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The general theory described in the preceding article [Phys. Rev. A 43, 6622 (1991)]based on the
nonequilibrium-statistical-operator method, which provides mechano-statistical foundations for
phenomenological irreversible thermodynamics, is applied to a specific problem. This is the case of
a highly excited plasma in a semiconductor, where fluxes of mass and energy naturally appear, as
well as other higher-order fluxes, as basic variables necessary for the description of the macroscopic
state of the system. A criterion for the truncation of the basic set of variables is presented. The
equations of motion for the macrovariables are derived for the case of a simple model. They have

the structure of nonlinear and nonlocal transport equations, which fit into a natural extension of
those of linear irreversible thermodynamics. In particular, Maxwell-Cattaneo-Vernotte-type equa-

tions of extended irreversible thermodynamics are recovered, having relaxation times and transport
coe%cients that may be calculated from the microscopic dynamics of the system composed of aver-

ages over the nonequilibrium ensemble.

I. INTRQDUCTIQN

In the preceding paper, ' hereafter referred to as I, we
presented a general theory, based on the nonequilibrium-
statistical-operator method (NSOM), which provides
mechano-statistical foundations for phenomenological ex-
tended irreversible thermodynamics (EIT). This paper is
devoted to the presentation of a specific example that
clarifies the general theory illustrating how it works in
practice.

We brieAy recall the main points of the theory that we
are putting to work in the present paper. The nonequili-
brium statistical operator (NSO) p(t) is derived by means
of Jaynes s maximum-entropy principle. This NSO is a
functional of a basic set of dynamical variables, say, P,
j = 1,2, . . . , n, , whose average values with the NSO define
the macrovariables Q.(t)=Tr[P p(t)] that are interpret-
ed as those composing the Gibbs space of variables that
describe the macroscopic state of the system. The choice
of this basic set is up to now not founded on any satisfac-
tory approach, including the particular selection of the
generalized Auxes as basic variables as is done in EIT.
We have discussed in I a plausible criterion for the deter-
mination of the basic set of dynamical variables and,
thus, of the G space of macrovariables, appropriate for a
large class of experimental situations. In Sec. III this cri-
terion is applied to the case of a highly photoexcited plas-
ma in semiconductors (HEPS).

For that purpose, the total Hamiltonian H is split into
two parts Ho and H'. The first one contains the kinetic
energies of the subsystems that compose the whole sys-

tern and the strong interactions that produce very fast re-
laxations, that is, in time lapses smaller than the charac-
teristic resolution time of the experiment. On the other
hand, H' contains the weak interactions that produce
slow relaxation processes. Next, the basic variables are
chosen in such a way to satisfy, in an appropriate quan-
tum representation, the closure condition, which we call
the Peletminskii-Zubarev symmetry condition,

[P Ho ]:g 0 k Pk.
k

where 0 k are c numbers. Thus the quantities P- form a
Hilbert subspace on which they are kept precessing be-
cause of the action of Ho and from where they are pro-
jected out by the action of H', the interaction which, as
shown in I, is responsible for the relaxation efFects in Q
variables.

In the case of the HEPS dealt with in Sec. II, Ho is
composed of the carrier's kinetic energy plus the (fast)
Coulomb interaction (we recall that it produces internal
thermalization of carriers in the few hundreds of fern-
toseconds time scale). We start the construction of the
space of basic dynamical variables beginning with the
density and density of energy in the reciprocal space.
Commutation of them with Ho produces a relation of the
type of Eq. (1) once the dynamical quantities for the
Auxes of matter and energy are incorporated into the
basic variables. We see then the cruxes naturally arising
into the mesoscopic description of the system as proposed
by EIT. The commutation procedure with Ho is repeated
now using the explicit expressions for the cruxes to obtain
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once more an equation such as (1), that is to say, expres-
sions involving quantities representing higher-order
Auxes to be added to the basic variables and so on. In our
example the procedure should continue indefinitely. This
fact calls for the introduction of a truncation procedure:
This is done in the way described in Sec. II and the ap-
proximation involved is discussed. Such a truncation pro-
cedure appears to be in wide use in problems in hydro-
dynamics.

