
 

 

 

 

 

 

 

 

 

 

 

 

Available in: http://www.redalyc.org/articulo.oa?id=89922501003

 

 

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal

Sistema de Información Científica

José Rafael Tovar, Jorge Alberto Achcar

Indexes to Measure Dependence between Clinical Diagnostic Tests: A Comparative Study

Revista Colombiana de Estadística, vol. 34, núm. 3, diciembre, 2011, pp. 433-450,

Universidad Nacional de Colombia

Colombia

   How to cite      Complete issue      More information about this article      Journal's homepage

Revista Colombiana de Estadística,

ISSN (Printed Version): 0120-1751

revcoles@unal.edu.co

Universidad Nacional de Colombia

Colombia

www.redalyc.org
Non-Profit Academic Project, developed under the Open Acces Initiative

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296698614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.redalyc.org
http://www.redalyc.org/comocitar.oa?id=89922501003
http://www.redalyc.org/fasciculo.oa?id=899&numero=22501
http://www.redalyc.org/articulo.oa?id=89922501003
http://www.redalyc.org/revista.oa?id=899
http://www.redalyc.org/articulo.oa?id=89922501003
http://www.redalyc.org/revista.oa?id=899
http://www.redalyc.org/revista.oa?id=899
http://www.redalyc.org
http://www.redalyc.org/revista.oa?id=899


Revista Colombiana de Estadística

Diciembre 2011, volumen 34, no. 3, pp. 433 a 450

Indexes to Measure Dependence between Clinical

Diagnostic Tests: A Comparative Study

Indices para medir dependencia entre pruebas para diagnóstico

clínico: un estudio comparativo

José Rafael Tovar1,a, Jorge Alberto Achcar2,b

1Departamento de Estatística, Instituto de Matemática Estatística e Computação

Científica, Universidade Estadual de Campinas, Campinas, Brasil

2Departamento de Medicina Social FMRP, Faculdade de Saúde, Universidade de

São Paulo, Riberão Preto, Brasil

Abstract

In many practical situations, clinical diagnostic procedures include two
or more biological traits whose outcomes are expressed on a continuous scale
and are then dichotomized using a cut point. As measurements are per-
formed on the same individual there is a likely correlation between the con-
tinuous underlying traits that can go unnoticed when the parameter estima-
tion is done with the resulting binary variables. In this paper, we compare
the performance of two different indexes developed to evaluate the depen-
dence between diagnostic clinical tests that assume binary structure in the
results with the performance of the binary covariance and two copula depen-
dence parameters.

Key words: Copula, Farlie Gumbel Morgenstern distribution, Gumbel dis-
tribution.

Resumen

Muchos procedimientos de diagnóstico clínico médico exigen la evalu-
ación de dos o mas rasgos biológicos que se ven alterados ante la presencia
de fenómenos de enfermedad o infección, los cuales se expresan en una escala
contínua de medición con posterior dicotomización usando de un valor límite
o punto de corte. Dado que las mediciones son realizadas en el mismo indi-
víduo, los resultados probablemente presenten dependencia de algún tipo, lo
cual puede ser ignorado en la etapa de análisis de datos dada la presentación
binaria de los datos. En este estudio comparamos el comportamiento de dos
parámetros de dependencia presentes en funciones de cópula con el de la co-
varianza binaria y dos índices creados para medir dependencia entre pruebas
diagnósticas de respuesta dicótoma.

Palabras clave: cópula, distribución Farlie, Gumbel.
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1. Introduction

The study of dependence between two clinical diagnostic tests has been a mat-
ter of interest in medical and statistical research. Many studies developed within
clinical diagnostic tests framework have studied the conditional dependence be-
tween diagnostic tests using the binary covariance as dependence parameter (see
for instance: (Thibodeau 1981), (Vacek 1985), (Torrance-Rynard & Walter 1997),
(Enoe, Georgiadis & Johnson 2000) and (Dendukuri & Joseph 2001) among many
others). Some authors as Georgiadis, Johnson & Gardner (2003), have used
reparametrizations of the conditional correlation between binary tests to facilitate
the prior specification in the implementation of a Bayesian estimation procedure.
Bohning & Patilea (2008), consider one of the indexes used by Georgiadis et al.
(2003) and developed another one to study the association between two diagnostic
tests in designs where the individuals with negative outcome in both screening
tests are not verified by “gold standard” (verification bias conditions).

Many diagnostic procedures include the measures of two or more biological
traits directly observable or not, whose outcomes are initially expressed on a con-
tinuous scale and operationalized within a dichotomous representation using a
cut point. It is possible that, there exists dependence between the two evaluated
traits conditional on the true disease state and the same should be studied us-
ing indexes developed to study association between continuous variables, but as
the data analyses is made with the binary data, the data analyst evaluates the
conditional dependence hypothesis using indexes developed to binary variables.

In this paper, we use the indexes developed by Bohning & Patilea (2008) and
we compare their performance with the performance of the binary covariance and
the performance of the Farlie Gumbel Morgerstern (FGM) and Gumbel copula de-
pendence parameters. The main goal is to evaluate the existing relationship among
the five dependence parameters, where three of them (covariance and Böhning’s
indexes) are built to study dependence between binary variables and the other
two (copula parameters) are developed to model dependence between continuous
variables.

The paper is organized as follows: in Section 2, we introduce the estimation
model formulation for two associated diagnostic tests, in Section 3, we present the
comparative study among Böhning and Patilea’s indexes, the binary covariance
and the copula dependence parameters, in Section 4, we introduce two examples,
one of them with simulated data and the other with published data. Finally, in
Section 5, we present some conclusions on the results obtained.

