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Abstract. We demonstrate that a translation-invariant chain of interacting
quantum systems can be used for high efficiency transfer of quantum entanglement
and the generation of multiparticle entanglement over large distances and between
arbitrary sites without the requirement of precise spatial or temporal control.
The scheme is largely insensitive to disorder and random coupling strengths in
the chain. We discuss harmonic oscillator systems both in the case of arbitrary
Gaussian states and in situations when at most one excitation is in the system.
The latter case, which we prove to be equivalent to an xy-spin chain, may be
used to generate genuine multiparticle entanglement. Such a ‘quantum data bus’
may prove useful in future solid state architectures for quantum information
processing.

The realization of quantum communication and computation requires at various stages the
mapping between stationary and flying qubits and subsequent transfer of quantum information
between different units of our quantum information processing devices. Traditionally, the
stationary forms of qubits are massive systems such as atoms, ions, quantum dots or Josephson
junctions, while the flying qubit is a photon, i.e. radiation. Photons might be optimal when
considering long distance communication where they may travel through free space or optical
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fibres. In very small quantum information processing devices such as condensed matter systems,
however, this is difficult as the length scale of both the component parts and their separation
will generally be below optical wavelengths. In this situation, it is worth considering novel
approaches for the communication of quantum information and the generation of entanglement.
To this end, it is of interest to consider the properties of interacting quantum systems. An
interesting class of interacting quantum systems is formed by harmonic oscillator systems that
are realized in various condensed matter physics settings such as nano-mechanical oscillators.
While static harmonic (or spin) systems near their ground state do not exhibit long distance
entanglement [1], the situation changes drastically when considering time-dependent properties
of interacting quantum systems [2]. Indeed, solid state devices such as arrays of nano-mechanical
oscillators, described as interacting harmonic oscillators, allow for the generation [3], transfer and
manipulation of entanglement [4] with a minimum of spatial and temporal control. The Landau–
Zener mechanism [6] may also be exploited to move electrons in arrays of quantum dots and
then to transfer information between two-level systems [5]. However, in translation-invariant
systems, the efficiency for this transfer decreases with distance. This can be overcome either by
making the coupling strengths between neighbouring systems position-dependent [4, 7] or by
active steps such as quantum repeater stages [8] or conclusive transfer [9]. Nevertheless, active
steps or the fabrication of precisely manufactured spatially dependent couplings are difficult
in practice and will require a significant degree of control. Furthermore, the precise value of
the coupling parameters and the timing of the operations will depend on the distance across
which one aims to transfer quantum information. Consequently, it would be desirable to achieve
high efficiency transmission of quantum information between arbitrary places and distances with
minimal spatial and temporal control. In the following, we show that this is indeed possible by
employing translation-invariant chains of interacting quantum systems with stationary couplings.

We first describe the system, termed a quantum data bus, and demonstrate its functionality
by numerical examples. Then we present an approximate analytical model that reveals the basic
physical mechanism that is utilized in the operation of the quantum data bus. This model then
allows us to maximize entanglement transfer efficiency and transmission speed of the quantum
data bus by adjusting the eigenfrequencies of the sender and receiver system. It also explains
why the transmission is largely insensitive to disorder and random coupling strengths in the ring.
We discuss the scaling behaviour of the time that is required for the transfer between distant
sites at a given efficiency. Finally, we show that in the regime where at most one excitation is
in the system, a quantum data bus made of interacting harmonic oscillators becomes equivalent
to an interacting spin chain. A further application for such a chain is the generation of three
or multiparticle entangled states as we also show in this paper. The model we have in mind is
depicted in figure 1. A ring of interacting quantum systems (blue circles) forms the quantum data
bus. At arbitrary position on the ring, two further quantum systems (red) may be coupled weakly
to the ring. The subsequent time evolution will allow for high efficiency transfer of entanglement
between the two distinguished quantum systems. The following ideas are not restricted to the
specific ring-like geometry presented here. The depicted geometry has been chosen because it
simplifies the analytical treatment of the problem.

