well. However, a weakness in this framework is in the
limitation of the number of states accounted for usually
motivated from practical reasons.

In realistic systems, as the quantum dots and wells men-
tioned above, the ground state is usually taken as the vacuum
state |0〉 and the excited states are excitonic states, that is,

Coulomb bound electron-hole pairs. Many-exciton complexes
(e.g., biexcitons) or charged excitons (e.g., trions) can also
be treated as excited states in these multilevel models. Exper-
iments in strain-free quantum dots have recently addressed
these exciton complexes.10 Multilevel systems are equally
well suitable to treat intersubband (intraband) transitions,
for instance, as those between adjacent quantized energy
states in the conduction band of semiconductor quantum
dots or quantum wells. For intersubband transitions, due to
the proximity in energy of the states (typically a few tens
of meV), the excitation must be in the range of infrared
radiation or terahertz oscillating fields. This has been a
challenge, in comparison with the optical excitations in the
interband (valence-to-conduction band) transitions, mainly
due to the difficulty of generating and manipulating these
lower-frequency waves. Nonetheless, progress has been made
and the coherent dynamics in intersubband transitions has been
observed.11

In the present work we have investigated the excitation
dynamics within the subband structure of a realistic system
without relying on few-level models. Instead, we have calcu-
lated directly from the time-dependent Schrödinger equation
for the wave functions the excitation from the fundamental
state to excited states. The exciting field was taken as a classical
oscillating electric field whose frequency was controlled to
allow spectral resolution in the energy-absorbing dynamics.
The photocurrent was calculated as a response signal to access
the dynamics. The coupling of the excited states with the
continuum of extended states generates the current, and the
same coupling also plays the role of a decaying channel for
the occupation of the excited states. Additionally, a pair of
exciting fields was used to introduce coupling of bound states
spatially apart, and coherent population trapping, Rabi-dressed
states, and electromagnetically induced transparency could be
observed in the photocurrent signal. Although our simulations
could tailor the time dependence of the exciting fields, we
preferred to focus primarily on the spectral analysis of the
effects hoping to furnish new elements and motivate further
experimental studies which are easily done in frequency
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domain. It was found that the photocurrent spectra present
anticrossings associated with the strongly driven resonances,
and since our treatment was nonperturbative, we were able
to simulate a new proposal for attaining population trapping
using only one exciting field.

II. THEORY

The system investigated is depicted in Fig. 1(a). It consists
of a double quantum well having at its left-hand side a
potential barrier to avoid electron current directed toward
the left, and at the right-hand side there is a continuum of
extended states separated by a thin potential barrier from the
wells. Similar systems were investigated both theoretically12

and experimentally13 from the optical-property point of view.
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FIG. 1. (Color online) (a) Schematics of the double quantum well
investigated. The potential barrier at the left and the thin (2 nm)
barrier at the right-hand side are at 100 meV, the wells (left 6-nm-,
right 5-nm-wide) are at −190 meV, the barrier (30 nm) between
the wells and the continuum at the right-hand side are at 0 meV.
(b) System with an additional potential barrier on the right-hand
side showing seven bound states |i〉, i = 1, . . . ,7. The table at the
bottom shows the energies, transition energies, and dipole moment
of the transitions. Eigenstates were calculated numerically using the
split-operator method with imaginary-time propagation, as detailed
in Ref. 16.

They are also similar to structures proposed to work as
infrared photodetector (QWIP),14 therefore specially designed
to generate photocurrent.15 The material’s parameters are taken
from GaAs, with the electron effective mass m = 0.067m0,
m0 being the free electron mass. The energy offsets are
shown in the caption of Fig. 1 and they can be set as in
GaAs/AlxGa1−xAs structures for Al concentration on the order
of 30%. If we replace the continuum at the right by a barrier
similar to the one at the left, the system exhibits seven bound
states, two of them localized in each well [states |1〉 and |2〉 in
Fig. 1(b)]. The states |3〉 to |7〉 become quasibound states when
the continuum is reconsidered into the system as in Fig. 1(a).
Nonetheless, states |3〉 to |7〉 give us an idea of which energy
levels are more strongly coupled with the continuum. The table
at the bottom of Fig. 1 gives the eigenenergies for the system
in Fig. 1(b), as well as the transition energies and the dipole
moments 〈i|x|j 〉 = ∫