2. Statistical Model with Two Dependent Screening

Tests

Let us assume that we have a clinical diagnostic procedure that uses two screen-
ing tests whose performance we are interested to study and a reference procedure
that classifies individuals as diseased and non-diseased without error called “gold

Revista Colombiana de Estadística 34 (2011) 433–450



Dependence between Diagnostic Tests 435

standard”. Sometimes, the design of the study considers that those individuals
with negative outcomes in both screening tests are not verified by the “gold stan-
dard” which is known as “verification bias”. We assume that, the screening test
outcomes are expressed on a continuous scale and they are exposed to a process
of dichotomization using a cut point. We also assume that the test outcomes have
a continuous dependent structure but the same can not be considered in the data
analysis since they are presented in a binary form.

2.1. Modelling Dependence with Binary Structure

Let us denote by p the prevalence of a disease and by D a random variable
related to the true disease status, where D = 1 denotes a diseased individual and
D = 0 denotes a non-diseased individual. That is, p = P (D = 1). Also, denote by
T1 and T2, the two random variables associated to the test results, where Tj = 1,
denotes a positive result and Tj = 0, denotes a negative result, P (Tj = 1 | D =
1) = Sj is the sensitivity of the test j and P (Tj = 0 | D = 0) = Ej is the specificity
of the test j, for j = 1, 2. If we assume that, the dependence between tests can
be modeled by the covariance (ψ parameter) using a Bernoulli distribution on the
test outcome and we also assume the covariance is not necessarily the same in
both populations (ψD 6= ψND), we can use the Dendukuri’s procedure to obtain
the likelihood function contributions, as shown in Table 1.

Table 1: Likelihood contributions of all possible combinations of outcomes of T1, T2 and
D assuming binary dependence structure (Values in brackets are unknown
under verification bias. fi: number of individuals for each combination of
results)

Contribution to likelihood

D T1 T2 fi Binary dependence

1 1 1 a p[S1S2 + ψD]

1 1 0 b p[S1(1 − S2)− ψD]

1 0 1 c p[(1 − S1)S2 − ψD]

1 0 0 [d] p[(1− S1)(1− S2) + ψD]

0 1 1 e (1− p)[(1 − E1)(1 − E2) + ψND]

0 1 0 f (1− p)[(1 − E1)E2 − ψND]

0 0 1 g (1− p)[E1(1− E2)− ψND]

0 0 0 [h] (1− p)[E1E2 + ψND]

2.2. Modelling Dependence using Copula Functions

Let us assume that the test outcomes are realizations of the random variables
V1 and V2 measured in a positive continuous scale, that is, V1 > 0 and V2 > 0.
Also, let us assume that two cut-off values ξ1 and ξ2 are chosen for each test in
order to determine when an individual is classified as positive or negative. In this
way we assume that an individual is classified as positive for test ν if Vν > ξν
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436 José Rafael Tovar & Jorge Alberto Achcar

that is, Tν = 1 if and only if Vν > ξν for ν = 1, 2. To measure the degree of the
dependence structure between the random variables V1 and V2, let us consider the
use of copula functions (For details about this topic, (Nelsen 1999) is a good refer-
ence). For specified univariate marginal distribution functions F1(v1), . . . , Fm(vm),
the function C(F1(v1), . . . , Fm(vm)) which is defined using a copula function C,
results in a multivariate distribution function with univariate marginal distribu-
tions specified as F1(v1), . . . , Fm(vm). Any multivariate distribution function F
can be written in the form of a copula function, that is, if F (v1, . . . , vm) is a joint
multivariate distribution function with univariate marginal distribution functions
F1(v1), . . . , Fm(vm), thus there exists a copula function C(u1, . . . , um) such that,
F (v1, . . . , vm) = C(F1(v1), . . . , Fm(vm)). For the special case of bivariate distri-
butions, we have m = 2. The approach to formulate a multivariate distribution
using a copula is based on the idea that a simple transformation can be made
of each marginal variable in such a way that each transformed marginal variable
has an uniform distribution. Once this is done, the dependence structure can be
expressed as a multivariate distribution on the obtained uniforms and a copula
is precisely a multivariate distribution on marginally uniform random variables.
In this way, there are many families of copulas which differ in the detail of the
dependence they represent. In the bivariate case, let V1 and V2 be two random
variables with continuous distribution functions F1 and F2. The probability inte-
gral transformation is applied separately for the two random variables to define
U = F1(V1) and W = F2(V2) where U and W have uniform (0, 1) distributions,
but are usually dependent if V1 and V2 are dependent (V1 and V2 independent im-
plies that U and W are independent). Specifying dependence between V1 and V2 is
the same as specifying dependence between U and W , thus the problem reduces to
specifying a bivariate distribution between two uniform variables, that is a copula.
In this paper, we use two copula functions to study the dependence between two
diagnostic tests namely: the Farlie Gumbel Morgerstern (FGM) copula and the
Gumbel copula.

