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Theory of one-photon high-resolution absorption optical spectroscopy*
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We consider in this paper the Doppler-broadened absorption by two-level molecules of a gas from a weak
traveling electromagnetic plane wave in the presence of an oppositely traveling strong plane wave at the same
frequency. Here the absorption spectrum exhibits a dip that broadens and deepens as the gas is increasingly
saturated by the strong wave. This saturation effect has been employed in the recent experiments on the fine
structure of atomic hydrogen performed by Hansch, Shahin, and Schawlow (HSS). The form, linewidth, and
strength of saturation dips in the fine-structure lines are studied for experimental parameters appropriate to
the hydrogen experiment. In addition, saturation line-shape curves are calculated for experimental situations in
which the strengths of the stronger field give rise to stronger or weaker saturation of the gas medium and
varying degrees of Doppler broadening exist. The calculation of shape of the saturation dip and absorption
curves for a Doppler-broadened gas of two-level atoms is made exactly; in effect, the strong field is treated as
arbitrarily strong by avoiding a perturbation-theory treatment in favor of the exact solutions for a driven two-
level system. The general behavior found is in accord with intuition and experimental observations by HSS.
There is an optimum saturation power which gives a prominent dip and beyond which the dip suffers "power
broadening. "

I. INTRODUCTION

In absorption experiments in gas systems within
the visible and infrared spectral ranges, the
broadening of the absorption lines is predominantly
Gaussian for low gas pressures and becomes a
mixture of Lorentzian and Doppler broadenings as
the pressure increases.

In the new field of optical saturation, or "Lamb
dip, " spectroscopy, one is able to study atomic
and molecular fine and hyperfine spectral compo-
nents because Doppler broadening is avoided. The
normal Doppler-broadened line shapes have a width
of the order of l0' or 10' Hz, at room tempera-
tures, and so spectral details normally become
obscured by the Doppler broadening.

The possibility of using saturation of a resonance
in various ways to increase resolution of inhomo-
geneously broadened lines was suggested early by
Portis' for nuclear and paramagnetic resonance
and by Javan' for optical spectroscopy. Many vari-
ations of saturation techniques are possible, such
as those of Brewer, in which the line is moved
while the exciting frequency is fixed, '~ rather than
scanning a fixed transition with a tunable fre-
quency, the case we consider in this paper.

The idea is to "burn a hole" in the inhomogene-
ously broadened spectral lines. This is achieved
by making the molecules of the gas interact with a
standing wave inside the laser cavity or interact
with two opposite traveling waves. The molecules
that will interact on-resonance with both beams
simultaneously are just the ones with zero-velocity

components along the direction of propagation of
the waves, i.e. , just those molecules that do not
have a Doppler shift in their resonance angular fre-
quency eo.

With this technique, a great deal of information
about atomic and molecular structure has been ob-
tained. In a relatively short period of time (since
1969) several important results, such as resolving
the fine structure of atomic hydrogen' and resolv-
ing the hyperfine structure of sodium vapor, ' were
obtained. Also, it opened the possibility of study-
ing new coherent spectroscopy effects, with a num-
ber of applications. ' Two excellent reviews of
these achievements are those by Brewer4 and by
Shimoda and Shimizu. '

We consider in this work the nonlinear absorp-
tion of a weak electromagnetic test wave by two-
level molecules in the presence of a strong elec-
tromagnetic wave at the same frequency, but trav-
eling opposite to the weak wave. We calculate the
power density absorbed from the weak wave, pre-
dicting from first principles the absorption for
several saturation conditions (Sec. II). The relaxa, —

tion mechanisms are radiation damping and hard
collisions. Since in the experiment done by Hansch,
Shahin, and Schawlow' the pressure is taken as low
as 0.1—1 Torr, and in general pressure effects are
avoided in high-resolution experiments, we assume
that the Doppler broadening predominates over the
homogeneous broadening. The thermal motion of
the molecules of the gas is taken into account, in
the case in which the Doppler broadening predom-
inates over the homogeneous broadening.
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II. POWER DENSITY ABSORBED FROM THE OPTICAL
WEAK WAVE BY A GAS MEDIUM OF TWO-LEVEL

MOLECULES IN THE PRESENCE OF A STRONG OPTICAL
FIELD, WITH THE SAME FREQUENCY

A. Basic assumptions: The theoretical model for the gas

(1) The gaseous medium is composed of mole-
cules that are supposed initially to interact weakly
with each other. Hence each molecule can be rep-
resented by a statistical ensemble of identical mol-
ecules in the thermal bath composed by the others.
The condition of near-resonance with the external
fields allows us to consider the molecule as a two-
level system. We also assume that the two levels
of interest are sufficiently separated from other
energy levels, so that the two-level approximation
is valid.

The external optical electric fields to be con-
sidered are supposed to be monochromatic oscil-
lating plane waves,

E(r, t) = Re[Eo(r)e""~' '~'] (2.1)

where co~ is the angular frequency of the incoming
wave and k is the wave vector.

We assume, as usual, that this field varies in
space very slowly over the dimensions of the mole-
cule, and we restrict our treatment to the linear
dipole approximation for the light-gas interaction.
Then, the interaction Hamiltonian is written

P= —p, E, (2.2)

where p, is the electric-diyole-moment vector of
the molecule (or atom} and E is given by (2.1).

(2} As is well known, several factors contribute
to the finite linewidth of spectral lines of gases.
Some of them are related to relaxation processes
of the energy levels of the molecule or atom caus-
ing homogeneous broadening. Of those we consider
here spontaneous emission and collisions between
the molecules. Other factors to be considered here
are saturation broadening due to the high strengths
of the applied external fields, and the Doppler
broadening caused by the thermal motion of the
molecules. The saturation mechanism gives a
homogeneous contribution to the absorption line-
widths and the Doppler effect an inhomogeneous
one.

