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A CRITERION FOR THE EQUIVALENCE 
OF THE BIRKHOFF-ROTT AND EULER DESCRIPTIONS 

OF VORTEX SHEET EVOLUTION 

MILTON C. LOPES FILHO, HELENA J. NUSSENZVEIG LOPES, 
AND STEVEN SCHOCHET 

Abstract. In this article we consider the evolution of vortex sheets in the 

plane both as a weak solution of the two dimensional incompressible Euler 

equations and as a (weak) solution of the Birkhoff-Rott equations. We begin 

by discussing the classical Birkhoff-Rott equations with respect to arbitrary 

parametrizations of the sheet. We introduce a notion of weak solution to the 

Birkhoff-Rott system, and we prove consistency of this notion with the classical 

formulation of the equations. Our main purpose in this paper is to present a 

sharp criterion for the equivalence of the weak Euler and weak Birkhoff-Rott 

descriptions of vortex sheet dynamics. 

1. Introduction 

There are two distinct points of view in the mathematical description of interface 

dynamics. The more natural one is to explicitly propagate the interface itself using a 

time-dependent parametrization. An alternative approach is to embed the interface 
into the solution of a partial differential equation which can be evolved, carrying the 
interface with it. We will refer to the former as the explicit approach to interface 

dynamics, while the latter will be called the implicit approach. See [32] for a broad 
discussion and several instances of this dychotomy. 

Vortex sheet evolution in two-dimensional, incompressible, ideal fluid flow is a 
classical example of interface dynamics for which both points of view have been 

widely addressed. The explicit approach in this context makes use of the Birkhoff 
Rott equations. This system was originally derived by G. D. Birkhoff [3], and it 
is implicit in the work of N. Rott [35]. For the implicit point of view one uses 
the incompressible 2D Euler equations, regarding the vortex sheet as a feature of a 

suitably defined weak solution. The purpose of the present work is to establish a 

sharp smoothness criterion for the equivalence of these descriptions of vortex sheet 
motion. 

The physically meaningful notion of generalized solution for the Euler equations 
is the weak form of the momentum equations for velocity and pressure, known as the 

weak velocity formulation. Indeed, the weak velocity formulation is an integral form 
of conservation of momentum, and therefore, it is close to physical first principles. 
In the problem of vortex sheet evolution, an alternative weak formulation, known as 
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the weak vorticity formulation, has proven to be more tractable. The weak vorticity 
formulation has been shown to be equivalent to the weak velocity formulation in all 
situations under consideration in this work; see [7, 37]. In this context, it is natural 
to ask whether the BirkhofT-Rott description of vortex sheet evolution is equivalent 
to these weak formulations as well. 

The problem of equivalence between Birkhoff-Rott and the weak forms of 2D 
Euler may be regarded as solved in the case of vortex sheets with smooth densities 
on smooth curves. Although there is no complete proof available, the proof of 
Theorem 6.1.2 in [27] (which assumes that the vortex sheet is a graph) can be easily 
adapted to establish such a result in general. On the other hand, it was recently 
shown, see [21], that a well-known exact solution of the Birkhoff-Rott equations fails 
to satisfy both the weak vorticity and the weak velocity formulations. Our main 
result is to show that, if the vortex sheet is a regular curve, for each fixed time, then 
the condition for equivalence is that the vorticity density be square-integrable with 

respect to arclength. The example in [21] shows that the integrability condition 
on the vorticity density is sharp. The definition of regular curve is standard in 
harmonic analysis, see [6]; a rectifiable curve is regular if its intersection with a ball 
of radius r has length 0(r). 

In this work, we require a weak formulation of the Birkhoff-Rott equations. This 
is not a standard topic, and therefore, we must treat it at length. A special case 

of the weak Birkhoff-Rott equations formulated here was given in equation (6.1.14) 
of [27] for vortex sheets which are graphs. Furthermore, the argument used in [27] 
to establish equivalence between Birkhoff-Rott and 2D Euler in the smooth case 

should, in principle, be extendable to the weak solutions considered here. The 

method of proof we use is completely different. To motivate our particular weak 
formulation of the Birkhoff-Rott equations we have stated and proved a consistency 
result, namely, that the weak formulation of Birkhoff-Rott plus minimal regularity 
assumptions is equivalent to classical Birkhoff-Rott. 

In order to properly contextualize our results we will give a brief account of 
the literature on vortex sheet evolution. Vortex sheets are a classical topic in 

fluid dynamics. The complicated evolution of vortex sheets is a natural source 

for the spontaneous appearance of small scale motion in incompressible fluids, an 

observation dating back to H. Helmholtz in 1868 (see the discussion and references 
in [1]). This motivates the continuing interest of the topic. The source of the small 

scales can be identified with a feature of vortex sheet motion, known as Kelvin 

Helmholtz instability, see [36] and the references therein. 
In the classical paper [29] D. Moore presented a theoretical account of how the 

Kelvin-Helmholtz instability could drive a real analytic vortex sheet to form curva 

ture singularities in finite time. This work was later made rigorous by a number of 

authors, including results on existence of a local-in-time solution to Birkhoff-Rott 
for analytic initial data, [4, 11, 39] and formation of Moore's singularity [5, 11]. Af 

ter singularity formation one expects vortex sheet roll-up. Numerical studies, see 

for example [17], illustrate the expected presence of double-branched spiral vortex 

sheets after singularity formation for periodic perturbations of a planar sheet. One 
is naturally led to study self-similar spiral shaped vortex sheets. The existence of 

exact self-similar spiral solutions of the Birkhoff-Rott equations goes back to an 

example due to L.Prandtl, generalized by T. Kambe; see [15, 33]. These are exam 

ples of finite length logarithmic spirals. However, the generic roll-up after Moore's 
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singularity and the roll-up of the elliptically loaded wing (another classical exam 

ple) [16, 17, 18, 28] seem to lead to infinite length algebraic spirals for which no 

rigorous existence is known. An asymptotic description of self-similar solutions of 
the Birkhoff-Rott equations with algebraic spirals was first presented by Kaden [14] 
and generalized by Pullin [34]. The Birkhoff-Rott equations are elliptic in nature, 
and there is a strong analogy between the Kelvin-Helmholtz instability and the 
Hadamard instability of the Cauchy problem for Laplace's equation. In particular, 
the explicit approach to the vortex sheet evolution problem is rather ill posed. Rig 
orous results in this direction have recently been presented by G. Lebeau and also 

by S. Wu;see [19, 40]. 
The implicit approach to vortex sheets was pioneered by R. DiPerna and 