So far we have not specified any particular type of quantum systems nor their mutual
interaction. In the following, we will consider, as an example, the case of coupled harmonic
oscillators which may be realized in various solid state settings [3]. Towards the end of this
paper, we will also consider a setting which is equivalent to a spin chain with an xy-interaction.
Let us assume that the ring consists of M harmonically coupled identical oscillators. We set
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Figure 1. A ring of interacting quantum systems (blue circles) forms the quantum
data bus. Two further quantum systems a and b (red) may couple weakly at
arbitrary positions to the ring. The subsequent time evolution will allow for the
transfer of quantum information or entanglement that exists between systems a

and the decoupled system c from system a to system b. System c is decoupled
but might be entangled with a to study transfer of entanglement.

h̄ = ω = m = 1 and denote the coupling strength in the ring by f . We assume that oscillator
a (b) couples to oscillator 1 (k) with strength ε, so that the Hamilton operator of this system
including the oscillators a, b and c is given by

H(ε) = 1

2

[
M∑

k=1

p2
k +

M∑
k,l=1

xkVklxl +
∑

i=a,b,c

(x2
i + p2

i )

]
+

ε

2
[(xa − x1)

2 + (xb − xk)
2] (1)

with the potential matrix V given by Vkk = 1 + 2f and Vk,k+1 = Vk+1,k = −f and V1M =
VM1 = −f for all k and zero otherwise.

In the following, we will demonstrate that it is indeed possible to transmit quantum
information through this system with high efficiency but minimal spatial and temporal control.
For the moment we are focusing on Gaussian states, i.e. states whose characteristic function or
Wigner function is Gaussian. The characteristic function determines the quantum state and as any
Gaussian is determined by its first and second moments, the same applies to the corresponding
quantum state [10]. In the present setting, the first moments will not be directly relevant (they
correspond to biases that can be removed by redefining the coordinate origin). Therefore, the
state of the system is determined by second moments that can be arranged in the symmetric
2N × 2N-covariance matrix �R,S = 2Re〈(R − 〈R〉)(S − 〈S〉)〉, where R and S stand for the
canonical operators x1, . . . , xn and p1, . . . , pn. Employing the Hamiltonian operator equation
(1), we can now study numerically the quality of the entanglement transfer between oscillators
a and b. Let us consider the situation where the harmonic oscillator a and c are initially in a pure
entangled two-mode squeezed state

|ψ〉 =
√

1 − q2

∞∑
n=1

qn|n〉|n〉 (2)

New Journal of Physics 7 (2005) 73 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
ffi

ci
en

cy

Figure 2. The efficiency of entanglement transfer, defined as ratio of transmitted
entanglement to initial entanglement, between the oscillators a and b at opposite
ends of a quantum data bus consisting of 20 oscillators and a nearest-neighbour
coupling strength of f = 1. The coupling strength of the oscillators a and b to
the quantum data bus is ε = 0.015 (dashed line) and ε = 0.021 (solid line). The
speed of propagation is proportional to the coupling strength ε and in both cases
we observe maximal efficiency exceeding 0.99.

with q = tanh r

2 which possesses the covariance matrix

�xaxcpapc
=




cosh r 0 −sinh r 0

0 cosh r 0 sinh r

−sinh r 0 cosh r 0

0 sinh r 0 cosh r


 . (3)

The entanglement as quantified by the logarithmic negativity [11] of this state is then given by
EN(|ψ〉) = r. The time evolution of the entanglement between the oscillators a and b at opposite
ends of a quantum data bus consisting of 20 oscillators and a nearest neighbour coupling strength
of f = 1 is given in figure 2. The propagation speed is proportional to ε and the efficiency of
entanglement transfer decreases weakly with increasing speed. In both cases we find a maximal
efficiency,4 defined as the ratio of transmitted entanglement to initial entanglement, exceeding
0.99. It should be noted that the time required for the transfer of entanglement is independent
of the distance of places where the oscillators a and b couple to the ring. The high quality of
the entanglement transfer and its independence of the position of sender and receiver will be
successfully explained by the following model that encapsulates the essential physics in the
system.
4 Note that for a total system in a Gaussian state, the reduced state of a subsystem is also Gaussian because the
partial trace preserves the Gaussian character of a quantum state.
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We first observe that the unitary matrix � with matrix elements