Finally, as shown in I, the NSOM provides a nonlinear
quantum theory of transport that in the limit of small
cruxes leads to equations of motion for the basic variables
that are of the Maxwell-Cattaneo-Vernotte (MCV) type
of EIT. In Sec. III we explicitly illustrate these results,
resorting to a very simple model where we include only
the kinetic energy, the density of energy, and the energy
Aux of a fermion Quid interacting with a boson gas taken
as a heat bath. As expected, we obtain MCV-like equa-
tions with explicit expressions, on the microscopic level,
for the transport coefricients, particularly Maxwell's re-
laxation time that appears in the equation of evolution
for the Aux of energy. In the quasistatic regime and hy-
drodynamic limit, we recover Fourier s constitutive equa-
tion and an expression for the thermal conductivity that
takes the form of that provided by the kinetic theory of
gases, where the place of the mean collision time ~ is tak-
en by Maxwell's relaxation time. These results follow in
the hydrodynamic limit of the very large wavelengths
(very short wave numbers) where the equations become
local in space; we recall that because of the use of the
NSOM-linear theory of relaxation to approximate the
NSOM-generalized transport equations, the results are
memoryless. The extension of the theory to include non-
linearity in the cruxes and memory efFects are planned to
be reported in a future paper.

II. HYDRODYNAMIC APPROACH TO PLASMA
IN SEMICONDUCTORS

Let us consider now the application of the ideas
developed in I to the particular case of a highly excited
plasma in semiconductors. In earlier publications two of
us with collaborators have used Zubarev's NSOM to
study ultrafast relaxation phenomena and transient trans-
port in uniform HEPS. For the case of the HEPS, we
take for Ho the Hamiltonian of the subsystems of elec-
trons, composed of Bloch band states plus Coulomb in-
teractions, and that of the free phonons. The energy
operator H' contains the electron-phonon, electron-
radiation, and phonon-phonon interactions. The semi-
conductor sample is in contact with a thermal bath, and
both, together with the laser radiation field, are taken as
an isolated system to which the NSOM applies. The
thermal bath and laser source are considered as ideal
reservoirs, namely, as constantly in a stationary condition
characterized by a temperature To and a classic radiation
field of given intensity and spectral composition, respec-
tively. The complete NSO is then the product of the
steady-state distribution of the reservoirs times the NSO
of the open semiconductor system. The HEPS Hamil-
tonian reads as,

H =Ho+H',
where

Ho
k, a

+ g g V(q)Ck+q ~ Cka Ck bC. k. qb +Hph
k, k' q, a, b

(3)

H h is the Hamiltonian of the free phonons; V(q)
=4vre /soq is the matrix element of Coulomb interac-
tion; ck, are Bloch electron energies that are taken in the
effective mass approximation, namely, for electrons
(a =e) ek, =EG+A' k /2m, and for holes (a =h) Ekb
=Pi k /2mb, 'm, and mb are the effective masses; EG is
the energy gap in this inverted band semiconductor; and
E'0 is the static dielectric constant. Coulomb interaction
among carriers, the second term on the right-hand side of
Eq. (3), will be treated in the random-phase approxima-
tion. Finally, H' contains the energy operators for the
interaction of carriers and phonons and carriers with the
radiation fields.

In the aforementioned references, " the description of
the nonequilibrium thermodynamic evolution and optical
responses of HEPS is done for constant To, given laser in-
tensity IL photon frequency coL, neglecting self-
absorption and induced recombination (thus eliminating
the radiation fields other than those of the laser and spon-
taneous recombination), and in conditions of homogene-
ous spatial distribution. Six dynamical quantities are
deemed to be appropriate for such description, namely,
the energy of carriers, H„ the energies of the difFerent
phonon (acoustic and transverse- and longitudinal-
optical) branches, Hg HTo HLo and the numbers
operators for electrons, X„and for holes, N&. The
NSOM-nonequilibrium thermodynamically conjugate
variables F (t) (cf. Sec. III in I) are in this case re-
ferred to as the quasitemperatures of electrons,
P, (t)=1/kT, (t), of phonons, Pz(t)—= 1/kT&(t),
pTo(t)=1/kTTo(t), pLo(t) =1/kTLo(t), and the quasi-
chemical potentials IJ,,(t) and pb(t).

The six quantities IH„H„,HTo, HLo, x„xb I com-
mute with Ho, thus verifying the symmetry condition of
Eq. (1) [see also Eq. (29) in I] with 0 &

=0 and also
among themselves. The Gibbs space G is composed of
the average values I E, (t),E„(t),ETo(t), ELo(t), n (t) I

(the concentration of electrons and holes is the same since
they are produced in pairs; however, the quasichemical
potentials are unequal because of their different efFective
masses).