The FGM copula is defined by,

C(u,w) = uw[1 + ϕ(1− u)(1− w)] (1)

where u = F1(v1), w = F2(v2) and −1 ≤ ϕ ≤ 1. As, ϕ measures the dependence
between the two marginals, then, if ϕ = 0, we have independent random variables.
We assume two dependence parameters ϕD and ϕND with the same value for
diseased and non-diseased individuals, respectively. From (1), the cumulative joint
distribution and the joint survival distribution functions for the random variables
V1 and V2 conditional on the diseased status (D subscript and superscript) are
given respectively by,

F (v1, v2) = C(F1(v1), F2(v2)) = F1(v1)F2(v2)

[1 + ϕ(1 − F1(v1))(1 − F2(v2))] (2)

S(v1, v2) = P (V1 > v1, V2 > v2) = 1− F1(v1)− F2(v2) + F (v1, v2) (3)
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Dependence between Diagnostic Tests 437

To obtain the likelihood function contributions within the diseased individuals
group we have;

P (T1 = 1, T2 = 1 | D = 1) = P (V1 > ξ1, V2 > ξ2 | D = 1) = SD(ξ1, ξ2),

P (T1 = 1 | D = 1) = P (V1 > ξ1 | D = 1) = S1,

P (T2 = 1 | D = 1) = P (V2 > ξ2 | D = 1) = S2,

FD
1 (ξ1) = P (V1 ≤ ξ1 | D = 1) = 1− S1,

and
FD
2 (ξ2) = P (V2 ≤ ξ2 | D = 1) = 1− S2

Using (2) we get,

FD(ξ1, ξ2) = FD
1 (ξ1)F

D
2 (ξ2)[1 + ϕ(1− FD

1 (ξ1))(1 − FD
2 (ξ2))]

= (1 − S1)(1− S2)(1 + ϕDS1S2)

and,

P (T1 = 1, T2 = 1 | D = 1) = SD(ξ1, ξ2) = 1− (1− S1)− (1 − S2)+

(1− S1)(1− S2)(1 + ϕDS1S2)

That is,

P (T1 = 1, T2 = 1|D = 1) = S1S2(1 + ϕD(1− S1)(1− S2)) (4)

and
P (T1 = 1, T2 = 1, D = 1) = pS1S2(1 + ϕD(1 − S1)(1− S2)) (5)

Similarly, we get all likelihood contributions with diseased and non-diseased
individuals (see Table 2).

The Gumbel copula, developed by Gumbel (1960) is defined as,

C(u,w) = u+ w − 1 + (1 − u)(1− w) exp{−φ ln(1− u) ln(1− w)} (6)

In this model, the joint cumulative distribution function for the random vari-
ables V1 and V2 is given by,

F (v1, v2) = F1(v1) + F2(v2)− 1+

(1− F1(v1))(1 − F2(v2)) exp{−φ ln(1− F1(v1)) ln(1− F2(v2))} (7)

The dependence parameter of the Gumbel copula does not model positive linear
correlations and when the two variables are independents, we have φ = 0.

Employing the same arguments considered in the FGM copula to find the joint
probabilities of all combinations with D, T1 and T2 and using (7) we obtain all the
contributions for the likelihood function using the Gumbel copula (See Table 2).
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Table 2: Likelihood contributions of all possible combinations of outcomes of T1, T2

and D when the dependence has the FGM copula or Gumbel copula struc-
ture. (Values in brackets are unknown under verification bias. fi: number of
individuals for each combination of results)

Contribution to likelihood

D T1 T2 fi FGM copula Gumbel copula

1 1 1 a pS1S2[1 + ϕD(1 − S1)(1 − S2)] pS1S2Q1

1 1 0 b pS1(1 − S2)[1 − ϕD(1 − S1)S2] pS1[1 − S2Q1]

1 0 1 c p(1 − S1)S2[1 − ϕDS1(1 − S2)] pS2[1 − S1Q1]

1 0 0 [d] p(1 − S1)(1 − S2)[1 + ϕDS1S2] p[1 − S1 − S2 + S1S2Q1]

0 1 1 e (1 − p)(1 − E1)(1 − E2)[1 + ϕNDE1E2] (1 − p)(1 − E1)(1 − E2)Q2

0 1 0 f (1 − p)(1 − E1)E2[1 − ϕNDE1(1 − E2)] (1 − p)(1 − E1)[1 − (1 − E2)Q2]

0 0 1 g (1 − p)E1(1 − E2)[1 − ϕNDE2(1 − E1)] (1 − p)(1 − E2)[1 − (1 − E1)Q2]

0 0 0 [h] (1 − p)E1E2[1 + ϕND(1 − E1)(1 − E2)] (1 − p)[E1 + E2 − 1 + (1 − E1)(1 − E2)Q2]

Q1 = exp(−φD lnS1 lnS2), Q2 = exp(−φND ln(1 − E1) ln(1 − E2))

3. Indexes Developed by Böhning and Patilea

Bohning & Patilea (2008), developed two association indexes to study the case
of two dependent diagnostic tests in situations where it is not possible to verify the
true disease status in individuals with negative outcome in both screening tests.
The authors proposed computation of the indexes using the observed probabilities
in the likelihood function. The Böhning and Patilea’s indexes θi and αi (i = D
denotes diseased individuals and i = ND denotes non-diseased individuals) are
defined as:

θi =
P (T1 = 1 | T2 = 1, D = i)

P (T1 = 1, D = i)

=
P (T1 = 1, T2 = 1, D = i)

P (T1 = 1, D = i)P (T2 = 1, D = i)
θi ∈ (0,∞)

(8)

If θi = 1 the tests results are independent; if θi < 1 there is negative association
between tests and if θi > 1, the association between tests is positive.