�kl = 1√
M

e
2πikl
M , (4)

achieves V = �†�2� with a diagonal matrix � such that

�2
kk = 1 + 2f − 2f cos

2πk

M
. (5)

Then we can define the normal mode variables

Xk =
M∑
l=1

�klxl, Pk =
M∑
l=1

�∗
klpl, (6)

which ensure that [Xk, Pl] = [xk, pl] = iδkl, i.e. the canonical commutation relations are
preserved. Note that we will use the convention X0 ≡ XM and P0 ≡ PM , which reflects the
periodic boundary conditions of the quantum data bus. Furthermore, denote Xa,b,c = xa,b,c and
Pa,b,c = pa,b,c to make the notation more uniform. In these normal modes, we can write the
Hamiltonian equation (1) as

H(ε) = 1

2

[
M∑

k=1

P
†
k Pk + �2

kkX
†
kXk +

∑
i=a,b

P2
i + (1 + ε)X2

i

]
+

1

2
(X2

c + P2
c ) − εXa

M∑
l=1

�∗
1lXl

− εXb

M∑
l=1

�∗
klXl +

ε

2

∑
lm

(�∗
l1�

∗
m1 + �∗

lk�
∗
mk)XlXm.

Defining the annihilation operators

Ak = �kkXk + iP†
k√

2�kk

and Aa,b,c = Xa,b,c + iPa,b,c√
2

,

we can rewrite the Hamiltonian operator in terms of the Ak. Indeed, shifting the zero of energy
and moving to an interaction picture with respect to

H = 1

2

M∑
k=1

P
†
k Pk + �2

kkX
†
kXk +

1

2

∑
i=a,b,c

P2
i + X2

i ,

we find that

HI = ε

2
A†

aAa +
ε

2
A

†
bAb − ε

M∑
l=1

�∗
1l(Aae−it + A†

aeit) + �∗
kl(Abe−it + A

†
beit)

2
√

�ll

(Ale
−i�llt + A

†
M−le

i�llt)

+
M∑

lm=1

ε(�∗
l1�

∗
m1 + �∗

lk�
∗
mk)(Ale−i�llt + A

†
M−le

i�llt)(Ame−i�mmt + A
†
M−mei�mmt)

2
√

�ll�mm

. (7)
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In this interaction picture, we find for ε = 0 that AI
k(t) = AI

k(0) while for finite ε we have
d(AI

k(t))/dt = i[HI, A
I
k(t)]. In time-dependent perturbation theory using

AI
k(t + 	t) − AI

k(t)

	t
∼= i

	t

∫ t+	t

t

ds1[HI(s1), A
I
k(t)]

and setting 1
f

� 	t � 1
ε

we find that to first order in ε, the modes described by Aa and Ab

are only coupled to one collective mode, namely the centre-of-mass mode, described by AM .
Therefore, we can ignore the contributions from all other eigenmodes. Shifting the zero of energy
again, we finally obtain the simplified set of equations

Happrox = ε

2
A†

aAa +
ε

2
A

†
bAb +

2ε

M
A

†
MAM − ε

2
√

M
[(Aa + Ab)A

†
M + (A†

a + A
†
b)AM]. (8)

Now we write this Hamiltonian again in the quadrature components. Defining P ≡
(Pc, Pa, Pb, PM)T and X ≡ (Xc, Xa, Xb, XM)T we find

Happrox = PT VP + XT VX,

where

V = 1

2




0 0 0 0

0 ε

2 0 − ε

2
√

M

0 0 ε

2 − ε

2
√

M

0 − ε

2
√

M
− ε

2
√

M

2ε

M


 .

The above set of approximate equations of motion can be understood intuitively by a simple
mechanical model. Indeed they describe the motion of a very heavy central pendulum
(corresponding to the oscillators in the quantum data bus) that is coupled weakly to two
comparatively light oscillators. From undergraduate mechanics, we know that if one of the light
pendula is initially oscillating then, after some time, it would have stopped oscillating, while the
other light pendulum is now oscillating with almost the same amplitude while the heavy central
pendulum remains essentially at rest. From this simple mechanical picture, the dynamics in the
quantum setting that is described below can be understood quite intuitively.