A. Majda in a series of papers [8, 9, 10], where they outlined a program for proving 
existence of weak solutions for the incompressible 2D Euler equations with vortex 
sheets as initial data. The DiPerna-Majda program was carried out in the case 
of steady weak solutions but remains open in general [12, 24, 31, 41]. In 1990, J. 
M. Delort proved the existence of a global-in-time weak solution for the vortex sheet 
initial data problem with distinguished sign [7]; see also [13, 20, 25, 37, 38]. A global 
in-time existence result has also been proved in the case of mirror-symmetric flows 

with distinguished sign vorticity on each side of the mirror [23]. Delort's Theorem 
and its mirror-symmetric extension provide the existence of a meaningful evolution 
for certain vortex sheets beyond singularity formation but give no information on 

their structure. 

The remainder of this article is divided into three sections. In the next section 
we describe various formulations of both the Euler equations and the Birkhoff-Rott 

equations, and we discuss the consistency of the weak formulation of the latter. 
The following section contains the precise statement and proof of the equivalence 
between weak Birkhoff-Rott and the weak vorticity formulation of 2D Euler, as well 
as the discussion of the sharpness of this result. The final section contains some 

interpretations of the work presented, as well as open problems and conclusions. 
This work contains a complete answer to a problem formulated by S. Wu at the 
end of [40]. 

2. Vortex sheet equations in weak form 

This section is divided in three subsections. In the first we recall the weak 

vorticity formulation of the 2D incompressible Euler equations, implementing it in 
the special case where vorticity is concentrated on a curve. In the second subsection 
we discuss the derivation of the several forms of the Birkhoff-Rott system. In the 
third we introduce a notion of weak solution of the Birkhoff-Rott equations, and 
we prove consistency of this notion with the classical form of the equations. 

2.1. Weak forms for the vorticity equation. The vorticity formulation of the 
2D incompressible Euler equations is 

(2.1) u/ffu- Vo; = 0, 

(2.2) u = K*u, 

(2.3) u(x,Q)=u0(x), 
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with 

(2.4) K(x) 
x^ 

27rb| 

where (xi,x2)'L 
= 

(?x2,x\), u is the vorticity, u = (ui,u2) is the velocity and 
K = 

(Ki,K2) is the kernel of the Biot-Savart law. This system of equations can 

be reformulated in several different ways that are relevant for comparison with the 
Birkhoff-Rott equations. First, the Lagrangian representation is obtained by noting 
that (2.1) says that u is preserved along the particle trajectories having velocity u, 
i.e., 

(2.5) w(*(zo, t),t) 
= 

o;0(x0), where 

(2.6) jt*(x0,t)=u(y(x0,t),t), 
(2.7) *(xo,0)=xo, 

with u defined as before by the Biot-Savart law (2.2). 
Vortex sheet flows have vorticities which are Radon measures supported on rec 

tifiable curves. In order to study such flows we require a weak formulation of the 

vorticity equation. There are actually two versions: The traditional weak vorticity 
formulation (e.g. [27]) is obtained by multiplying (2.1) by a smooth test func 
tion (p having compact support in [0, T) xR2, integrating over space and time, and 

integrating by parts, which yields 

(2.8) / / uj(x,t) {(ft + u(x,t) V</?} dxdt + / uo(x)(p(x,0)dx = 0, 
Jo Jr2 Jr2 

with u still given by (2.2). 
The velocity associated with a vortex sheet is, in principle, discontinuous on the 

sheet, a fact which we will discuss in great detail later. The discontinuity at the 
sheet implies that the term uju-Vtp appearing in (2.8) is not well defined. However, 
this difficulty can be overcome by considering an alternative weak formulation as 

follows. 

The modern weak form can be obtained [37] from (2.8) by substituting u by 
K * u, see (2.2), and replacing the factor multiplying uj(x, t)uj(y, t) in the result by 
its symmetric part. This yields 

(2.9) / / (ptuj(x,t)dxdt-r / / / H(p(x,y,t)u)(y,t)uj(x,t)dxdydt 
Jo Jr2 Jo Jr2 Jr2 

+ / (p(x, 0)u;o(^) dx = 0, 
Jr2 

where the function 

i,(l,?,()s!*b?i.i[(,-ll 
is continuous for x ^ y, and it is also bounded. 

Let CBM denote the space of bounded Radon measures with no discrete part. 

Definition 2.1. Let u G L??((0,T);C?X(R2)). We will say that u is a weak 
solution of the Euler equations with initial data u0 if, for any test function (p G 

Cc??([0,T)xIR2), (2.9) holds. 
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For smooth vorticities u decaying sufficiently rapidly at infinity, all four formu 
lations (2.1)-(2.3), (2.5)-(2.7) plus (2.2), (2.8) plus (2.2), and (2.9) are equivalent 

[7, 27, 36, 37] to each other and to both the classical and weak [8] velocity for 
mulations of the Euler equations. Moreover [7, 37], the modern weak formulation 
remains equivalent to the weak velocity formulation assuming only that the vorticity 
lies in L??([0,T\,BM) nL??([0,T\,H??). 