ψ∗
i (x)xψj (x)dx. These moments give

the coupling strength between the states |i〉 and |j 〉 by an
electric field oscillating along the system axis (x direction).
Note the very small coupling between the states |1〉 and
|2〉 (〈1|x|2〉 = 0.002 nm) as a result of the large separation
between the wells (30 nm). On the other hand, states |1〉 and
|2〉 show a much larger degree of coupling with the excited
states |3〉 to |7〉.

Within the effective-mass approximation for a one-
electron problem in the conduction band, the following one-
dimensional Hamiltonian is used:

H = − h̄2

2m

d2

dx2
+ V (x) − exF1 sin(�1t)

− exF2 sin(�2t), (1)

where the electron effective mass m is taken as uniform
throughout the system, V (x) is the potential due to the material
band offsets, and F1 (F2) is the amplitude of the applied electric
field oscillating with frequency �1 (�2).

The ground state of the system in Fig. 1(a) is calculated
within a split-operator method16 first without the application of
exciting fields, and it is used as the initial state �(x,0) = 〈x|1〉
to be advanced in time under the full Hamiltonian [Eq. (1)].
For an infinitesimal time increment �t , the time evolution can
be obtained from

�(x,t + �t) = e−iH�t/h̄�(x,t). (2)

Since such operation cannot be done exactly, approximations
are needed to evolve the wave function, and we have used

e−i(T +V )�t/h̄ = e−iV �t/2h̄e−iT �t/h̄e−iV �t/2h̄ + O(�t3), (3)

where T and V are, respectively, the kinetic and potential
(including the electric field terms) operators shown in the
Hamiltonian [Eq. (1)]. Equation (3) is a unitary operation
which gives stability to the method within an error of order
O(�t3). Successive applications of this procedure can evolve
the initial wave function to a given time t . Details of the
numerical procedure are given in Ref. 16.

Under the action of the exciting field, the initial state �(x,0)
can be excited in energy and it can couple with the continuum,
mainly via the quasibound states |3〉 to |7〉, to create a particle
current flowing toward both sides of the structure. The barrier
located at the left-hand side favors most of the current to be
directed toward the right for the excitation energies (i.e., field
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frequencies �) used. It is important to stress the fact that the
states |i〉, i = 2, . . . ,7, calculated and shown in Fig. 1(b) are
not used in our analysis. Only the time evolution of one state,
�(x,t), is needed.

The current is calculated15 at given points xc = xL (xR) in
the left(right)-hand side region by the expression

Jc(t) = �
(

h̄

im
�(x,t)∗

∂�(x,t)

∂x

) ∣∣∣∣
x=xc

, (4)

with c = L or R, from which the integrated current is obtained

I =
∫ T

0
[JR(t) − JL(t)]dt. (5)

From now on we refer to this current as “photocurrent,” which
is calculated as a function of the excitation energy (i.e., field
frequency �), yielding the photocurrent spectra we discuss in
the remainder of this work.

Our numerical method utilizes hard-wall boundary con-
ditions; that is, the wave functions vanish at the boundaries
of the system.16 This causes reflections at the boundaries and
produces interference effects in the current. We have employed
exponential imaginary-potential barriers17 in the boundary
regions in order to minimize current reflections.18

III. RESULTS AND DISCUSSION

A. One-field photocurrent spectra

The photocurrent spectrum in Fig. 2(a) shows a series
of peaks for the transitions starting in the initial state |1〉,
being enhanced by the quasibound states |i〉, i = 3, . . . ,7, and
tunneling to the continuum. The bound state |2〉, localized in
the narrower quantum well at the right, does not participate
since its dipole element with the initial state is very small (cf.
Fig. 1). The energy positions of the peaks in Fig. 2(a) agree
well with the transition energies shown in the table of Fig. 1.
Besides, higher energy peaks appear broader as one would
expect due to their shorter lifetimes (stronger coupling with
the continuum). This can be better seen in Fig. 2(b), which
shows the same graph but now in logarithm scale.