That the above approximate Hamiltonian represents a good approximation to the true
dynamics can be seen from a comparison of the exact time evolution with that generated by
the approximate Hamiltonian. In figure 3 we chose a ring with 20 oscillators, f = 10 and
ε = 0.015. The observable mismatch between the frequencies is due to second-order corrections
to the approximate model. Furthermore, as the excitation of a quantum in the centre-of-mass
mode corresponds to the simultaneous in-phase motion of all the oscillators in the quantum data
bus and the fact that the oscillators a and b couple predominantly to the centre-of-mass mode
M also explains why the entanglement transfer is distance-independent. The frequency of the
centre-of-mass mode is independent of both the coupling strengths between oscillators in the
chain and possible disorder in which oscillators are coupled as long as there is a connected path
of coupled oscillators between a and b. Therefore, the transmission of quantum information
between a and b will depend only weakly on disorder and randomness. The main correction
arises when the frequency separation between the lowest two eigenmodes becomes small so that
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Figure 3. Comparison of the approximation and the exact time evolution for a ring
of 20 oscillators with f = 10 and ε = 0.015. The dotted line is the approximation
and the solid line is exact.

off-resonant couplings of the oscillators a and b to modes other than the centre-of-mass mode
become non-negligible. In the derivation of equation (8), we have neglected many terms that led
to oscillating contributions in the Hamiltonian. These neglected terms will lead to corrections
whose size will depend on the length M of the quantum data bus and will affect both the speed
of propagation and also its efficiency. As we can always adjust the waiting time, corrections
to the propagation speed are less relevant. An efficiency reduction due to population losses
is more serious as it will require the application of error correction methods. For the setting
described by the Hamiltonian equation (1), we will now present an estimate of the size of these
corrections. Indeed, following equation (7) we neglect all terms that couple the modes a and
b non-resonantly to eigenmodes different from the centre-of-mass mode. For a small coupling
strength ε, the rapid oscillations will reduce the population in these modes significantly. The
mode, other than the centre-of-mass mode, with the smallest oscillation frequency, will be the
mode M − 1. For large M, the frequency difference to the centre-of-mass mode is given by
	 = |�M,M − �M−1,M−1| 	 2π2f/M2 and the coupling strength to this mode is of the order of
ε/2

√
M. The loss of population into this mode, which is of the order of the square of the ratio

of coupling strength to frequency separation ∼ ( ε

2
√

M
)2(

2π2f

M2 )−2, should be small, i.e.

ε

f
� 4π2

M3/2
. (9)

From equation (8) we find that the relevant timescale for evolution is proportional to ε/(2M).
With equation (9) and for a prescribed transfer efficiency the transmission time therefore scales
as

T ∼ 2M

ε
∼ M5/2

2π2f
. (10)
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The error source that enters this scaling is the population loss to off-resonant modes. This suggests
that this scaling can be improved considerably when one allows for a fixed frequency difference
of the oscillators a and b compared to the oscillators in the quantum data bus such that the
oscillators a and b become resonant with a different collective mode whose frequency difference
to the neighbouring modes is as large as possible. Indeed, if we couple a and b to the mode
described by AM/4, i.e. if we shift the eigenfrequencies of a and b by 2f , then we find that
the next mode is separated by a frequency difference 	 = 2fπ/M and the coupling strength to
this neighbouring mode is again of the order of ε/2

√
M. As a consequence, the population loss

into other modes is again of order of the square of the ratio of coupling strength to frequency
separation to the next mode, i.e. ∼ [ε

√
M/(4πf )]2 and we only need to ensure that

ε

f
� 4π√

M
, (11)

so that the propagation time for fixed transfer efficiency scales as

T ∼ 2M

ε
∼ M3/2

2πf
. (12)

This improved scaling has been achieved by coupling the oscillators a and b, but it should be
noted that unlike the centre-of-mass mode M this mode will have nodes. As a consequence, there
will be relative positions of oscillators a and b such that they will not couple, namely, when one
is sitting at a node while the other is at an anti-node. Indeed, the M/4 mode has a node at every
second oscillator of the ring, so that the oscillators a and b couple only when their distance is an
even number of oscillators.