It was shown in [37] that the modern weak vorticity formulation makes sense 
whenever the vorticity is a bounded measure having no discrete part. In particular, 
it makes sense when the vorticity is a measure concentrated along a smooth time 

dependent curve. 

Let Ct be a smooth, time-dependent curve, 

(2.10) ?:={? = ?(*,*) I *><*<*!}, 

parametrized by arclength. Let 7 = 
7(0, i) be a smooth density and specify the 

vorticity to be the measure u = uj(x,t) 
? 

7?ct defined through the identity 

(2.11) <u;(., t),<p)= f1 7(5, t)<p(?(s, t))ds, 
Js0 

for any test function ip G C^?(R2). We assume that the initial vorticity is of the 
same form. If u; satisfies Definition 2.1, then we substitute (2.11) into (2.9) to get 

if JO Js( 
(pt(?(s,t),t)j(s,t)dsdt 

so(t) 

(2.12) + / / / H^(r,t)^(s,t),t)7(r,th(s,t)drdsdt JO Js0(t) Js0(t) 

fsi(0) 
+ ^?o(s),0)7oOOds = 0, 

Jso(O) 

2.2. The Birkhoff-Rott system. We will now change our point of view, dis 

cussing the explicit approach to vortex sheet evolution. Our objective is to examine 
the equation for the evolution of the sheet with respect to an arbitrary parametriza 
tion. To this end let us begin by considering the linear problem of transport, by a 
smooth vector field, of a measure concentrated on a smooth curve in the plane. 

Fix v a given smooth vector field in the plane. Denote by X = Xt the flow to 
time t generated by v. Let ?jlq be a Radon measure on the plane. We say that 

\i = /?(-,t) is the transport by v of the measure /x0 if? for any Borelian subset 

E?12, we have: 

v(E,t) 
= 

tio(X-t(E)). 

It is not hard to see that, if /j,q = 7o?c0? tnen tne transport by v is of the form 

/i(-, t) 
= 

7?ct with Ct = Xt(Cc?). Furthermore, under the same hypothesis, if ?? ? Ct 
is the transport of a portion ?0 of Co, then 

(2.13) ? / 7 d? = 0. 
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Lemma 2.1. Let /?o = 7o^c0 be a Radon measure with support on a smooth curve 

Co. Let \x = ?i(-, t) be the transport by v of the measure ?iq. 
Let y = y(rj,t) be a parametrization of Ct and denote 

ds 
a(r),t) :=j(s(rj,t),t) 

? , 

where s = s(rj, t) is arclength with respect to a reference point. 
Then there exists a = a(rj,t) such that the following equations are satisfied: 

(2.14) 
| 

Vt + ayrj 
= 

v, 

at + (aa)v 
= 0. 

Proof. Consider a parametrization of Co, zq = zq(6), 6 e I C R, and we assume 
for convenience that 0 ? I. Let z(6,t) 

= 
Xt(zo(9)) be a (Lagrangian) parametriza 

tion of Cf. Let s = s(0,t) be the arclength along C* between z(0, t) and z(6,t). 
Then 6 i-? s(6,t) is an invertible change-of-variables. We write ? 

= 
?(s,t) for the 

parametrization with respect to the arclength 5, measured from z(0,t). 
With this notation it is a straightforward calculation to verify that 

?t + a(s,t)?s 
= v, 

with 
ds 

a(s,t) 
= 

-(6(s,t),t). 

Next, implementing the condition (2.13) gives, for any 6$, 0\, 

d r9^1^ - 
/ <y(s,t)ds 

= 0. 

From this integral equation it follows easily that 

7t 4- (a(s,t)^)s =0. 

If y = y(r?,t) is any other parametrization of Ct and if a = 
75^, then it is 

immediate that y and a satisfy (2.14) with 

/ ,x a(s(r),t),t)-st(rj,t) 

aM)==?h??J) 
This concludes the proof. D 

Remark. System (2.14) is an explicit description of the propagation of a curve which 

corresponds to the implicit description given by the equation fit + div (vfi) 
= 0, in 

the sense of distributions. Note that the function a is a free parameter in (2.14), not 
a variable. Each choice of a gives rise to a different parametrization of the evolution 
of the same time-dependent measure. System (2.14) shows that to propagate such 
a measure all we require is the propagating velocity field on the curve itself. 

Now let us return to the vortex sheets themselves. We assume vorticity is of the 
form u = j?ct1 and we parametrize Ct by a function y = y(rj, t), with a ? 

jds/drj, 
as before. The velocity associated to points x outside the vortex sheet can be 

expressed by the Biot-Savart law (2.2): 
rm 

(2.15) u(x, t)= K(x 
- 

y(rj, t))a(n, t)drj, 
Jilo 

with K given by (2.4), since a already includes the element of length of the curve. 
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It is a well-known fact that the flow (2.15), induced by the vortex sheet, is 
discontinuous across the sheet. More precisely, the normal component of u at Ct 
is continuous, whereas the tangential component has a jump discontinuity with 

magnitude given precisely by 7. These are nontrivial facts, and the reader may 
consult [36] for a thorough discussion. 

Observe that the motion of the curve Ct is completely determined by the ex 
tension to Ct of the normal component of u. On the other hand, to propagate the 

density 7 in an explicit manner one needs to make a choice of tangential component 
of velocity on the sheet. This choice must take into account the nonlinear nature 
of the problem, in a way that we will explore later. For the present discussion, 
let us simply consider the standard choice, which is to prescribe the velocity of 
the sheet as the arithmetic mean of the limit velocity from each side of the sheet. 
This arithmetic mean, when calculated using the velocity defined by (2.15), can be 

expressed as a principal value integral in the following way: 

(2.16) U[y;G](rj,t)=p.v. ? 
* 
K{y(n,t) 

- 
y(n>',*)MV',*)*/ 

J an 

lim / <^0+ Jlvi 
K(y(r},t)-y(r1f,t))G(r]f1t)dr1,] 

'l?/(*?,*)-?/fa',*)l>* 

see [36]. 
We use the vector field U to propagate uj = 7?ct. We assume that the evolution 

of lu can be described by a system of the form (2.14) with transporting velocity 
v = U as follows: 

/917x / yt + a(rj,t)yT]=U[y;G}, [?'U) 
\ *t + (aM?cr), 

= 0. 