A technical point should be discussed here. In Eq. (5), the
current J (t) is integrated in time from t = 0 to a certain upper
limit t = T . Since the system is initialized with one electron
occupying the state |1〉, and the action of the oscillating field
is accumulative in time, for very long times the state can
be completely ionized such that I achieves an upper bound
value, no longer dependent on T . However, this limiting case
occurs at different times for different excitation energies in
the photocurrent spectra, since each excitation energy has a
given coupling strength between the states involved in the
transition. The amplitude F1 of the exciting field also plays
a similar role, since stronger fields ionize faster the initial
state. We therefore have to decide which value of T to use
for all excitation energies, for a given field amplitude, when
computing the photocurrent spectra.

In Fig. 2(d) it is shown the photocurrent peak maximum
for the transition 1–4 as function of the field amplitude, fixing
T = 13 ps (Note that this value for T is much larger than
the oscillating field period, which is about 30 fs for transition
energies around h̄� ∼ 150 meV. Also, the time step in the
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FIG. 2. (Color online) (a) Field-induced current (photocurrent)
as function of the exciting field frequency (energy = h̄�1) for a field
amplitude of 4 kV/cm. Peak labels 1–n indicate transitions from the
initially occupied state |1〉 to the final quasibound state |n〉. (b) The
same as in (a) but in logarithm scale. (c) Photocurrent peak 1–4 for
different amplitude of exciting field showing saturation effects. (d)
Peak 1–4 maximum (in log scale) as function of field amplitude. The
inset shows the same in linear scale.

numerical simulations is 0.8 fs. It can be seen from the log
scale a quadratic dependence of the current peak with the field
amplitude, for F1 lower than ∼3 kV/cm, which corresponds
to a linear dependence of the photocurrent with the field
intensity (power). However, for F1 larger than 3 kV/cm,
there is a saturation of the peak maximum indicating complete
ionization (in fact, there is additionally some Rabi oscillation
contributing to this saturation, which will be discussed in
connection with Fig. 3). We decided to set the value of T ,
for a given field amplitude F1, such that the strongest peak
in the spectrum just starts to show saturation (i.e., complete
ionization). In the case of Figs. 2(a) and 2(b), F1 = 4 kV/cm
and T = 13 ps were used. In Fig. 2(c) it is shown the saturation
effect on the peak 1–4 for T = 13 ps and increasing values
of F1. Notice that, as the peak saturates with increasing
field amplitude, the transitions on the shoulders of the peak
follow the same trend, resulting in the broadening of the
whole spectrum. We better avoid this “spurious” broadening
by controlling T and F1. This saturation-induced broadening
can be considered spurious in specific experimental situations
in which the initial state |1〉 is always occupied by electrons
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FIG. 3. (Color online) Time dependences calculated at the res-
onant condition for the transition between the initial state |1〉 and
the quasibound state |4〉. (a)–(d) Occupation of the initial state, as
defined in Eq. (6), and (e)–(h) time-integrated current I (T ), as in
Eq. (5), as functions of time for different intensities of the exciting
field. The inset shows the current J (t), defined in Eq. (4), whose
integral I (T ) = ∫ T

0 J (t)dt yields (g). The fast oscillation in J (t) is
amplified in the upper part of the inset showing the current response
to the exciting field oscillation at a period of about 30 fs.

given by some charge source, such as doping impurities, in
which case the saturation discussed here for the photocurrent
is not so easily achieved.