αi =
P (T1 = 1, T2 = 1, D = i)P (T1 = 0, T2 = 0, D = i)

P (T1 = 1, T2 = 0, D = i)P (T1 = 0, T2 = 1, D = i)
αi ∈ (0,∞) (9)

Thus, αi is defined as the odds ratio in the ith diseased state, and when αi = 1
we have independence between tests; negative dependence is expressed by αi < 1
and positive dependence by αi > 1.

In spite of the fact that, both indexes measure dependence and they are within
of the same range of values, they are different in nature. To establish the re-
lationship between them, the authors considered a reparametrization given by:
ai = θiP (T1 = 1 | D = i) = P (T1 = 1 | T2 = 1, D = i), bi = θiP (T2 = 1 | D =
i) = P (T2 = 1 | T1 = 1, D = i) and ηi =

1
θi

.

Let us rewrite the cell probabilities in the cross-tabulation as:

P (T1 = 1, T2 = 1, D = i) = ηaibi,
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Dependence between Diagnostic Tests 439

P (T1 = 0, T2 = 1 = ηai(1− bi)),

P (T1 = 1, T2 = 0, D = i) = η(1 − ai)bi

and

P (T1 = 0, T2 = 0, D = i) = η(1 − ai)(1 − bi) + 1− η

In this way, the αi parameter can be expressed in terms of the parameter ηi,
by,

αi = 1 +
1− ηi

ηi(1 − ai)(1 − bi)
(10)

The BP indexes were developed assuming that the tests have the same depen-
dence within the disease and non-disease populations (θD = θND and αD =
αND) and they are useful when the design of the study does not include the ver-
ification with “gold standard” of those individuals with negative outcome in both
screening tests. So, using the θ index, we can to estimate the unknown quantities
of disease and non-disease individuals,

nD = a+ b+ c+ [d] and nND = e+ f + g + [h]

as follows:

n̂D = θ̂

{
(a+ b+ 1)(a+ c+ 1)

(a+ 1)
− 1

}
= θ̂q1

n̂ND = θ̂

{
(e+ f + 1)(e+ g + 1)

(e + 1)
− 1

}
= θ̂q2

(11)

On the other hand, with the α index we can to estimate the unknown quantities
d and h, as follows:

d̂ = α̂

{
(b + 1)(c+ 1)

(a+ 1)
− 1

}
= α̂(r1 − 1)

ĥ = α̂

{
(f + 1)(g + 1)

(e+ 1)
− 1

}
= α̂(r2 − 1)

(12)

where

θ̂ =
n

q1 + q2
, α̂ =

u+ 2

r1 + r2

u is the quantity of individuals not verified by the “gold standard” and n is the
total of participants in the screening study.

Assuming the three dependence structures for the two diagnostic tests, using
the results showed in Tables 2 and 3 and the equations (8), (9), we obtained the
analytic relationship between θi and αi with ψi ϕi and φi.

• Diseased individuals population:
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Binary Covariance

θD = 1 +
ψD

S1S2
,

αD =
[S1S2 + ψD][(1− S1)(1 − S2) + ψD]

[S1(1− S2)− ψD][S2(1 − S1)− ψD]
,

ϕD = ψD[S1S2(1− S1)(1 − S2)]
−1,

φD = −[lnS1 lnS2]
−1 ln[ψDS

−1S−1
2 + 1]

FGM copula
θD = 1 + ϕD(1− S1)(1− S2);

αD =
S1S2[1 + ϕD(1− S1)(1− S2)](1 − S1)(1 − S2)[1 + ϕDS1S2]

S1(1 − S2)[1− ϕDS2(1− S1)]S2(1− S1)[1 − ϕDS1(1 − S2)]

Gumbel copula
θD = exp{−φD lnS1 lnS2},

αD =
exp{−φD lnS1 lnS2}[S1S2(1− S1)(1− S2)]

[S1 − S1S2 exp{−φD lnS1 lnS2}][S2 − S1S2 exp{−φD lnS1 lnS2}]

• Non-diseased individuals population:

Binary Covariance,

θND = 1 +
ψND

(1− E1)(1− E2)
,

αND =
[(1 − E1)(1 − E2) + ψND][E1E2 + ψND]

[(1 − E1)E2 − ψND][E1(1− E2)− ψND]
,

ϕND = ψD[E1E2(1− E1)(1− E2)]
−1,

φND = −[ln(1− E1) ln(1 − E2)]
−1 ln[ψND(1− E1)

−1(1− E2)
−1 + 1]

FGM copula,
θND = 1 + ϕNDE1E2,

αND =
(1 − E1)(1 − E2)[1 + ϕNDE1E2]E1E2[1 + ϕND(1− E1)(1 − E2)]

E1(1− E2)[1− ϕNDE2(1− E1)]E2(1− E1)[1 − ϕNDE1(1− E2)]

Gumbel copula,

θND = exp{−φND ln(1 − E1) ln(1 − E2)},

αND =
[(1− E1)(1− E2) exp{−k}][E1 + E2 − 1 + (1− E1)(1− E2) exp{−k}]

[(1− E1)− (1− E1)(1− E2) exp{−k}][(1 −E2)− (1−E1)(1− E2) exp{−k}]

where, k = φND ln(1− E1) ln(1− E2)}.

For two independent tests, we obtain λi = 1 and δi = 1 when ψi = 0, ϕi = 0
and φi = 0, regardless of the performance test values.
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In all cases, the Böhning and Patilea’s association indexes (BP indexes) are
functions of the performance characteristics of the tests, and when the performance
parameters are going to one or zero, the BP indexes could go to infinity or to be
indeterminate. We have in Table 3, the limit values of the BP indexes when the
test parameters are going to zero or one and the dependence coefficients are fixed
at their extreme values.