Resorting to the linear theory of relaxation (LTR), the
coupled set of nonlinear integro-differential equations of
evolution for the basic set of macrovariables is derived
and solved for different initial conditions, and compar-
ison with experimental observations based on ultrafast
laser spectroscopy was made.

Let us next broaden the analysis of the HEPS, allowing
now for the presence of spatial inhomogeneities in the
carrier system. For that purpose we add to space 6 the
carrier Q Fourier amplitudes for density, n (Q, t ), and en-
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ergy density h, (Q, t), whose dynamical operators are

N, (Q)=g C„+&,C~,

and

g2
H, (Q) =g k (k+ Q)CIt+q, Cq, .

2m~

(4a)

(4b)

n, (Q, t)=Tr [N, (Q),HO+H']p (t)
d 1

dt ih

=Tr [N, (Q), HO]p (t) +A„[H'], (Sa)
sA

h, (Q, t)=Tr [H, (Q),HO+H']p (t)
d 1

df sA

We have taken the e6'ective-mass approximation for the
energy dispersion relations, and planes waves instead of
Bloch band wave functions with C (C) being creation
(annihilation) operators in such states. Further, as noted,
the subscript a stands as a =e for electrons and a =h for
holes, and Q (WO) runs over all reciprocal space.

Consequently, the two transport equations associated
with these quantities must be added to the previous set of
six generalized transport equations. Such equations are

1=Tr . [H, (Q),H]p (t) +A2, [H'], (5b)

where we have separated out the rate of change due to
Ho and that due to H', the latter one contained in the
terms denoted by A. Further, p (t) is the NSO con-
structed according to the procedure described in I.

The commutation of N(Q) and H, (Q) with Ho yields
(for the sake of simplicity, hereafter we use fi= 1)

[N, (Q),HO]=(Q/m, ) P, (Q),
[H, (Q),HO]=(Q/m, ) I,(Q) —&(Q)Q g(k/m, )f, (k, t)N(Q),

k

where

(6a)

(6b)

P, (Q) =g (k+ —,'Q) C„+q,C~, ,
k

QI, (Q)= g k k+—
2ma 2

k+ —Q Ck+q, Ck g,

which are the Fourier amplitudes of the density of the linear momentum and the density of kinetic energy Aux in the
Bloch band (parabolic band in our model). The last term in Eq. (6b) is the contribution resulting from the Coulomb in-
teraction, which, as mentioned before, has been dealt with in the time-dependent random-phase approximation. Fur-
ther, we have introduced

f, (k; t) =Tr[Ck, Cq, pco(t, O)],

where pco(t, O) is the auxiliary coarse-grained (CG) operator associated with p„(t) as described in I, and

N(Q) =N, (Q) —Nq(Q) . (10)

Equations (6) tell us that Ho relates N, (Q) and H, (Q) with the quantities P, (Q) and I, (Q), which according to the
basic prescription, i.e., the Zubarev-Peletminskii symmetry condition of Eq. (1), have to be incorporated to the set of
variables. Commutations of both with Ho yield

[P,(Q),HO]=@,(Q)+ &(Q)n(t)N(Q)Q, (1 la)

[I,(Q),HO]=%, (Q)—
a

2
k'+ Q+2(k Q)k f.(k;t)N(Q), (1 lb)

where

@',(Q) = 1 Q 1(k Q)+ k+ —Q Cq+g, Cq, ,
ma k 2 2

%,(Q) = g [k (k Q)k+ (k.Q) k+ k (k.Q)Q]Ck+g, Ck, ,
2m, k

(12)

(13)

which we call the second-order Aux of density and energy density, respectively.
A.gain, incorporating @ and % to the basic set of dynamical variables, we proceed to calculate their commutators

with Ho to obtain
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[@,(Q),HO]=U, (Q) — g [Q k+(k Q)Q]f, (k;t)N(Q),
Pea

[%,(Q),HO]=W, (Q) — g [Q (k Q)k+2(k Q) k+k Q k+(k Q) Q+k (k Q)Q]f, (k;t)N(Q),
Vlg

where
2

(14a)

(14b)

U(Q)= g k Q+ —Q
Pl

k+ 2Q C~+q, .C~,. (15)