System (2.17) is a general form of the classical Birkhoff-Rott system. One may 
close system (2.17) by prescribing a. For instance, if one assumes that the vortex 
sheet is the graph of a function of x, and parametrizes it using x itself, then a is the 
first component of U[y\ <j]; see [27]. The choice of a Lagrangian parametrization, i.e., 
such that dy/dt 

= 
U[y-,G], corresponds to choosing a = 0. The scalar a measures 

how much the evolution of a chosen parametrization fails to be Lagrangian. The 
circulation parametrization T = T(s,t) 

= 
f^ j(sf,t) dsf, with s being arclength, is 

a special case of Lagrangian parametrization for which g = 1. It gives rise to the 
traditional form of the Birkhoff-Rott equations, 

1 ? 1 
dtz = 

?p-v. I ???r-??r dT' 
2^ J z(T,t)-z(r,t) 

' 

where we have switched to complex variable notation for the position of the sheet. 
In this work, we will choose to parametrize vortex sheets by arclength. In this 

case, the function a must become another unknown and the Birkhoff-Rott equations 
become: 

(2.18) 7t + (a(s,?b)s = 0, 
?? 1. 

One may also fix the origin of the arclength parametrization by taking a(0, t) 
= 

0; 
see [40]. 
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Remark. How does one justify the use of the arithmetic mean in extending the 
Biot-Savart velocity to the vortex sheet? This is, in a sense, the key issue behind 
the present work. One could offer a convincing argument, approximating the evo 
lution of the vortex sheet by desingularizing the Biot-Savart kernel, using Lemma 
2.1 for this situation to get an approximate Birkhoff-Rott system and passing to 
the limit. This can be done rigorously if we assume that the approximate evolution 
is convergent and if we also show that natural desingularizations indeed lead to the 

principal value integral (2.16). A stronger version of the argument outlined above 
was carried out by Benedetto and Pulvirenti, who proved that the evolution of vor 
tex sheets by Birkhoff-Rott is the asymptotic description of thin shear bands under 
the Euler equations; see [2]. Another possibility is to argue that the arithmetic 

mean is the only extension that leads to vortex sheet evolution compatible with 2D 
Euler. This approach has been carried out in several manners; see [3, 26, 27, 36]. In 
all cases, smoothness of the vortex sheet and its density have been assumed. One of 
the motivations of the present work is to determine how irregular the vortex sheet 
can be, while retaining the compatibility of the choice of arithmetic mean in (2.14) 
with incompressible 2D Euler. 

2.3. Weak form of the BirkhofF-Rott system. Our goal is to compare solutions 
of the Birkhoff-Rott equations and of the vorticity equation having limited smooth 
ness. To do so, we require a weak formulation of the Birkhoff-Rott equations. Such 
a weak formulation can be obtained by formally substituting the vorticity (2.11) 
into the traditional weak formulation of the vorticity equation, given by (2.8) and 

replacing u by U. We use the traditional rather than the modern weak formulation 

(2.9) of the vorticity equation because, as we have discussed in the previous sub 

section, the hallmark of the Birkhoff-Rott equation is the choice of the arithmetic 
mean in extending velocity to the sheet, or equivalently, the introduction of the 

principal value in the integral defining the velocity. The issue is that the velocity 
does not appear in the modern weak formulation of the vorticity equation. Plugging 

(2.11) into (2.8) and replacing u by U yields 

(2.19) / / \(s, t) {<pt(?(s,t),t) +U[t,7}(s,t) -Vv(?(s,t),t)} dsdt 
JO Js0 

+ 
f 

X 
7o(?M6>(*),0)da = 0. 

Js0 

Definition 2.2. Let Ct = {? 
= 

?(s,t) \ so(t) < s < s\(t)} be a rectifiable curve 

for each t G [0,T). Let 7 = 
7(5, t) G Loo((0,T)-,L1(ds)) be such that W[&7] is 

defined and 7??[?;7] G Loo((0,T);L1(ds)). We say that (7,0 is a weak solution of 

the Birkhoff-Rott equations with initial data (70, ?0) if (2.19) holds for every test 

function if G Cc??([0,T) x R2). 

Our next step is to prove that Definition 2.2 is compatible with the Birkhoff-Rott 

system (2.18). For vortex sheets of finite length we will need to supplement (2.18) 
by (moving) boundary conditions. It is natural to assume that the endpoints so(t) 
and si(t) of the curve are material trajectories, although this hypothesis will only 
be needed when the vorticity density is nonzero there. We will therefore assume 

that 

(2.20) l(si(t),t) [?{(*) 
- 

a(Si(t),t) = 0], i = 0,1. 
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Even when the vortex sheet has infinite length, if it is contained in a bounded 

region, then some form of boundary condition is still needed. It will suffice to 
assume in this case that 

fsi(t) 
(2.21) / \>y(s,t)\ds<c<oo, 

Js0{t) 

which is reasonable since it makes the mass of vorticity locally finite. 