Table 3: Limits of θ and α indexes when the performance test parameters (PTP), are
going to zero or one and ψi = ±1, ϕi = ±1 and φi = 1. (for diseased
individuals, PTP are S1 and S2; for non-diseased individuals, PTP are E1

and E2)
Limit values of θ and α

Coefficient Population Limit values of PTP ψi = −1 ψi = 1 ϕi = −1 ϕi = 1 φi = 1

0 0 −∞ +∞ 0 2 0

θD Diseased 1 1 0 2 1 1 1

individuals 0 1 −∞ +∞ 1 1 1

1 0 −∞ +∞ 1 1 1

0 0 0 2 1 1 1

θND Non-diseased 1 1 −∞ +∞ 0 2 0

individuals 0 1 −∞ +∞ 1 1 1

1 0 −∞ +∞ 1 1 1

0 0 0 2 0 2 0

αD Diseased 1 1 0 2 0 2 0

individuals 0 1 1/2 +∞ 1/2 +∞ 0

1 0 1/2 +∞ 1/2 +∞ 0

0 0 0 2 0 2 0

αND Non-diseased 1 1 0 2 0 2 0

individuals 0 1 1/2 +∞ 1/2 +∞ 0

1 0 1/2 +∞ 1/2 +∞ 0

The relationship between covariance and copula parameters is not shown in
Table 3, given that the covariance has zero as limit value in all combinations of
extreme values made with the copula parameters and performance test parameters.

Observe that, under the hypothetical situation where we have two binary tests
with the same perfect association within each individuals group (ψD = −1 and
ψND = −1 or ψD = 1 and ψND = 1) if the tests have perfect negative association,
we need for both tests to have absolutely perfect sensitivities (S1 = S2 = 1) and
absolutely imperfect specificities (E1 = E2 = 0), to model association using θi;
otherwise, we can not use it. If the tests have perfect positive association, we can
model associations with θi values belonging to the interval [2,∞) provided that
the performance parameters belong to the interval (0, 1). In this way, values of θi
very close to 2, will be related with ψi values close of zero.

On the other hand, if we have two tests, whose perfectly negative or positive
dependence structure can be modeled using the FGM copula, we only can have
agreement between the copula parameter and the BP indexes, when both sen-
sitivities are equal to zero and both specificities are equal to one; then, under
those conditions, we can only model associations when θi belongs to the interval
[0, 2]. When the test parameters take values inside the within (0, 1), the θi param-
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eter would be indicating independence between tests while the FGM is indicating
strong dependence between them.

For the Gumbel copula, we evaluated the extreme value 1 because this model
is only applicable for positive dependence and 0 indicates independence. When
the Gumbel dependence parameter indicates perfect positive dependence between
two tests, both with absolutely imperfect sensitivities S1 = S2 = 0 or both with
absolutely perfect specificities E1 = E2 = 1, the θi index takes the zero value indi-
cating perfect negative association. When the tests have performance parameters
belonging to interval (0, 1), the θi parameter indicates independence between tests
when those have perfect Gumbel dependence.

When the diagnostic tests have perfect FGM dependence, the θ index indicates
independence and only when both tests have perfect specificities and absolutely
imperfect sensitivity (Sj = 0), the index expresses a very weak association between
tests (θ ∈ [0, 2]).

Based on these facts, we observe that, the αi parameter has a performance
better than the θi parameter in their relations with the other parameters of asso-
ciation. For all combinations of sensitivity and specificity, αi takes values within
the range allowed by definition. When we have two binary tests negatively or pos-
itively associated with extreme values in their tests parameters, αi takes values in
the interval [0, 2] for both populations, whereas, when the two tests have perfor-
mance parameters belonging to the interval (0, 1), the αi parameter takes values
in the interval [1/2,∞) for diseased and non-diseased individuals. For tests with
dependence structure modeled by the FGM copula, the behaviour of αi within
groups of individuals is similar to that observed when we have two binary tests.
When de dependence structure responds to the perfectly dependent Gumbel cop-
ula, in both populations, αi indicates independence between tests regardless of the
values of their performance parameters.

4. Examples

To illustrate the performance of the indexes, we show two examples, one of
them with simulated data and the other one with a data set used by Bohning &
Patilea (2008) to illustrate their methodology.

4.1. Example with Simulated Data

As a first example, we simulated 10000 pairs of observations with binary de-
pendence structure and the same number of pairs of data for each copula structure
(1000 diseased individuals and 9000 non-diseased individuals), considering the fol-
lowing conditions:

• Three dependence levels: weak (0.2), moderate (0.5) and strong (0.9),

• The dependence is the same in both populations (ψD = ψND, ϕD = ϕND

and φD = φND)
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• The specificities of the dependent tests are the same (E2 = E3 = 0.95) and
the prevalence is relatively lower (p = 0.10)

• Stage 1: the dependent tests have the same relatively high sensitivities (S1 =
S2 = 0.85)

• Stage 2: the dependent tests have the same relatively low sensitivities (S1 =
S2 = 0.45)

We wrote a program in R to simulate pairs of variates with the different de-
pendence forms. To simulate outcomes of the correlated binary variables Z1, Z2

we implemented the algorithm developed by Park, Park & Shin (1996) and to
simulate the variables T1, T2 with FGM structure and the variables V1,V2 with
Gumbel structure, we implemented algorithms introduced by Johnson (1987) as
follows:

1. Binary data (ψ is the correlation coefficient)

• Initialize p1, p2, q1 = 1− p1, q2 = 1− p2 and ψ12

• Let λ11 = log
{
1 + q1p

−1
1

}
, λ22 = log

{
1 + q2p

−1
2

}
and

λ12 =
{
1 + ψ12

√
q1q2
p1p2

}

• Generate X1 ∼ Poisson(λ11 − λ12), X2 ∼ Poisson(λ22 − α12) and
X3 ∼ Poisson(λ12)

• Set Y1 = X1 +X3 and Y2 = X2 +X3

• Set Z1 = 1 if Y1 = 0, else Z1 = 0 and Z2 = 1 if Y2 = 0, else Z2 = 0

• Then, Zj ∼ Bernoulli (pj); j = 1, 2 and ψ12 is the correlation coefficient.

2. FGM data (ϕ is the dependence parameter)

• Initialize ϕ

• Generate variates U1 ∼ U(0, 1), and U2 ∼ U(0, 1)

• Set

T1 = U1

A = ϕ(2U1 − 1)− 1

B = [1− 2ϕ(2U1 − 1) + ϕ2(2U1 − 1)2 + 4ϕU2(2U1 − 1)]1/2

T2 = 2U2/(B −A)

3. Gumbel data (φ is the dependence parameter)

• Initialize φ

• Generate U1 ∼ U(0, 1), U2 ∼ U(0, 1) and U3 ∼ U(0, 1)

• Set W1 = − ln(U1) and Y = − ln(U2)

• Compute β = 1 + φW1 and q = (β − φ)/β
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• If U3 < q, set W2 = βY stop

• If U3 ≥ q, generate U4 ∼ U(0, 1), set X2 = β(Y − lnU4) and stop

• Let V1 = 1− e−W1 and V2 = 1− e−W2

As our data resulted from simulation, so we know all frequencies of individu-
als, but for the data analysis, we assume that we only have the total number of
individuals with negative results in both tests.

The data analysis was made using the Bayesian paradigm, for that, we assumed
that the screening tests have positive dependence (P (ψ < 0) = P (ϕ < 0) = 0)
and we used the Beta(17,122), Beta(39.5, 39.5) and Beta(122, 17) as informative
prior distributions for the weak, moderate and strong dependences respectively.
To obtain the estimates we used a code in Winbugs software and we simulate
60, 000 Gibbs samples from the conditional distribution of each parameter. From
these generated samples, we discarded the first 10, 000 samples to eliminate the
effect of the initial values. The results obtained are showed in Table 4

Table 4: Simulated data with three different dependence structures in two scenarios
and BP indexes estimates.

Scenary fi ψ = 0.2 ψ = 0.5 ψ = 0.9 ϕ = 0.2 ϕ = 0.5 ϕ = 0.9 φ = 0.2 φ = 0.5 φ = 0.9

a 745 800 832 712 725 721 652 551 462

b 116 68 13 131 137 133 152 175 190

c 93 59 12 133 116 123 153 195 188

S1 = 0.85 d 46 73 143 24 22 23 43 79 160

S2 = 0.85 e 95 241 405 20 22 17 23 14 7

E1 = 0.95 f 332 207 53 430 438 417 354 294 249

E2 = 0.95 g 352 213 46 427 420 451 360 308 266

h 8221 8339 8496 8123 8120 8115 8306 8384 8478

θ̂ 3.37 5.63 7.31 0.94 1.01 0.81 1.22 1.33 1.74

α̂ 6.67 44.5 1336 0.93 1.01 0.77 0.94 1.43 2.00

a 238 350 433 198 209 201 275 334 406

b 179 119 21 245 254 261 246 220 214

c 214 105 33 239 239 238 223 246 209

S1 = 0.45 d 369 426 513 298 298 300 256 200 171

S2 = 0.45 e 95 241 405 20 22 17 19 17 15

E1 = 0.95 f 332 207 53 430 438 417 353 329 255

E2 = 0.95 g 352 213 46 427 420 451 365 320 264

h 8221 8339 8496 8123 8120 8115 8263 8332 8466

θ̂ 3.59 6.88 10 0.94 0.94 0.81 1.23 1.34 1.76

α̂ 6.20 39.8 1130 0.93 0.93 0.78 1.28 1.41 1.99

The results presented in Table 4, confirm those shown in Table 3. When the
data have a binary structure with linear dependence, both BP indexes tend to have
high values. It is important to point out that, the sensibility has little effect on the
index estimates but with low sensitivities the θ index shows a slight increase and
the α index shows a opposite behaviour. If the data have a low or moderate FGM
dependence both indexes express independence while for high FGM dependency
both indexes indicate negative association in the data, that behaviour remains
independent of the sensitivity of the tests. With low or moderate type Gumbel
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dependences, the BP indexes indicate independence between tests, while with high
Gumbel dependences the indexes express low dependence.