2

W, (Q)= 3 g(k +k Q) k Q+
2ma

k+ —Q Cq+~, Cq, (16)

are higher-order Auxes of density and energy density.
The commutators of U and W with Ho produce new terms to be added to the basic set and so on, producing an, in

principle, infinite chain of variables coupled through their commutations with Ho. One may then look for a truncation
procedure; in the present case we note that the commutator of Ho with U and W leads to terms which are proportional
to the fourth power of Q that can be neglected in the limit of small Q, if we assume that only spatial variations associat-
ed with long wavelengths are the relevant ones. For the specific case of the carrier system in the HEPS we are consider-
ing, it implies, as shown later on, that the quantum of plasma energy A'co is much larger than the average kinetic energy
A'U, hg (v,h is the thermal velocity) involved in the formation of the plasma wave of wavelength 2m/g and amplitude
n ( Q). Hence the choice of Ho together with Peletminskii-Zubarev symmetry condition and the truncation procedure
just stated suggests that the relevant basic set of dynamical quantities to be used are

[H„HLo, Hro, H„,N„N, (Q),H, (Q), P, (Q), I, (Q), @,(Q), 4, (Q), U, (Q), W, (Q) J,

m &=4mne /m (18)

where m is the exciton mass, m ' =nz, '+ m& '.
Hence, for this particularly contracted Gibbs space used
to describe the macroscopic state of the HEPS, we obtain
a dispersionless plasma frequency, i.e., the one that corre-

comprising a total of 46, and we recall that the wave vec-
tor Q runs over all the reciprocal space, and a =e or h.

The average values of the quantities of Eq. (17) over
the nonequilibrium ensemble specified by p (t) are the set
of macroscopic variables, defining a Gibbs space of di-
mension 46, which characterizes the nonequilibrium ther-
modynamic state of the system. Such a state may be
written in terms of only 22 quantities, which are explicit-
ly given in the Appendix. This contraction is due to the
fact that vectorial ones reduce to 12 scalars since only the
projection of those quantities in the Q direction are
relevant; further, (N, ~t ) =(Nh ~t ) =n(t), because the
electrons and holes are produced in pairs.

We look for the undamped oscillatory solutions gen-
erated by Ho —the plasma waves —that result in a steady
state for different choices of Ciibbs space. This implies
that we are considering the case of continuous constant
laser illumination of the sample, which leads, after a cer-
tain transient, to a steady state (SS) with constant quasi-
temperature and concentration. " (A description of the
calculations is given in the Appendix. )

(i) Following the notation introduced in the Appendix,
neglecting Z&, (the local density of energy) and all fluxes,
except the Iinear momentum X2„we obtain coupled
equations for X„and X2„which have an oscillatory
solution at the plasma frequency

sponds to the infinite-wavelength excitation (uniform po-
larization).

(ii) Consider now a G space expanded in relation to
that of case (i) including Z„and all the fluxes, namely,
X2 X3 Z2, and Z5, ~ Once this is done and the secu-
lar equation solved, we obtain, for the plasma frequency,

~2 (Q) —~2 + 3U2 Q2 (19)

This is the dispersion relation for plasma waves correct
up to second order in Q, where U,h is the thermal veloci-
ty given by m„u,„/2= —,'P, '.

(iii) When in Gibbs space, besides the ten uniform vari-
ables, we incorporate the infinite set of variables

(k Q)=TI(Cg+q C p ) (2O)

one obtains a secular equation for the plasma-wave
dispersion relation that can be reduced to the well-known
integral equation

f (k+Q) f s (k)1+V(Q), =0,
z, A'co —[k (k+ —,'Q)/m, ]

(21)

which provides a dispersion relation in all orders of Q.
This is equivalent to introducing the infinite set of cruxes
of all order which are independent linear combinations of
n, (k, Q), thus strongly reinforcing, from our statistical
point of view, the arguments advanced in favor of EIT
for the description of the macrostate of arbitrarily far-
from-equilibrium systems. As noted in I, the procedure
seems to be a far-reaching generalization, and in the
quantum domain, of Cirad's 13-moment procedure.
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III. EQUATIONS OF EVOLUTION

We have shown in I that the NSOM equations of evo-
lution for the basic set of variables, including the particu-
lar case of the cruxes, admit a form which is strictly of the
Mori-Langevin-type transport equations. Here we will
show how these equations may be brought to a form
which resembles more the Maxwell-Cattaneo-Vernotte
equation of EIT. This implies the presence of a Maxwell
term of the form OBI/Bt, where 6 is a relaxation time,
besides the terms obtained for the constitutive equation
for the energy Aux.