A question that arises naturally concerns the purity of the entangled state involving oscillators
b and c after the distribution. In order to investigate the purity of the state, various measures such
as the entropy S = −tr ρbc log2 ρbc or the linear entropy SL = 1 − tr ρ2

bc, where ρbc is the reduced
density matrix for the oscillators b and c obtained from tracing out the remaining oscillators, may
be used. In the following we will concentrate on the entropy which can be determined directly
from the four symplectic eigenvalues µi of the covariance matrix describing the state of particles
b and c [12]

S =
4∑

i=1

(
µi + 1

2
log

µi + 1

2
− µi − 1

2
log

µi − 1

2

)
. (13)

In figure 4 we plot the entropy of the state of particles b and c for the same parameters used in
figure 3 and one can see that for optimal times it comes close to zero indicating that the transferred
entanglement resides in an essentially pure entangled state. This fact further corroborates the
view that the data bus is a suitable tool for pure entanglement transfer.

Finally, we demonstrate that the above considerations are not restricted to the continuous
variable regime and the properties of Gaussian continuous variable states. Indeed, we can equally
consider a situation in which we restrict our dynamics to the subspace spanned by the vacuum
and those states that correspond to a single excitation. The derivation of the approximate model
starting from the Hamiltonian equation (1) remains of course valid. In the basis represented by
the states {|00〉ab|0〉M, |10〉ab|0〉M, |01〉ab|0〉M, |00〉ab|1〉M}, where |1〉M ≡ 1√

M

∑M

r=1 a†
r |vacuum〉,
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Figure 4. Entropy of the density matrix of the oscillators b and c for the same
parameters as in figure 3. Again the dotted line is the approximation and the solid
line is exact. The curves approach zero near the optimal time indicating that the
entanglement transfer leads to an almost pure state of particles b and c.

we can rewrite the Hamiltonian equation (8) as

Happrox = 1

2

(
2ε

M
− ε

2

)
(1 + σM

z ) − ε

4
√

M
[(σa

x + σb
x)σ

M
x + (σa

y + σb
y)σ

M
y ], (14)

which corresponds to a spin chain with an xy-interaction [13] under the same constraint of
considering at most a single excitation. This similarity between a harmonic oscillator systems
and a spin chain is not due to the approximations in the derivation of equation (8), but a generic
feature when one limits the number of excitations to at most one. A simple computation shows
that generally a harmonic chain in the rotating wave-approximation and the single excitation
regime will be equivalent to a spin chain with xy-interaction in the same regime.

Continuing in this setting of a spin chain, we now demonstrate that multiparticle
entanglement [14] can be generated with a quantum data bus extending the ideas employed
in the paper so far. While we focus on the discrete case, i.e. the spin Hamiltonian, one may carry
out a similar investigation for the harmonic oscillator case. For the purpose of the generation of
entangled states, there is no need of including the decoupled oscillator in the discussion. While
the ideas presented below may easily be generalized to many oscillators, let us, for simplicity,
consider three oscillators coupled to the chain. We assume that the oscillator a (b, c) couples to
oscillator 1 (k1, k2) of the quantum data bus with strength ε, so that the Hamilton operator of
this system is a generalization of equation (14) and is given by

H = 1

2

(
3ε

M
− ε

2

)
(1 + σM

z ) − ε

4
√

M
[(σa

x + σb
x + σc

x)σ
M
x + (σa

y + σb
y + σc

y)σ
M
y ]. (15)
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Let us now suppose that the initial state of the system is

|ψ(0)〉 = |1〉a|0〉b|0〉c|0〉M ≡ |1000〉, (16)

where a single excitation is initially present in oscillator a. The evolved state according to the
Hamiltonian equation (15) may then be written as

|ψ(t)〉 = a(t)|0001〉 + b(t)|1000〉 + c(t)|0100〉 + d(t)|0010〉, (17)