The spectra shown in Fig. 2 are the photocurrent integrated
in time according to Eq. (5). It is interesting to see the time
dependence which was hidden by the integration, and this
is shown in Fig. 3. In Figs. 3(a), 3(b), 3(c), and 3(d), the
occupation of the initial state |1〉 as function of time is shown
for different amplitudes of the exciting field F1. The occupation
is defined as the probability of finding the system state, at time
t , in the initial state 〈x|1〉 = φ1(x); that is,

ρ11(t) =
∣∣∣∣
∫

φ∗
1 (x)�(x,t) dx

∣∣∣∣
2

. (6)

In these panels we observe the initial occupation decaying as
result of the ionization by the oscillating field, yielding the
photocurrent J (t), whose integral I (T ) = ∫ T

0 J (t)dt is shown
on the panels at the right-hand side [Figs. 3(e), 3(f), 3(g), and
3(h)] as a function of T . For increasing field amplitudes the
decay of ρ11 is more accentuated. For the intensities F1 =
8 and 12 kV/cm, ρ11 oscillates since the states |1〉 and |4〉

become coherently coupled by the exciting field. These are
the Rabi oscillations which in the present case are damped by
the tunneling of the initially bound state to the continuum. In
Fig. 2 we have used T = 13 ps and F1 = 4 kV/cm and note
that this value of T is the one in which the initial state just
ionizes [Fig. 3(b)] and the current I saturates [Fig. 3(f)].

An interesting fact is that the Rabi oscillations seen in the
time evolutions of Fig. 3 have not given any signature on
the photocurrent spectrum, as we can see, for example, in
Fig. 2(c) for increasing field amplitude. Rabi oscillations can
give a doublet in the absorption or transmission spectra with
peaks separated by the Rabi frequency �R = μF1/h̄ (μ as
the dipole moment), but no splitting of the photocurrent peaks
were observed. In reality, only a small contribution to the
saturation of I had to do with the Rabi oscillations, which was,
however, hidden by the faster ionization. In an experimental
condition with many electrons in the initial state, as already
mentioned, possibly given by doping, this saturation can be
obscured and not observed. Nonetheless, Rabi oscillations
were already measured in photocurrents for a single quantum
dot in a photodiode.4 In this case, the photocurrent oscillated
for increasing amplitude of the exciting field, which was
pulsed in time (1 ps width): Every time the amplitude matched
the π -pulse condition (complete inversion of the two-level
system) the photocurrent attained a maximum value. For our
simulation, the strong coupling to the continuum is causing a
fast decay of the initial state and it is preventing the observation
of similar effect for increasing field intensities. Notice that
we could simulate a case in which the decay rate to the
continuum would be weaker just by making the potential
barrier at the right-hand side of the system [see Fig. 1(a)]
thicker as we wish. Also, we could adjust the time duration of
the exciting field to produce any desirable condition, such as
π pulses. Instead of investigating these degrees of freedom in
the time domain, as we have pointed out in the Introduction,
we preferred to simulate a cw excitation condition (i.e.,
long-lived exciting field) and explored the frequency domain
changes introduced by the coherent excitation dynamics in the
photocurrent spectra.

B. Two-field photocurrent spectra

The use of a second exciting field creates new and richer
excitation dynamics for the system investigated. So far, with
only one exciting field, we were basically field driven a
two-level system which had an excited state coupled with the
continuum. This coupling had a dual role since it introduced a
decaying rate and it allowed for the generation of photocurrent
which was our response signal for the dynamics. The bound
state localized in the right-hand side well, state |2〉, has not
participated in the dynamics so far. A second exciting field
can be used to drive this state. By choosing the frequencies
of the two exciting fields properly, we can set a condition
for a three-level system in the � configuration, that is, the
coupling between the states |1〉 and |2〉 can be done by the two
fields via an intermediary excited state, for instance, one of the
quasibound states |i〉, with i = 3, . . . ,7.