It would be natural at this stage to use the system of a
HEPS to illustrate this and other of the relevant features
of the general transport equations for the macrovariables
describing its nonequilibrium states. This, however,
stands as a gigantic task since we would have to contend
with at least Ave equations for the Auxes which, as Eq.
(18) suggest, would only lead to an approximate picture
of the time evolution of the system. Therefore, we will
simplify the calculations to a much more manageable sys-
tem which, although somewhat unrealistic, brings to the
fore the main features of the method. Hence we proceed
by resorting to a very simple model which consists of a
noninteracting Fermi gas with a uniform and constant
density n and kinetic energy given by

Ho g okCkCk
k

(22)

[Eo(t),h (Q, t), I(Q, t) ], (24)

namely, the kinetic energy and Fourier amplitudes of the
kinetic energy and its Aux, which are the average values
over the NSOM ensemble of the quantity of Eq. (22) and
those of Eqs. (4b) and (8). This implies that we neglect
contributions of all other Auxes that, according to the
scheme described in Sec. II, should be included in the
equations of evolution. This amounts to a truncation
procedure that involves an approximate treatment of the
problem.

For this model the auxiliary statistical operator is

where sk =))'t k /2m, and a system of bosons at constant
temperature TD and with energy dispersion Acoq, both
systems coupled through the energy interaction operator

H Q Iq(bq b q)Ck+qCk (23)
k, q

where b (b ) are annihilation (creation) operators in bo-
son states.

We assume that in an EIT approach the macroscopic
state of the Fermi gas with constant concentration can be
described by the basic set of macrovariables

pco(t, 0)=exp P(t) —/3(t)Ho ——g [P(Q, t)h (Q)+a(Q, t ).I(Q)]
Q

(25)

where we have introduced the NSOM-intensive variables associated to those of Eq. (24), namely, the reciprocal quasi-
temperature P(t), the Fourier amplitude of the reciprocal of the local temperature P(Q, t), and the quantity a(Q, t).
Further, 6(Q) and I(Q), with carets, are the dynamical quantities for the Fourier amplitudes of energy and momentum
densities.

To calculate the equations of evolution for the variables of Eq. (24), we resort to the NSOM-linear theory of relaxa-
tion (LTR) in Zubarev's approach. We recall that it consists of an approximation in which relaxation processes are ac-
counted for the interactions taken only up to second order in the interaction strengths and the collision operator is
Marko%an. If we call Q the different variables of the set of Eqs. (24), in their general form these equations are given by

aQ J(o)(t)+J(1)(t)+J(2)(t)
Bt J J

where

(26)

J' '(t) =Tr . [Pq. ~Ho]pcc(t)
1 (27a)

J'"(t)=Tr [PJ,H']pco(t)1 (27b)

gJ())(t)
J'.2'(t) = J dt'e" rT[ [ H(t'), [ 'H, ]P] zp(ct)] + J dt'e" g Tr[ [H'(t'), Pk ]pc&(t)j,ih

(27c)

with 5 standing for a functional derivative, and the P. s are the dynamical quantities associated to the basic variables,
i.e., Q (t)=Tr[P p(t)].

For the particular case of the variables of Eq. (24), the collision integral J'" vanishes in all three cases and, taking
A = 1 throughout this section, we obtain
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d
d

&o(t)= —2~&~ql&ql'[vqfk(l —f, +, ) —(v, +, )fk+, (1—fk)]5(Ek+~ —
Ek

—co, ),dt
k, q

h(Q, t)=iQ I(Q, t) — g [q (2k+q+Q)]A(k, q, Q)n«(t),
k, q

I(Q, t ) =J"'(Q, t)—,g g(k, q, Q) A(k, q, Q)n«(t),
2m

(28a)

(28b)

(28c)

g'(k, q, Q) =[k (k+q)]q+ [q (k+q+Q)](k+q)+ [q2+(2k Q)]—,'Q,
~ (/( q Q)=

l &, I'[[(v, +1)(1—fk+, )+v,fk+&]&(ek+, —Ek+~, )

+ [(&,+1)fk+q+ &q(1 fk+,—) ]&(Ek+q —
&k

—~q ) ] + . .