Table 5: Estimates of BP indexes and unknown quantities of diseased and non-diseased
individuals within group with negative outcome in both screening tests, using
data with binary and copula dependence. (nD = 1,000; nND = 9,000 and
n(D+ND) = 10,000)

Scenary Dependence BP Index n̂D n̂ND d̂ ĥ n̂(D+ND)

ψ = 0.2 θ̂ = 3.37 3,264 6,728 2,310 5,949 9,991

α̂ = 6.67 1,046 8,943 92 8,164 9,989

S1 = S2 = 0.85 ψ = 0.5 θ̂ = 5.63 5,247 4,747 4,320 4,086 9,994

E1 = E2 = 0, 95 α̂ = 44.5 1,113 8,801 186 8,104 9,913

ψ = 0.9 θ̂ = 7.31 6,266 3,728 5,409 3,224 9,994

α̂ = 1336 1,149 7,518 292 7,014 8,666

ϕ = 0.2 θ̂ = 0.94 940 9,043 -36 8,166 9,984

α̂ = 0.93 998 9,002 22 8,125 10,000

S1 = S2 = 0.85 ϕ = 0.5 θ̂ = 1.01 1,010 8,967 32 8,087 9,977

E1 = E2 = 0, 95 α̂ = 1.01 1,000 9,000 22 8,121 10,000

ϕ = 0.9 θ̂ = 0.81 810 9,180 -167 8,295 9,990

α̂ = 0.77 994 9,006 17 8,121 10,000

φ = 0.2 θ̂ = 1.22 1,222 8,759 239 8,022 9,981

α̂ = 0.94 1,000 6,971 17 6,094 7,971

S1 = S2 = 0.85 φ = 0.5 θ̂ = 1.33 1,328 8,665 341 7,999 9,992

E1 = E2 = 0, 95 α̂ = 1.42 1,002 8,997 15 8,331 9,999

φ = 0.9 θ̂ = 1.74 1,731 8,250 745 7,716 9,981

α̂ = 2.00 1,002 8,996 16 8,462 9,998

ψ = 0.2 θ̂ = 3.59 2,841 7,167 2,210 6,388 10,008

α̂ = 6.20 1,635 8,361 1,004 7,582 9,996

S1 = S2 = 0.45 ψ = 0.5 θ̂ = 6.88 4,194 5,801 3,620 5,140 9,995

E1 = E2 = 0, 95 α̂ = 39.8 2,017 7,945 1,443 7,284 9,962

ψ = 0.9 θ̂ = 10.0 4,886 5,100 4,596 4,399 9,986

α̂ = 1130 2,435 6,438 1,948 5,934 8,872

ϕ = 0.2 θ̂ = 0.94 939 9,062 248 8,185 10,001

α̂ = 0.93 976 9,025 285 8,148 10,000

S1 = S2 = 0.45 ϕ = 0.5 θ̂ = 0.94 933 9,069 231 8,191 10,002

E1 = E2 = 0, 95 α̂ = 0.93 971 9,027 269 8,149 9,998

ϕ = 0.9 θ̂ = 0.81 816 9,180 116 8,295 9,996

α̂ = 0.78 941 9,060 241 8,175 10,000

φ = 0.2 θ̂ = 1.23 1,160 8,831 416 8,094 9,990

α̂ = 1.28 999 9,001 255 8,264 9,999

S1 = S2 = 0.45 φ = 0.5 θ̂ = 1.34 1,289 8,730 489 8,064 10,000

E1 = E2 = 0, 95 α̂ = 1.41 1,029 8,971 229 8,305 9,999

φ = 0.9 θ̂ = 1.76 1,652 8,345 823 7,811 10,000

α̂ = 1.99 1,047 8,951 218 8,417 9,998

Using the index estimate, we computed the estimated unknown quantities of
diseased and non-diseased individuals within group with negative outcome in both
tests (d and h in Tables 1 and 2), using equations 11 and 12. We observed that,
when the data have linear binary dependence the θ index overestimate d and nD

and underestimates h and nND, that effect is more evident when the covariance
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level is increased. With weak and moderate linear binary dependences, the α
index tends to overestimates all quantities but the observed bias is very little, if
the dependence is strong, the observed behaviour is similar to the observed with
the other index and it remains regardless of the test sensitivities. See Table 5.

When the diagnostic tests show a weak or strong FGM dependence structure
and the sensitivities are higher than 0.5, the θ index takes a value lower than
one indicating negative dependence which underestimates nD and the estimate
value for d is negative. For moderate FGM dependences the θ index expresses
independence. If the test sensitivities are lower than 0,5, the nD and d quantities
are underestimated while nND and h are overestimated but the estimation biases
are lower than those observed in data with linear binary dependence. For this type
of dependences with high sensitivities the α index shows estimates very close to
the true quantities but if the tests have sensitivities lower than 0.5, the behaviour
is similar to that observed with binary data however the estimation biases are
lower. See Table 5.

The obtained results using data within dependence type Gumbel, have a be-
haviour very similar with the at observed in binary linear dependent data, but in
this case, the estimation bias is lower in all cases. Table 5

4.2. Example with Published Data

Bohning & Patilea (2008) used a published data set to illustrate the perfor-
mance of their two indexes. The authors took the subset of data of serum choles-
terol and body mass index as risk factors for cardiovascular disease considered in
the Framingham Heart Study (Shurtleff 1974). In agreement with these authors,
for that data, conditional on the disease status, the risk factors are positively
and significantly associated as when measured by the Mantel-Haenszel odds ra-
tio with the summary taken over disease status. With the estimate values of the
indexes, they estimated the quantities of diseased and non-diseased individuals
within group with negative outcome in both tests, using for that the equations 11
and 12.