Two-field spectroscopy has been successfully used to
investigate strongly driven single quantum dots,2 in which
Rabi oscillations had an effect.19 In this study, the quantum dot
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FIG. 4. (Color online) Photocurrent spectra focused at the 1–4
transition peak, with exciting field amplitude F1 = 4 kV/cm, showing
the effect of a second field with different amplitudes F2 and resonant
with the 2–4 transition (h̄�2 = 123.9 meV). Spectra are shifted
vertically for better visualization. The inset shows (open symbols
with error bars) the energy splitting as function of the amplitude
F2 and (solid symbols) the photocurrent calculated at the resonant
frequency for the transition 1–4 (139 meV) as it is shown by the
vertical dotted line in the spectra.

behaved as a three-level system in a V configuration, and while
one of the pair of transitions was strongly driven by a resonant
field, the other transition was spectrally resolved by optical
absorption. This is the situation for which the Autler-Towners
doublet appears. Additionally, the Mollow triplet was also seen
when the same transition of the V-like system was strongly
driven and simultaneously spectrally resolved. We can use
similar approach in our �-like system to investigate the Rabi
oscillation effects on the photocurrent signal.

In Fig. 4 the two-field spectra are shown with a second field
tuned at the resonance energy (h̄�2 = 123.9 meV) coupling
the states |2〉 and |4〉. Note that this energy is sufficiently low
to prevent the excitation of the transitions from the initially
occupied state |1〉 to any state in the continuum (one would
need at least 124.75 meV to excite the continuum directly and
128.73 meV to excite the first quasibound state |3〉). Therefore,
this second field alone does not produce photocurrent from the
initial state |1〉 in the low excitation regime (we see below that
higher excitation intensities yield nonlinear absorption, but
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FIG. 5. (Color online) Time dependences calculated at the reso-
nant condition for the transition 1–4 and with a field amplitude F1 =
4 kV/cm. A second field of amplitude F2 excites the transition 2–4 in
resonance. (a)–(d) Occupation of the initial state ρ11 (solid symbols)
and the first excited state ρ22 (open symbols), as defined in Eq. (6),
and (e)–(h) time-integrated current I (T ), as in Eq. (5), as functions
of time for different intensities of the exciting field F2. In (b) and
(d), the second field amplitude F2 vanishes within the white box area
in the graph. In (e) and (g) the lines are the photocurrent I (T ) with-
out the second field (i.e., F2 = 0) as shown before in Figs. 3(g)
and 3(h). The inset shows the current J (t) whose integral gives
I (T ) = ∫ T

0 J (t)dt shown in (e). The fast oscillation in J (t) is
amplified in the upper part of the inset showing the current response
to the exciting field oscillation at a period of ∼30 fs and a beating
period of ∼250 fs due to the action of two exciting fields.

not specifically in this energy range). In Fig. 4 the amplitude
F2 is varied from zero to 12 kV/cm and the other field, with
amplitude F1 = 4 kV/cm, is used to scan across the transitions
1–4. It is seen from the spectra in Fig. 4 that, for increasing F2,
the peak 1–4 splits in a doublet and that the energy splitting is
proportional to F2 as shown in the inset. The explanation for
this splitting is the same as the one given in Ref. 2, that is, the
field F2 dressed the transition 2–4 causing a Rabi doublet. The
field F1 then couples the initial state |1〉 with the Rabi-splitted
state |4〉 → (|4′〉,|4′′〉).