We now show that for smooth enough functions ? and 7, being a weak solution 

of the Birkhoff-Rott equations using arclength parametrization is equivalent to 

satisfying the classical Birkhoff-Rott system (2.18): 

Theorem 2.2. Let ? 
= 

?(s,t), 7 = 7(s, t) and a = a(s,t) be solutions of (2.18) 
in C?(fi), where Q := {(s,t)\so(t) < s < si(t),0 < t < T}. Assume also that 

if an endpoint Sj(t) is finite, then (2.20) is satisfied, while if Sj(t) is infinite but 

?(sj(t),t) is finite, then (2.21) holds. Then (7,?) is a weak solution of the Birkhoff 
Rott equations with initial data (7(s,0),?(s,0)) in the sense of Definition 2.2. 

Conversely, suppose that (7, ?) is a weak solution of the Birkhoff-Rott equations 
with initial data (70, ?0) in the sense of Definition 2.2; where s is an arclength 
parameter and at each fixed time ? is one-to-one except that ?(si(t),t) is allowed 
to equal ?(so(t),t). Assume in addition the following prescribed regularity: 

(1) The parametrization ? and the density 7 are C\ onQ. 

(2) The velocity ?/[?; 7] is C? on ?. 
(3) If\si\ < oo7 then s{ is C?([0,T)). 

Then 7 and? satisfy (2.18) and (2.20) with a := ?S-[W 
? 

?*], except that the equation 

for ? need not hold in any open set on which 7 vanishes identically. 

Remarks. (1) Suitably interpreted, Theorem 6.1.1 of [27] shows a version of 
the first half of Theorem 2.2 for vortex sheets parametrized by one of the 

components of x. To see this, note that, as remarked on the next page 

there, the integral J uju is not well-defined on the curve but must be given 
meaning via a principal-value integral. 

(2) The proviso that the evolution equation for ? need not hold where 7 vanishes 
is reasonable, since such regions are in essence not really part of the vortex 
sheet. Furthermore, the evolution equation for 7 implies that if it is nonzero 

everywhere on the sheet initially it will remain so at later times. 

Proof. Let ? = ?(s,?)> 7 = 
7(s^) an(i a ? ?(s,t) be C\ solutions of (2.18). In 

the following calculations we will assume that (so(t),si(t)) is a bounded interval 
for each 0 < t < T, but the case when either or both Sj are infinite will also be 
treated. Let ip belong to C??([0,T) x R2). Multiplying the equation for 7 in (2.17) 
by ?<p(?(s,t),i), integrating over s and ?, and then integrating by parts yields 

(2.22) 
?T ?sx{t) 

^0 Js0{t) 
rT f8l(t) ? 
I j 7 [ft + 6 V<p + a?s V<p] ds at 

Jo Js0(t) 

fsi(0) pT 
+ / 7(*,0M?(*,0),0)d5+ / 7H,=wt)[*?W-a(s?(*),* 

Jso(O) JO 
3K } 

3=0 
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If Sj(t) is finite, then the corresponding boundary term vanishes by (2.20). If Sj(t) 
is infinite and ?;(sj(t), t) is also infinite, then that boundary term vanishes because p 
has compact support. If Sj(t) is infinite but ?(sj(t)) is finite, then the integrability 
of 7 combined with the boundedness of its derivative implies that 7 tends to zero 
as s ?? Sj, so that the boundary term still vanishes. Upon taking into account the 

equation for ? in (2.17), (2.22) reduces to 

fT rii(i) 
0= / / 7(5,0 [M^t),t) +U[?,i](s,t).V<p(?(s,t),t)]d8 

Jo Jsn(t) 
at 

/O Js0(t) 
r*i(0) 

+ / 7(s,0)^(s,0),0)ds, 

which shows that (2.19) holds with 7o(s) = 7(s, 0) and ?o(s) ? ?(s,0). Since 7 lies 
in L1 by assumption, and the conditions on ? and a imply that U is bounded, the 

other conditions of Definition 2.2 are also satisfied. 

Conversely, let 7 and ? be a weak solution of Birkhoff-Rott in the sense of 

Definition 2.2 satisfying the regularity assumptions in the statement. Again, we 

will assume in our computation that so(t) and s\(t) are finite; if not, then the 

boundary terms vanish. Let p G C%?([Q,T) x R2). Taking p(x,t) 
= 

e~t/eip(x) in 

(2.19), letting e ?> 0, and using the assumed regularity shows that ?o(s) 
= 

?(s,0) 
and 70(5) 

= 
7(5,0). Integration by parts in (2.19) therefore yields 

(2.23) 

0 = / / 7(5,t) [<pt(?(s,t),t)+U- Vp(?(s,t),t)] ds 
Jo Js0(t) 

fsi(0) 
/ 7(*,0M?(s,0),0)cfa 

Jsn(O) 

dt 

p(^t),t) + {U-^t}'Vp(^t),t) 

+ , 
*o(0) 

fT fSl(t) = 
/ ^S^\Ht Jo Js0(t) ldt 

rsi(0) 

+ / 7(s,0M?(*,0),0)<te 
Js0(0) 

= 
/ / j{U - & -Vip(?(s,t),t) --ytp(?(s,t),t)dsdt 
Jo Js0(t) 

dsdt 

-f Jo 
7^ S = Sj (t) 3 *; (*) 

3=1 

dt. 

j=0 

Since ?(s, t) is an arclength parametrization at each fixed time, |?s| 
= 1, and hence 

U - 
?t 

= 
a(s, t)?s -r b(s, ?)?^ with a = ?s [U 

- 
?*] being continuous. Substituting 

this into (2.23) yields 

(2.24) 

0 = / / [ajdsp(?(s, t),t)- 7i?>(?(?, *)>*)] d* eft 
/aoW 

rT r*i(t) fT fsi{t) fl 
+ / / bj&.V<p((;(s,t),t)dsdt- 7<Hs=wt)4W 70 Jsn(t) JO 3K ' 

j = l 

d*. 