(29a)

(29b)

where the ellipsis represents the same term with
k~k+Q,

nkg(t) =Tr[Ck+QCkPco(t o)]

Here P(t)=$0(t)+P, (t) normalizes pco, and {{}0(t)nor-
malizes the statistical operator describing the homogene-
ous state, namely,

p„(t,0)=exp[ —P,(t) —P(t)H, (t) ] .

and

f k(t) =Tr[Ck Ck pco(t o) ]

v (t)=Tr[b b pco(t, O)],

(30b)

(30c)
In the regime of small inhomogeneities, we take the

first-order approximation in Eq. (32a); i.e., we put Y = 1.
Then

J'o'(Q, t) = —.Tr[+(Q)pco( t, O) ],
where %' is given by Eq. (13) so that

(30d)
n «( )t= Tr [ Ck+ QCk [ 1 +K, ( t, 0 ) ]p„(t, 0 ) ]

=Tr[Ck+gCkK, (t, O)p„(t,O)],
where

(33)

J'0'(Q, t) = g [/( (k.Q)(k+Q)+(k Q) k]n«(t) .
1

2lm

(31)

K&(t, O) = —g' [/3(Q, t )b f(Q)+a(Q, t)b I(Q)],
Q

with b, A = 3 —Tr[ A p„(t,O)]. Finally,

(34)

As indicated at the beginning of this section, we re-
strict the macroscopic description of the system to that
provided by the five variables of Eq. (24), that is to say,
that g and all other higher-order fluxes (W, etc. , of Sec.
II) are not incorporated as basic variables. This trunca-
tion procedure requires that in order to close the system
of equations of evolution it becomes necessary to give an
expression for the quantity n«(t) of Eq. (30a) [it appears
in Eqs. (28b) and (28c)] in terms of the basic variables.
Assuming a small deviation from the homogeneous state,
we separate the statistical operator pco(t, O) into two
parts, one depending only on the uniform variables and
another depending on the nonuniform (Q-dependent)
variables. This is done using the operator identity

1
e "+ = du Y(B~u)e ""Be""e (32a)

0

n«(t)=a( kQ;t)P(Q;t)+ a(k, Q;t) k+ —.a(Q, t),1

(35)

AE Eg+ Q Elf (36b)

fk(t)=Tr[C&C&p„(t, 0)] . (36c)

k (k+Q) 1 —e~'" '
a(k, Q;t)= fk(t)[l —fk+&(t)],

(36a)

with

Y(B~u)=1+f dx Y(B~x)e ""Be'",
0

(32b)

Replacing Eq. (35) in the expression for the flux [aver-
age of Eq. (8)], we obtain

where, for our case,

2 =P,(t) +P(t)H, ,

I(Q, t) =1&(Q, t)p(Q, t)+12(Q, t )a(Q, t ),
where

(37)

B= —P, (t) —QP(Q, t)f(Q) —g a(Q, t)-I(Q) .
Q Q

1&(Q, t)= g [k (2k+Q)]a(k, Q;t)(2k+Q), (38a)
1

8m
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l, (Q,r)=, g [k (2k+Q)]~2k+Q~ 'a(k,Q;r),
16m

(38b)
and the isotropy of the model makes Iz a scalar instead of
a tensor.

Equation (37) allows us to write the "generalized drift
velocity" a in terms of the Aux and reciprocal quasitem-

perature, namely,

a(Q, t)=l~ '(Q, t)I(Q, t) l~—'(Q, t)1, (Q, t)P(Q, t), (39)

and then

n&&(t)=G, (k, Q;r)p(Q, r)+G, (k, Q;r) I(Q, t), (40)

where

G( kQ;t)= a(k, Q;t) 1 — l~ '(Q, t)l, (Q, t) ~ (2k+Q)1

2m
(41a)

and

Cxz(k, Q;t)= a(k, Q;t)lz '(Q, t)(2k+Q) .
1

2m
(41b)

Replacing the expression for nz&(t) given by Eq. (40) in the equations of evolution [Eqs. (28b) and (28c)], we find

h(Q, t)=iQ I(Q, t) —A, (Q, t)P(Q, t) —A~(Q, t) I(Q, t), (42)

at I(Q, t)=iB,(Q, t)/3(Q, t)+i8 (Q, t) I(Q, t) —C(Q, t)P(Q, t) —6 '(Q, t)I(Q, t),

where

(43)

A, (Q, t)= g [q.(2k+q+Q)]A(kqQ, )G, , (kQ;t, ),
m k, q

Az(Q, t)= g [q (2k+q+Q)]A(k, q, Q)Crz(k, Q;t),
k, q

(44a)

(44b)

B,(Q, t)= 3 g [k (k.Q)(k+Q)+(k. Q) k]G, (k, Q, r),
2m

B~(Q, t) I(Q,t)=, g [k (k.Q)(k+Q)+(k Q)~k][Cx~(k Q, r) (1Q, )r],
1

2m

(44c)