The effects of the second field, in resonance with the 2–4
transition, can be seen in a different way besides the dressed-
state interpretation given above. The � system, when excited
by two fields in resonance (in our case, for example, resonant
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with the transitions 1–4 and 2–4) can produce the so-called
“coherent population trapping.”6 This effect is a coherent
excitation coupling of the bound states |1〉 and |2〉 through an
excited state, for example, |4〉. A characteristic of this situation
is that the occupation of the excited state is null, that is, ρ44 =
0. This also leads to the well-known “electromagnetically
induced transparency.”20 In our system this means vanishing
photocurrent. The decrease in the photocurrent signal at the
transition energy 1–4 (dotted line in Fig. 4) is a signature of
such effect in the spectral domain. In fact, the inset (solid
points) in Fig. 4 shows a photocurrent decrease as a function
of the amplitude F2. In order to see the population trapping in
the time domain, Fig. 5 gives the occupations of the states |1〉
and |2〉 as functions of time. It is observed that now, besides
ρ11, also ρ22 is excited. The population trapping is revealed by
the suppression of the occupations’ decaying in time due to
the lack of tunneling to the continuum (lack of photocurrent).
In Figs. 5(b) and 5(d) the second field is vanished after 6.5 ps,
allowing the photocurrent to resume [cf. Figs. 5(f) and 5(h)]
but leaving behind a finite occupation of state |2〉. Note that a
partial coherent population transfer is accomplished between
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FIG. 7. (Color online) The same as in Fig. 6, now in the energy
range involving the excited quasibound state |3〉 instead of |4〉.

states |1〉 and |2〉, which are well spatially separated, with very
little overlap and small dipole moment between them.

It is also interesting to see the behavior of the peak 1–4,
when it is split by the presence of a second field F2, with
the latter field being detuned from the resonance 2–4. This is
shown in Fig. 6 for two amplitudes F2 = 8 and 12 kV/cm,
while F1 = 4 kV/cm. For comparison, at the bottom of Fig. 6,
the photocurrent peak 1–4 is shown for the case of only one
field (i.e., F2 = 0). It is observed that as h̄�2 scans across
the transition 2–4, the splitting remains even in the resonant
condition h̄�2 = 123.9 meV. In fact, an anticrossing pattern is
clearly observed.

Everything we have discussed for the transitions involving
the quasibound state |4〉 can potentially happen to any other
excited state, which together with |1〉 and |2〉 constitute a �

system. For example, in Fig. 7 the excited quasibound state |3〉
is investigated, yielding a similar situation as given before in
Fig. 6 when state |4〉 was involved.

C. Two-photon, one-field population trapping

The population trapping effect investigated so far relied
in the condition of having two exciting fields in resonance
with the two transitions of the � system. This is a two-color
excitation scheme. It would be interesting to obtain such effect
with only one exciting field (one-color scheme). To accomplish
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FIG. 8. (Color online) (a),(c) Photocurrent spectra for the systems
shown in the insets under nonlinear absorption (“two-photon”
process). The peaks in the spectra are labeled according to the initial
and final states: (1−n)2, with n = 3, 4, and 5. The exciting field
amplitude is F1 = 12 kV/cm. (b),(d) Photocurrent peak intensity,
in log scale, for the transition (1–3)2 as a function of the field
amplitude F1.

that, both transitions in the � system have to be excited in
resonance, simultaneously, by only one field. One possibility
is the case in which both transitions have the same energy
(we could call it “symmetric � system”). This implies the
lower-energy states |1〉 and |2〉 to be degenerate, and that
may raise a question about which one of the states is initially
occupied. On the contrary, an asymmetric system favors the
ground (nondegenerate) state as the initially occupied state.

Even in the case of an asymmetric � system, there is an
alternative scheme in which one could excite the upper state
from the ground state by a two-photon absorption process and,
with the same energy photon, connect the upper state with the
first excited state [see the inset in Figs. 8(c) and 8(d)]. This
scheme potentially produces a population trapping effect.