3=0 
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Since no time derivatives are applied to ip in (2.24), taking ip ? rj?(t)i?(x) with 

rje(t) ?> ?(t 
- 

t0) shows that for every t G (0, T), 

fsi(t) 0= / [a7^(?(5,?))-7^(?(5,?))]d5 
(2.25) 

Js?(t) 
m V y 

/??lit) J = 1 

+ / 67fsX ' 
^tts,t))ds-^\s=s.(tMt) 

. 
Js0(t) 

JW 
j=0 

Now pick any 5* G (so(t), Si(?)), and take 

il>(x) 
= 

?(8.,t)-[x-Z(8.,t)] -^-?, 

where 77 is an even C?? function. Since 

?(5, ?) 
- 

?(5*, ?) 
= 

?s(s*, t) (5 
- 

5*) + 0(5 
- 

s*), 

we obtain the estimates |?(?M) 
? 

?(s*,?)| 
= 

0(\s 
? 

5*1), 

^(s, t)) 
= 

o(s 
- 

s*) -^-J-, e 

and 

? .s.in/fl*-g(?..?)la\ 

&(,.,*) v^(m))=0((g^))n ;2 j. 
Plugging these estimates into (2.25) and noting that the boundary term there van 
ishes for e sufficiently small yields 0 = C7(s*,?)6(s*,?) + o(l) for some nonzero c, 

which shows that b times 7 vanishes identically. Hence (2.25) reduces to 

rsi(t) j=l 

(2.26) 0 = / [a7^(?M)) 
- 

7tV>(?(M))] d* - 
7^L=aj(t)*?W 3=0 

In particular, 

(2.27) 0 = / [a7?W(?(*, *)) - 7t^(? (*, *))] ds 
Js0(t) 

for every ^ that vanishes at the endpoints Sj(t). This implies that ?17 is differen 
tiable with respect to s for so(t) < s < si(t) and (aj)8 

? ?7?, i.e., the equation for 

7 in (2.17) holds. Furthermore, since by construction ?? + a?s ?U = 
6?^, the fact 

that 67 vanishes identically shows that the evolution equation for ? holds wherever 

7 is nonzero. Since the expression ?? + a?s 
? U is continuous it must then vanish 

except on open sets where 7 vanishes identically. 
Finally, when at least one Sj is finite, then integrating by parts in (2.26) now 

shows that 
3=1 

0 = 
^\s=sj{t)[sfj(t)-a(sj(t),t)} 

, 
j=o 

and this implies (2.20) whether the Sj are distinct or not. D 
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Remark. One of the issues that made the proof above long was our concern for 

including as many plausible examples of vortex sheet evolution as possible. For 

example, the Kaden spiral, periodic sheets and closed sheets all may be considered 
as smooth solutions. 

3. Equivalence of weak formulations 

This section is also divided into three subsections. In the first one we recall 
the concept of regular curves and G. David's result on Cauchy integrals on regular 
curves. In the second subsection we stale and prove our main result, the criterion 

for the equivalence of Birkhoff-Rott and 2D Euler for vortex sheet evolution. In the 
final subsection we recall an example that establishes the sharpness of the criterion 

presented. 

3.1. Regular curves. Let us begin by recalling the concept of regular curve. A 
rectifiable curve C is called regular if there exists a constant A > 0 such that for 

any disk Dr of radius r > 0, 

(3.1) \CDDr\<Ar, 
where \C D Dr\ represents the length of this segment of curve. 

Let C = {? 
= 

?(s)} be a rectifiable curve parametrized by arclength, with s G 

(ao,ai). Let W* be the maximal operator associated to U, i.e., 

W*[7] =sup 
?>0 / *(?(*)-?(?'))7(*>' J\?(s)-?(s')\>e 

Theorem 3.1 (G. David, [6]). Suppose thatC is a regular curve and let 1 < p < oo. 

Then the maximal operator 7 1?> U*[y] is a bounded sublinear operator from Lp(ds) 
into Lp(ds). Conversely, if there exists a continuous linear operator U : L2(ds) ?> 

L2(ds) such that, for any 7 G C?(ds) and for any So such that ?(so) does not belong 
to ?(Supp(7)), it holds that W[?;7](s0) = f K(?(s0) 

- 
?(s'))7(V)ds', then C is a 

regular curve. 

Remark. (1) The result above was originally stated as a characterization of 
the rectifiable curves C in the complex plane such that the Cauchy integral 
defines a bounded operator from L2(C) to itself, namely, Theorem 2 in [6]. 
One may identify the integral in the definition of U* with a Cauchy integral 
by introducing the usual identification of R2 with C. In addition, we stated 
David's result in Lp, thereby incorporating the comment made immediately 
after the proof on page 174 of [6]. 

(2) As remarked in [6], it follows that in the case of parametrization by ar 

clength, W[?;7] is defined ds-almost everywhere. Furthermore, U defines a 

continuous linear operator from Lp(ds) to itself. 

3.2. The equivalence theorem. We are now ready to state and prove our main 

result. 

Theorem 3.2. Let Ct = 
{? 

= 
?(s,?)|so(t) < s < ai(t)} be a regular curve 

parametrized by arclength, 0 < t < T. Assume that the constant A in the defi 
nition of a regular curve, (3.1), may be chosen independently oft. Let 

7GLoo([0,T);L2(ds)nL1(ds)). 
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EQUIVALENCE OF EULER AND BIRKHOFF-ROTT 4137 

Then (7, ?) is a weak solution of the Birkhoff-Rott equations with initial data (70, ?0) 
if and only if uj = jSct is a weak solution of the weak vorticity formulation with 

initial data u?q = 7o^c0? ^0 ? {? 
= 

?o(s)} 

Before we proceed with the proof, let us emphasize that the only ?/portion of this 

result assumes that the weak solution of 2D Euler has the structure j?ct Although 
existence of weak solutions with initial data of this kind has been established in 

certain cases, their structure is not known a priori. 