C(Q, t ) = ~ g g(k, q, Q ) A (kqQ, )G, , (kQ; t, ),
2m kq

e '(Q, t)I(Q, t)=
z g g(k, q, Q)A(kqQ, ),[&z(kQ; , )iI(Q, &)],

2m kq

(44e)

(44f)

with g and A given by Eqs. (29a) and (29b).
Concerning these two equations, it is worth noticing

that they are Markovian in character because of the use
of the LTR, given by Eqs. (26). An extension of the
theory beyond LTR is possible, as described elsewhere,
so that the equations would also contain information on
the past history of the system. However, the formalism
of Ref. 7 allows for a transformation of the collision
operators that include aftereffects in terms of an infinite
series of instantaneous collision integrals, so that the
structure of Eqs. (33) is maintained; this is planned to be
shown in a future paper. On the other hand, these equa-
tions are nonlocal in space, but we recall, in the regime of
small inhomogeneities.

Multiplying Eq. (43) by e(Q, t), neglecting the terms
with coe%cients Bz and C, and taking the quasistatic lim-
it BI/Bt =0, one obtains in configuration space a nonlocal

constitutive equation of the form

I(r, t ) = —f d r'~(r r'; t )V'T(r', t),—

once we interpret /3(Q, t ) as the Fourier transform of the
reciprocal of a local temperature. Clearly, ~ may be here
regarded as the nonlocal thermal conductivity. This
question, as well as the interpretation of the terms with
coeKcients C and B are planned to be discussed in detail
in a future communication.

So far, given the simplicity of the model, we are still
left with rather complicated expressions involving the
wave vectors Q, k, and q. We further simplify them by
considering the limit of very long wavelengths, i.e., small
values of Q. We take the limit of g going to zero, retain-
ing everywhere only terms up to first order in Q in the ex-
pressions for the collision integrals, and, under these con-
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ditions, using the fact that for this isotropic model sum-
mations over k and q containing contributions odd in
these vectors vanish, we obtain the equation of evolution
for the Aux, namely,

I(r, t)= a(—t)VT(r, t), (54)

Maxwell-Cattaneo-Vernotte equations of EIT. In the
quasistatic regime we recover from Eq. (51) the constitu-
tive equation of hydrodynamics:

—I(Q, t)= —iQA (t)P(Q, t) —B '(t)I(Q, t),
at

~(t)=, gk'f„"(t)[1—f",(t)],1

4m' „
'(t)=, g A(k, q)q k fk(1 —fk),

12m k q

(46)

(47b)

except that it depends on the instantaneous macroscopic
state of the system at time t. Finally, it should be noted
that the relaxation time for the Aux of energy in the
Maxwell-Cattaneo-Vernotte-like equation (40) can be
identified with the one that appears in the expression for
the thermal conductivity.

IV. CONCLUSIONS

which is independent of Q and plays the role of the re-
ciprocal of the relaxation time; coefBcients B2 and C,
which are of order Q have been neglected.

Equation (46) can be rewritten as

B(t) I(Q, t)=A(t)[ —iQP(Q, t)]—I(Q, t),a
at

where

(48)

A(t)=B(t)a(t) . (49)

2 (t) =35n /8m p (t) . (50)

Inverting Eq. (48) to the direct space, we find that

—B(t) I(r, t ) = O', B(t)VT(r, t )+I(r, t )
8 35n q T (t)
dt 8m T2(r, t )

(k here is the Boltzmann constant).
If, consistently, we consider weak spatial variation, we

can make the approximation T(r, t) = T(t), and then the
coeScient in front of the gradient of the temperature be-
comes

k'T(t)B(t),35n
8m

(52)

which can be identified with the thermal conductivity. It
has a form that closely resembles that of kinetic theory,
namely,

Taking for f" a Maxwell distribution for the fermion
system with concentration n and reciprocal temperature
p(t), the coefficient A becomes

We have shown that for the particular case of a highly
excited plasma [with a Coulomb interaction dealt with in
the random-phase approximation (RPA)], similarly to the
case of propagation of sound waves in Auids treated in
the linear irreversible thermodynamics approach, an in-
correct dispersion relation for a collective excitation
(plasma waves) follows from the incompleteness of the as-
sociate Ciibbs space. A correct (RPA) dispersion relation,
up to second order in the wave vector Q, is obtained [case
(ii) in Sec. III] with the quantum-mechanical nonequili-
brium equivalent of Grad's 13-moment approach. The
complete (RPA) plasmon dispersion relation is obtained
using the infinite set of momenta [case (iii) in Sec. III].