Since our simulation method does not rely on perturbative
approaches, a two-photon transition can be naturally accounted
for in our calculations. In Fig. 8(a) the photocurrent is
calculated as before in Fig. 2, but now the exciting field
frequency scans an energy range half of the necessary to
promote the initial state |1〉 directly to the continuum. A series
of peaks which are exactly at half of the energies shown for
the series of peaks in Fig. 2(a) is found. Since these peaks
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FIG. 9. (Color online) Photocurrent spectra for the system pro-
posed in Fig. 8 for different values of the potential VR for the narrower
quantum well at the system right-hand side. Left-hand side panels are
for near resonance with the transition (1–3)2, and right-hand side
panels are similar ones for the transition (1–4)2. The intensity of the
exciting field is F1 = 12 kV/cm.

are weaker, an increase in the exciting field amplitude is
necessary (in Fig. 8, F1 = 12 kV/cm, instead of 4 kV/cm
used in Fig. 2). We attribute the existence of these peaks to a
“two-photon” absorption process as depicted in the inset. The
dependence shown in Fig. 8(b) of the photocurrent peak (1–3)2

with the field amplitude is ∼|F1|4, that is, quadratic on the
field intensity (power). This is consistent with a second-order
transition process involving the absorption of two photons. As
before in Fig. 2(d), a saturation effect appears at high excitation
intensities due to the ionization of the initial state.

The present system [inset of Figs. 8(a) and 8(b)] does not
excite the state |2〉 since it is off resonance. In order to set the
resonance 2–3, the bottom of the right-hand side well is pushed
up in energy from −190 meV in Fig. 8(a) to −128.5 meV, as
shown in Fig. 8(c). In practice, this could be done by changing
the composition of the material of the well in different samples,
or even better, by applying a bias to control the energy levels
in the same sample. Then the transition 2–3 becomes resonant
with only one photon. Figure 8(c) presents the corresponding
modification on the photocurrent spectra, in particular for the
peak (1–3)2, which now shows a decrease in the peak intensity
and a splitting of the peak into a doublet. In Fig. 8(d) the
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FIG. 10. (Color online) Time dependences of the energy level
occupations ρ11 and ρ22, for (a) off resonance and (b) on resonance
conditions with respect to the transition (1–3)2. (c) and (d) are,
respectively, the corresponding integrated current I (T ) = ∫ T

0 J (t)dt

as function of T . The inset shows the current J (t), as a function of
time t , in the resonant condition, showing beatings. An amplified
view of J (t) is also shown having the oscillatory behavior imposed
by the exciting oscillatory field.

maximum of the peak (1–3)2 is plotted as a function of the
exciting field amplitude F1, showing a strong decrease for
the peak intensity in comparison with Fig. 8(b), besides a
nontrivial dependence on F1 which is no longer exactly ∼|F1|4.

The process of setting the transition 2–3 in resonance by
changing the bottom of the right-hand side well (potential
VR) is shown by the set of spectra in Fig. 9. The left panel
shows the effect on the photocurrent peak (1–3)2, whereas
the panel on the right shows the same for the peak (1–4)2.
Again, an anticrossing behavior is observed. At resonance
[VR = 128.5 meV for (1–3)2 and VR = 121.0 meV for (1–4)2]
the doublet observed has the same interpretation as that in
Fig. 4, and they can be understood as a population trapping
effect. The time dependences of the energy level occupations
ρ11 and ρ22 are shown in Fig. 10 for the photocurrent peak
(1–3)2. In Fig. 10(a) VR is set off resonance, while in
Fig. 10(b) the resonant condition is satisfied (cf. Fig. 9). It
is observed, in this case, that the decay of the occupation
ρ11 is strongly suppressed, although the occupation ρ22 is not
strongly increased.

IV. CONCLUSIONS

In conclusion, the current (called here photocurrent) gen-
erated by the effect of an oscillatory electric field on an
initially occupied electronic state was calculated. The system