Proof. There are two steps in this proof. The first step is to show that the identities 

(2.19) and (2.12) are the same under the hypothesis of this theorem. The second is 

to show that the regularity requirements in Definitions 2.2 and 2.1 are equivalent 
in this case as well. 

We begin by showing that the identities (2.19) and (2.12), involving the test 

function (p G C??([0, T) x M2), are the same. First note that we need only consider 

the nonlinear term in each identity. We will show that, under our hypothesis, we 

have 

rT ,ai(t) pi pS!{l) 

/ / V^(?(s, *),*) ?Y[?; 7] (s, t) 7(5, t)dsdt 
Jo Js0(t) 

pT pSl(t) pSl(t) = 
/ ^(?(r,t),?(s,?),?)7(r,?)7(5,t)drdsd?, 

Jo Js0(t) Js0(t) >s0(t) Js0(t) 

for any test function (p. We start by recalling that 

W[&7] =W[f;7](M) = lim, / #(?M)-?M)bM)dr. 
^0+J\^s,t)-^r,t)\>s 

Fix e > 0. Denote by A?(r, s, t) := ?(5, t) 
- 

?(r, t). Note that 

rT f8l(t) pl paw) p 
\ 

/ / Vp(?(M),i) ' 
/ K(At(r,s,t))>y(r,t)dr <y(s,t)dsdt 

Jo Js0(t) \J\A^(r,s,t)\>e ) 

pT pSl(t) p 
(3.2) = 

/ / / Vip(?(s,t),t) K(Az(r,s,t))7(r,t)7(s,t)drdsdt 
Jo Jso(t) J\A?(r,s,t)\>e 

rT fSl(t) pi ps^t) p = - 
/ Vy>(ti(r,t),t) 

- 
K(Az(r,s,t))7{s,th(r,t)dsdrdt, 

Jo Js0(t) J\A?(r,s,t)\>e 

exchanging s with r and using the antisymmetry of the kernel K, 

pT pSl(t) p 
(3.3) =-/ / / V^(r,t),t)-K(Az(r,s,t)h(s,t)j(r,t)drdsdt, 

Jo Js0(t) J\A?(r,s,t)\>e 

using Fubini's theorem. 

Hence, adding 1/2 of (3.2) to 1/2 of (3.3), we find that 

rT f8l(t) 

[ I' Vv>(?(M),f)- ( / if(A (r,5,?))7(r,?)dr)7(s,0d5d? Jo Js0(t) \J\Ae(r,s,t)\>e J 

pT pSl(t) p = 
/ H^r.tUis^t^ir^is^drdsdt. 

JO Js0(t) J\Ae(r,s,t)\>e 
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The right hand side of the identity above converges to the nonlinear term in 

(2.12) as e ?? 0, by the Dominated Convergence Theorem, since H^ is bounded 
and 7 was assumed to be integrable. 

To establish that (2.19) and (2.12) are the same it remains to show that 

fi rsiW 

/ / V<?>(?(s, t), t) - U\i\7}(s,t) 7(s, t)dsdt 
JO Js0(t) 

= lim / / 
* 

Vp(t(s,t),t). ( / K(Az(r,s,t))7(r,t)dr) ^(s,t)dsdt. 
?-+?Jo Js0{t) \J\A^{r,s,t)\>e J 

We first note that 

/ K(As(r,s,t))7(r,t)dr 
J\A^(r,s,t)\>e 

<w*M, 

where ?Y* is the maximal operator associated to W[-,?] introduced in Section 2. 
Since 7 G L??((0,T)',L2(ds)), it follows from Theorem 3.1 that, Ujfl] G L2(ds), for 
almost all time. Furthermore, since U* is a bounded sublinear operator from L2 
to itself, we have in fact that U*[i\ G L??((0,T);L2(ds)). Therefore V<p W*[7fr G 

Loo((0,T);L1(ds)). The desired identity follows by dominated convergence. 
The second step in this proof is to examine regularity conditions in Definition 

2.2 and Definition 2.1. First note that any density 7 and curve ? satisfying the 

hypothesis of this theorem will satisfy the regularity requirements of Definition 
2.2. Indeed, by Theorem 3.1, ^[?57] G L??((0,T);L2(ds)) so that 7^[?;7] G 

L??((0, T); L1(ds)). On the other hand, the fact that 7 G L??((0, T); L1(ds)) implies 

that?;GL~((0,T);?Mc). 
Under the conditions of the theorem, the vorticity also automatically satisfies 

the condition 

(3.4) ,ELM((0,T);i??(R2)) 

needed to obtain the equivalence of the weak vorticity formulation with the defini 
tive weak velocity formulation. In addition, u also satisfies the condition 

(3.5) u G Lip((0, T); H~^(R2)) for some L > 1 

that ensures the compactness of bounded sequences of solutions. 
To prove (3.4), we begin by observing that, given any disk Dr of radius r > 0 in 

the plane, we have 

MA0I = 
/ -yds < hllKVr)1/2 < Cr1!2, 
JctnDr 

by Cauchy-Schwarz and using the definition of regular curve, for some constant 

C > 0 independent of time. Hence the vorticity u belongs to L??((0, T); M4/3(R2)), 
where M4/3 is a Morrey space of measures [22]. It was shown in [22], Theorem 4.3, 
that for any p > n/2, Mp(Rn) H?.M/oc(Rn) is (compactly) contained in H~l(Rn). 

Now consider (3.5). We have already shown that, since (7,?) was assumed 
to satisfy Definition 2.2, then (7, ?) satisfies identity (2.12) for any test function 
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p G Cc??([0,T) x R2). In particular, if p G Cc??((0,T) x R2), then 

fT ,Sl(t) 

/ / pt(^t),t)1(s,t)dsdt 
Jo Js0(t) 

= - 
/ Hip(^(r,t),^(s,t),th(r,t)1(s,t)drdsdt. 