We fit models assuming covariance, FGM dependence and Gumbel dependence
and we obtained prevalence, performance test and dependence estimates under
Bayesian paradigm. As we have six observed frequencies in the cross table and we
have seven parameters to estimate, we have a non-identifiable model. So, in the
same manner as Joseph, Gyorkos & Coupal (1995) we fitted models using Beta(a,b)
as informative prior distributions on dependence parameters and Beta(1/2, 1/2)
as non-informative prior distribution on prevalence and test parameters. Since
we have no prior information on dependence parameters, we used the three prior
distributions employed in the example with simulated data and we used the De-
viance Information Criteria (DIC) to select the better fit. With our estimates,
we computed the values of the BP indexes and we assumed that d and h are not
known, so we use the estimators d̂ and ĥ to predicting the known nD and nND.
The results are showed in Table 6.
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Table 6: Estimates of indexes and disease classes in a study with completely known
disease status. (Observed frequencies: a = 51, b = 19, c = 70, d = 86, e = 69,
f = 20, g = 38, h = 60, n(D+ND) = 413)

Model Index n̂D n̂ND d̂ ĥ n̂(D+ND)

Böhning* θ̂ =1,36 225 188 85 61 413

α̂ =3.79 242 171 104 44 414

FGM copula* θ̂ =1.32 219 183 79 56 402

α̂ =2.48 205 154 65 27 359

Covariance θ̂D =1.57 261 - 121 - -

θ̂ND =1.08 - 202 - 75 463

α̂D =8.32 366 - 227 - -

α̂ND =3.14 - 161 - 34 527

Gumbel copula θ̂D =0.45 75 - (-65) - -

θ̂ND =0.78 - 129 - (-11) 204

α̂D =0.23 146 - 6 - -

α̂ND =0.27 - 130 - 3 276

*Models with homogeneous dependence

With this data set, the index values obtained after of fitting a model with
Gumbel parameter show negative dependence between test outcomes and the es-
timates of the unknown quantities are negative which makes no sense, indicating
the data do not fit well with the Gumbel copula. The model assuming binary de-
pendence eliminates the assumption of homogeneity retained by the Böhning and
FGM models. That model overestimates the numbers of individuals not verified
by “gold standard” expressing that dependence between the tests do not have lin-
ear binary structure. The results obtained using the model with FGM dependence
shows a better fit despite, it tends to underestimate both indexes a little and un-
derestimate the unknown quantities. This implies tending a contradiction because
in agreement with Bohning & Patilea (2008) when θ > 1, the expected value of ni,
(i = D,ND) will be below the true value of n and the amount of underestimation
is determined by the value of θ; the higher value of θ, the higher the underesti-
mation; therefore, if the index values obtained with FGM fitted model are lower
than Böhning index, the estimate quantities for ni should be higher than those
observed with the Böhning model. In both models, the θ index estimate shows
better behaviour than the other index.

5. Conclusions

In many clinical diagnostic procedures, it is necessary to use two or more
(observable or not) biological traits expressed on a continuous scale in designs that
includes verification with gold standard only for those individuals with at least one
positive outcome in the screening tests. To obtain the diagnostic, those measures
are dichotomized using a cut point, in this way, the final result is one of two values
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(positive or negative). The continuous traits measured can be correlated in some
way (not necessarily linear dependence) but when performing data analysis, can
occur dependence is assumed with binary structure and not on the continuous
structure. Given that the study planning has verification bias, some values in
cross table are unknown so it is very complex to estimate the prevalence and
performance test parameters using the maximum likelihood procedure. Many
authors have considered the estimation problem using models with latent variables
to complete the data set, others as Bohning & Patilea (2008) have developed
reparametrizations using the observed incomplete data under binary structure
assumption. In this paper, we studied the performance of models developed by
Bohning & Patilea (2008) and we compared them with the performance of models
that use covariance and copula functions to obtain information on the dependence
between diagnostic tests.

Despite the covariance and the θ index have different parametric spaces, within
the diseased population, we observed that, regardless of the population (diseased
and non-diseased individuals) it exists a perfect linear relation between them,
whenever there is the diagnostic tests have binary dependence structure, it is pos-
sible that the θ index to take values lower than zero and this range of values is
not considered within the construction of the index. To have θ < 0 indicates that
we have at least one of the tests with sensitivity zero or at least one test without
specificity and both situations are unacceptable in practical terms. The α index
does not identify covariances lower than −0.5; and when tests with perfect sen-
sitivities (Sj = 1) have a strong dependence expressed by a covariance close to
unity, the α index takes values in a very constrained range [0,2] indicating very
weak dependence; therefore, in cases where tests with perfect performance have
perfect binary dependence structure, the BP index either may indicate values not
allowed by construction or may underestimate the true dependence. It is obvious
that tests with absolutely perfect or imperfect performance is a hypothetical situ-
ation very unlikely to occur in reality. In our simulation study with more realistic
conditions, we observed that the BP indexes take values within range (0,∞), the
relationship between covariance and α index grows more exponentially and the
same do not show strong changes with the differences in the test sensitivities.

It is totally wrong to use the BP indexes with dichotomized data that initially
have some of the two copula dependence structures studied, therefore, to use some
of those indexes developed to binary data with dichotomized data, leads to erro-
neous conclusions regarding the dependence between tests which modify the final
diagnostic result. In this work, we used two copula functions that model weak
non linear dependences and the BP indexes failed to model them, whenever there
are many other copula families which the BP indexes relationship could be stud-
ied. On the other hand, when the continuous traits are perfectly dependent with
some of the copula structures studied, and we evaluate the dependence hypothesis
using the dichotomized results and assume binary covariance as parameter, the
estimation leads to conclude that test outcomes are independent from each other
what directly affects the estimation of the test performance parameters and the
prevalence.
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