investigated was an asymmetric double quantum well structure
having excited energy levels coupled with a continuum of
extended states. The simulations were done from the numerical
solutions of the time-dependent Schrödinger equation, without
any adjusting parameters other than the parameters defining
the physical system, namely, the electron effective mass and
the band-edge potential profile. In this respect, the present
simulations are unique in solving the coherent excitation
dynamics of a realistic semiconductor system, since in most of
the previous works the investigation occurs under the simpli-
fied framework of few-level models. The dynamics extracted
from these models often utilizes many matrix elements and
relaxation/transition rates as inputs, which are obtained from
auxiliary calculations. This was not needed in our model
calculation based solely on the time evolution of a given
initial state by the Schrödinger equation Eq. (1). The excitation
dynamics shown by the photocurrent spectra presented many
coherent effects usually investigated in the optical response,
such as Rabi oscillations and splittings, population trapping,
and electromagnetically induced transparency. It is interesting
to compare the photocurrent spectra calculated here with the
experimental optical absorption spectra of similar systems
under similar excitation dynamics, such as for the quantum dot
in Ref. 2. The photocurrent signal revealed basically the same
effects as the optical response, which opens the possibility for
obtaining information about the coherent excitation dynamics
directly from the electronic signal. For that reason, we have
intended to perform the simulations without manipulating the
time degrees of freedom of the excitation process. Instead, our
focus was on the spectral changes associated with the coherent
excitation dynamics, which may be easier to be addressed
experimentally in future works, such as in strongly driven
infrared photodetectors, where many-photon absorptions were
already shown to play an important role either via real21

or virtual22 intermediate states. The experimental challenges
are, of course, enormous in order to realize a coherently
excited photodetector. Nonetheless, the present model is
well suitable to describe the coherent excitation dynamics
especially in systems having a continuum of states, as the
system we investigated, and as for the systems used for infrared
photodetector devices (QWIP or QDIP).14 In fact, our model
was recently extended to treat a three-dimensional system,
namely, a quantum dot coupled with both a quantum well and
a continuum, and the simulation could describe quite well the
photocurrent data involving sequential photon absorptions.23

ACKNOWLEDGMENTS

The authors acknowledge financial support from DISSE-
Instituto Nacional de Ciência e Tecnologia de Nanodis-
positivos Semicondutores and CNPq-Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico, Brazil. M.Z.M. is
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17Á. Vibók and G. G. Balint-Kurti, J. Phys. Chem. 96, 8712

(1992).
18D. Neuhasuer and M. Baer, J. Chem. Phys. 90, 4351 (1989).
19A. J. Ramsay, Semicond. Sci. Technol. 25, 103001 (2010).
20K.-J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66,

2593 (1991).
21H. Schneider, H. C. Liu, S. Winnerl, C. Y. Song, O. Drachenko,

M. Walther, J. Faist, and M. Helm, Infrared Phys. Technol. 52, 419
(2009).

22A. Zavriyev, E. Dupont, P. B. Corkum, H. C. Liu, and Z. Biglov,
Opt. Lett. 20, 1885 (1995).

23M. H. Degani, M. Z. Maialle, P. F. Farinas, N. Studart, M. P. Pires,
and P. L. Souza, J. Appl. Phys. 109, 064510 (2011).

155308-9

http://dx.doi.org/10.1088/1367-2630/11/1/013028
http://dx.doi.org/10.1038/nature00912
http://dx.doi.org/10.1103/PhysRevLett.88.087401
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1103/PhysRevB.82.075305
http://dx.doi.org/10.1103/PhysRevB.82.201301
http://dx.doi.org/10.1103/PhysRevB.82.201301
http://dx.doi.org/10.1103/PhysRevB.68.245320
http://dx.doi.org/10.1103/PhysRevLett.95.057401
http://dx.doi.org/10.1038/37562
http://dx.doi.org/10.1063/1.354252
http://dx.doi.org/10.1063/1.3270263
http://dx.doi.org/10.1166/jctn.2010.1380
http://dx.doi.org/10.1166/jctn.2010.1380
http://dx.doi.org/10.1021/j100201a012
http://dx.doi.org/10.1021/j100201a012
http://dx.doi.org/10.1063/1.456646
http://dx.doi.org/10.1088/0268-1242/25/10/103001
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1016/j.infrared.2009.05.036
http://dx.doi.org/10.1016/j.infrared.2009.05.036
http://dx.doi.org/10.1364/OL.20.001886
http://dx.doi.org/10.1063/1.3556432