where, with the scaled time τ ≡ ε t

2 and the constant α ≡ 3−M

M
, as well as

C(M, τ) = cos

(√
12 + α2

M
τ/2

)
and S(M, τ) = sin

(√
12 + α2

M
τ/2

)
, (18)

the time-dependent coefficients are given by

a(τ) = i
e−iατ/2

√
12 + Mα2

C(M, τ),

b(τ) = 2

3
+

e−iατ/2

3

[
C(M, τ) + i

S(M, τ)√
12 + Mα2

]
,

c(τ) = d(τ) = −1

3
+

e−iατ/2

3

[
C(M, τ) + i

S(M, τ)√
12 + Mα2

]
.

(19)

From equation (19) we can see that in the limit of large M, the coefficient a(τ) tends to zero
indicating that the quantum data bus disentangles from the three oscillators and the result may
be a W state of the form

|Wx,y,z〉 ⊗ |0〉M = (x|100〉 + y|010〉 + z|001〉) ⊗ |0〉M. (20)

In order to see that this is the case, we plot the overlap between the W state equation (20) and
the evolved state obtained with the use of equations (17) and (19). For the case of 70 oscillators
in the chain, and the W state with x = −y = −z = 1/

√
3, it is shown in figure 5 that the overlap

is about 96%. The overlap is not complete due to fact that the population of the state |0001〉
does not vanish and that the coefficients of equation (19) have a small imaginary part. It should
be noted that the second of these effects can be reduced significantly by employing subsequent
local unitary rotations which are irrelevant when considering entanglement properties of a state.
In figure 6 we show the populations as a function of the scaled time τ. A more general situation
would allow for the variation of the coupling constants independently. In this case, different W

states could be generated by carefully choosing the coupling constants of the three oscillators.
The system Hamiltonian for this general setting is given by

H = εa

4
(1 + σa

z ) +
εb

4
(1 + σb

z ) +
εc

4
(1 + σc

z) +
εa + εb + εc

2M
(1 + σM

z ) − εa

4
√

M
(σa

xσ
M
x + σa

yσ
M
y )

− εb

4
√

M
(σb

xσ
M
x + σb

yσ
M
y ) − εc

4
√

M
(σc

xσ
M
x + σc

yσ
M
y ). (21)

The procedure for choosing the appropriate parameters for the generation of a particular quantum
state is described in the following. By solving the equations of motion using the Hamiltonian (21),
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Figure 6. Time evolution of the populations, |a(τ)|2 in red, |b(τ)|2 in green and
|c(τ)|2 = |d(τ)|2 in blue. The ring consists of 70 oscillators.

one obtains a(τ), b(τ), c(τ) and d(τ) defined in (17). They appear similar to equations (19) but
contain more terms due to the different frequencies involved in the time-evolution. The next step
is to choose the state |W〉x,y,z imposing specific x, y and z in equation (20) and ensure that they
are proportional to b(τ), c(τ) and d(τ), respectively, while at the same time minimizing a(τ) = δ

with δ � 1. The problem is then reduced to numerically solving a system of nonlinear coupled
equations (using Newton’s method, for instance). Due to the symmetry of the Hamiltonian (21),
not all |W〉x,y,z can be generated as not all phases between x, y and z can be generated. This is
related to the existence of solutions for this nonlinear system of equations. Finally, we also would
like to remark that the generation of bipartite and multipartite entanglement in spin chains is also
possible using other physical mechanisms such as defects in the XXZ model [15], for instance.

In summary, we have demonstrated that it is possible to transfer quantum information
with high efficiency but with minimal spatial and temporal control between arbitrary sites of a
translation-invariant chain of quantum systems. We have shown that this process works in the
continuous variable regime but also in the single excitation regime when the system becomes
equivalent to the dynamics exhibited by a single excitation in a spin chain with xy-interaction.
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This interaction may be generalized to include more oscillators coupled to the chain allowing the
generation of multiparticle entangled states. All these suggest that translation-invariant chains of
interacting quantum systems are promising candidates for the transport of quantum information
in solid state realizations of quantum information processing devices.
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