The equations of motion for the macroscopic variables

Q (t) are derived for the case of a simple model and have
the structure of nonlinear and nonlocal transport equa-
tions. Their structure is too complicated to be analyzed
in general, but for small deviations from the homogene-
ous state they reduce to those derived by other methods.
We also show how these equations fit into a natural ex-
tension of linear irreversible thermodynamics as it has
been conceived by some authors. ' '" In particular, the
Maxwell-Cattaneo-Vernotte-type equations are recovered
with relaxation times and transport coefficients that may,
in principle, be calculated from the microscopic dynam-
ics of the system averaged over the coarse-grained proba-
bility density pco(t) of the NSOM. We have explicitly
obtained the transport equation for the energy Aux to
generalize Fourier's well-known constitutive equation for
the heat Aux, with an explicit value for the thermal con-
ductivity which closely agrees with that computed from
the relaxation-time approximation of the kinetic theory
of gases.

K —3Cv (53)

where C is the specific heat of the fermions, v their aver-
age velocity, and ~ the average time between collisions
with the scattering centers. On the other hand, if we
identify e with 7.—in the classical limit —we find a close
identification of Eqs. (52) and (53), except for a numerical
factor —,", (near —,'). This numerical diff'erence is ascribed
to the truncation method and approximations we have in-
troduced in dealing with this model. Further, it ought to
be stressed that in our result B(t) is not an undetermined
parameter since its explicit value may be computed from
Eq. (44f).

We see that Eq. (51) is precisely of the type of the
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APPENDIX: PLASMA DISPKRSIQN RELATIONS

As noted in the main text, the 46 basic variables of Eq.
(17) reduce to 22, for practical purposes, since in the
equations of evolution there appear only the projection of
the 10 vectorial ones in the Q direction. We write for
them
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Q, (t)=&H, lt &, Q, (t)= &H„olt &,

g, (t)=&H, lt&, g, (t)=&H„lt&,

g, (t)= &N, lt &, g, (t) = &N„lt &,

x,.(t)=&N. (Q)lt &,

X,.(t)=(Q/m. ) &P, (Q)lt &,

x,.(t)=(Q/m. )-&+.(Q)lt &,

Z„(t)=&H, (Q)lt &,

Z, (t)=(Q/m, )'&I, (Q)lt &,

Z,.(t)=(Q/m. ) &+.(Q)lt &,

Z, (t) =(Q/m, ).& U, (Q) lt &,

Z, =(Q/m, )'& W, (Q)lt & .

(Al)

co =co &=4mne /m„where m, '=m, '+mz ', shown in
Eq. (18).

(ii) Consider now the 22 quantities of Eq. (Al). The 16
equations of motion for the nonhomogeneous quantities
X's and Z's lead to a secular equation in the form of a
determinant of that order. To obtain a dispersion rela-
tion for plasma waves up to second order in Q, we neglect
the equation for Zs, that produces terms of order Q .
W'e omit to write down the extensive expressions for the
equations of motion for the 14 remaining variables in the
chosen Gibbs space and the accompanying determinant
for the secular equation, only noting that straightforward
algebra leads to the dispersion relation of Eq. (19).

(iii) The complete dispersion relation for the plasma
waves follows by taking quantities n, ( k Q ) = Ck+Q Ck,
as basic variables, and then their equations of evolution
are

(i) Considering only Q, —Q6 and the inhomogeneous
variables X„and X2„we find the evolution equations
under Ho:

n (k, Q) =i b Ek&n, (k, Q) —i V(Q)
d
dt

Xbf, (k, Q) g nb(k', Q),
k', b

(A3)

d
X1,=iX2, /m,

dt
(A2a) where

d
X2, =i V(Q)nX„,

dt
(A2b)

~~kQ ~k+Q ~k ~

&f, (k, Q) =f, '(k+Q) —f, (k) .
where V(Q)=4rre /cog The s. ecular equation for the
oscillating solutions is a determinant A of fourth order
with co in each diagonal term and elements

Transforming Fourier in the time variable, we get

(co —b Ekq)n (k, Q) = —5f~o V(Q) g nb(k, Q) .
k, b

(A4)

13 14 23 24 31 32 41 42

and A, 2=m, ', Az, =nV(Q), 434 mI, 243 nV(Q),
c4 34 mh, and A ~3

= n V ( Q ), which has the solution

Dividing by co —AE and summing over k and a, we ob-
tain the well-known integral equation for the plasma
dispersion relation, namely, Eq. (21) in Sec. II.
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