Jo Js0(t) Js0(t) 

Observe that \\H^(-, -^Hl^r4) 
< 

||<^(,^)l|vr2>oo(E2)- Note also that 

CT ?8l(t) rT 

'soM 

In view of these observations, together with the hypothesis on 7, we deduce that 

rT 

fT fsi(t) rT r 

/ / (Pt(^(s1t),t)j(s,t)dsdt = / / ptuj(x,t)dxdt. 
Jo Js0(t) Jo Jr2 

SI Jo Jr 
p>tw dxdt 

R2 
< 

C!\\(P\\l1((0,T);W2^(R2))^ 

for any test function in C??((0,T) x R2), 

< 
C\\p\\Li((0,T);H*(R2)), 

by the Morrey inequality. By duality this implies that the distribution ut G 

L??((0, T); #~4(R2)), which in turn gives (3.5) with L = A. 
D 

Remark. The hypothesis that 7 G -L??((0, T); Lx(ds)) is redundant, as it is explicitly 
present in Definition 2.2 and implicitly present in Definition 2.1. We included this 

hypothesis in the statement of the theorem merely for the sake of clarity. 

3.3. Sharpness. Next we will observe that the condition 7 G L2(ds), needed above 
to prove the equivalence of the weak formulations of 2D Euler and Birkhoff-Rott, 
is sharp. To see this, we recall the classical example of the Prandtl-Munk vortex 

sheet, see [30], also known as the elliptically loaded wing; see [18]. We consider flow 

generated by the initial vortex sheet given by 

Co = {?0(5) 
= 

(s, 0), -1 < s < 1} and 70(5) 
= 

By complex variable methods it can be shown that the velocity %[?o;7o](5) = 

(0, ?1/2); see [36], section 6.2. This is pointwise true for ?1 < s < 1, but unclear 
at s = ?1, since the flow velocity is infinite near the tips of the sheet. 

The fact that the arithmetic mean U is constant suggests that ?(5, t) 
= 

(s, ?t/2), 
7(5, t) 

= 
70(5) describes the evolution of this vortex sheet. In fact, (7, ?) is indeed a 

weak solution of the Birkhoff-Rott equations with initial data (70, ?0) in the sense of 
Definition 2.2. The verification of this fact is straightforward. On the other hand, 
it was shown in [21] that uj ? j?ct is not a weak solution of the incompressible 2D 

Euler equations with initial data 7o?c0 m ^ne sense of Definition 2.1. We observe 
that 7 G Lx(ds) H Lp(ds) for all p < 2 but not for p ? 2, which shows the sharpness 
of the L2 condition on 7 in Theorem 3.2. 
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4. Final remarks 

Recently, G. Lebeau proved that any solution of the Birkhoff-Rott system con 

sisting of a closed vortex sheet which is C1,a at a time to is real-analytic for t ̂ to; 
see [19]. This is a consequence of the elliptic nature of the Birkhoff-Rott equations. 
In [40], Sijue Wu announced an improvement of Lebeau's result, in which the con 
clusion is mantained if the vortex sheet is required to be a chord-arc curve and 
satisfies an additional technical condition. Thus, one might conclude that there 
are no irregular solutions of Birkhoff-Rott and wonder whether there is any reason 
to formulate a general theory of equivalence of Euler and weak Birkhoff-Rott. In 
that regard, we observe that the Prandtl-Munk vortex sheet is an example of an 

irregular solution of Birkhoff-Rott which is not covered by Lebeau's work because 
it is not a closed sheet, so that the context behind our result is not entirely empty. 

We also note that the class of regular curves is broader than chord-arc, hence so 

lutions which are regular curves but which are not real analytic are plausible. In 

particular, the logarithmic spirals of Prandtl and Kambe fit into our discussion. 
In Theorem 3.2 on the equivalence between the Euler and Birkhoff-Rott descrip 

tions of vortex sheet motion we restrict our attention solely to regular curves. This 

hypothesis is motivated by hindsight, since, David's result includes the fact that 
the Cauchy integral on a rectifiable curve is a bounded operator on L2 only if the 
curve is regular, as stated in Theorem 3.1. Although the Birkhoff-Rott equations 
might make sense even if the principal-value integral does not give rise to a bounded 

operator in L2, this becomes a substantial complication. However, the hypothesis 
that the sheet be regular is a big limitation in our work, since the conjectured be 
havior past singularity formation for periodic sheets is the development of infinite 

length algebraic spirals, which are hence not regular. 
Let us recall that the existence of vortex sheet evolution, at least with dis 

tinguished sign density, has been established from the implicit approach. Why 
then would we still want to solve Birkhoff-Rott? The main motivation is that the 
Birkhoff-Rott equations carry a much more precise description of the flow than the 
weak formulation of 2D Euler. In particular, the Birkhoff-Rott equations assume 
a priori that the evolution of a vortex sheet retains a curve-like structure, whereas 

the structure of the weak solutions given, for instance by Delort's Theorem, is not 

known. One interesting open problem is to prove that the support of a solution 

given by Delort's Theorem, with a smooth vortex sheet as initial data, has Lebesgue 
measure zero (better yet, Hausdorff dimension less than 2) at almost every time. 

Another interesting question is to find a meaningful way in which curves which 
are not regular may be regarded as solutions of Birkhoff-Rott. At this point it 

would be helpful to have examples of physically meaningful vortex sheets having 
infinite length algebraic spirals, something which is not available at present. In 

this context it is worth mentioning a well-known open problem in the field, that of 

establishing existence of the Kaden spiral, or, more generally, whether there exist 

self-similar, algebraic spiral solutions of the Birkhoff-Rott equations. 
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