The collisions are studied in the so-called im-
pact approximation, since we are dealing with low-
pressure regimes. We take into account not just
the pressure broadening caused by the collisions
of the molecules with each other, but also the col-
lisions with the walls of the gas container. ' In the
impact approximation, the collisions are assumed
to occur in a random way and to be so strong that
immediately after they take place all phase infor-
mation is lost ("hard" or strong collisions).

f(8) e 8/v (2.3)

where v is the homogeneous relaxation time, i.e. ,
the average time between two successive inter-
ruptions. We write

1 1 1
+

T Yc Tn
(2.4)

where v, is the average time between two succes-
sive collisions and 7'„ is the average time between
two successive spontaneous decays.

The probability that a molecule, after surviving
without interruptions for a time 8, suffers an inter-
ruption in the time interval between 8 and 8+ d8 is

g(8) d8= e o/'d8/7,

which has the form of a Poisson distribution.

(2.5)

B. Calculation of the absorbed power density

In 1957, Feynman, Vernon, and Hellwarth' de-
rived a geometrical representation for the Schro-
dinger equation of an ensemble of two-quantum-
level noninteracting systems which are under the
influence of a perturbation. We use this vector
model for calculating the power density absorbed
from the weak wave by a gas medium of two-level
molecules in the yresence of a strong field. We
then calculate the variation of internal energy of
the atomic (or molecular) two-level system due to
its absorption of light from the weak wave. Ac-
cording to the vector model, the absorbed power
density from the weak wave is

dW h(oo d( )dt 2 dt
(2.6)

where N is the particle density, x, is the third
component of the vector model's vector r in the
presence of the strong field only, and 5y, is the
modification of this component due to the presence
of the weak field.

The two optical waves applied to the gas medium

This character of randomness has its counterpart
in spontaneous emission. If a quantum system is in
one of its excited energy states, the radiation decay
occurs at random and the probability of spontane-
ous emission obeys a Poisson distribution.

The interaction of the molecule with the external
fields can be interrupted either by a strong colli-
sion or by a syontaneous emission in the present
context. This assumption, plus the fact that ra-
diation damping and hard collisions are statistical-
ly independent, allow the formulation of an unified
approach to them.

Let f(8) be the probability that a molecule will
not be interrupted during the time interval 8. It is
well known that
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have an electric field given by

E=E, cos(~ t —P,) +E, cos(~,t +P,), (2.7)

where &u = &o~(1 —y/c) and u&, = &o~(l+ v/c) are the
Doppler-shifted frequencies of the waves seen from
the frame of reference of the molecule, v~ is the
laser frequency in the laboratory frame, g, = kz, is
a phase, and E, and E, are the amplitudes of the
two waves. It is assumed that E,»E,. From its
own frame of reference, a molecule "sees" two
waves of frequencies &o and &o, (molecule's system
of reference M).

Suppose that in the presence of the strong field
alone the vector representing the state of the two-
level system is r, and 5r is its modification in the
presence of the weak wave. The total vector of the
two-level system is

R= r+ 5r.

Similarly, the vector Q representing the perturba-
tion is written

gives, in the rotating-wave approximation,

(dg = —(pg2EO/S) cospo ~

(o,'=+ (p,„E,/k) sing, ,
I603= (do.

Similarly, we have

(2.12)

I
r2

Re[(r, +ir, )e '"-']

1m[(r, +ir,)e '"-'] (2.13)

In a frame rotating with angular velocity &u, dr/dt
transforms into dr'/dt+&o xr'. Hence the equation
of motion for r in the M' system of reference be-
comes

The equation of motion for R is

=Ax R. (2.8)

~+j. I I I= ((o —u),)r, + (u,r, ,

dr—=+& r
cft

where the vector ur = (&o„&o„&o,) is given by its
components,

(2.9)

~, = (1/a)(v„+ v„)
= -(2 p, »/k)EO cos(4) f —Qo),

ur, = (z/a)(v„—v„)= 0,
(2.10)

(d3= (do,

First, we obtain the solution for r, i.e. , the so-
lution in the absence of the weak wave. The equa-
tion to be solved is

I
3

dt
= (d&f'2 —C02J'& .

For solving this system of equations, we use the
Laplace transform method, using as initial condi-
tions

r,'(8=0)=r,'(0)=0, r,'(B=0)= —1,
where 9= t —t', t' being the time of last interrup-
tion by collision or spontaneous decay. This initial
condition means that the atom (or molecule) is in
the lower state of energy in the two-level system.
To perform the Laplace transform we change the
independent variable t to 9= t —t', where t' is the
time of last collision, and get

for the perturbation matrix elements given by

V»-- V» ———p, »E, cos(ur f —P,),
r,'(S) = (1/a) [((u —(o,) (u,' —(o,'S],
r,'(S) = (1/S) [ ur,'((u —(u, ) + Sar', ],
r,'(S) = —(1/S) [S'+ (ur —(oo)'],

(2.14)

To simplify the calculations, we change to a ro-
tating coordinate system M' that rotates with fre-
quency (d around the axis 3 in the r space. The
rotation vector is given then by ~ =(0, 0, a& ). The
rotation matrix R is

where S is the Laplace transform parameter and
b, is given by

—((o —(o,)

cosa) t since t 0

R= -sinu t cosco t 0

0

(2.11)

with

The vector &o transforms as &o,'=Z&R„.ur, This 0 = (47 —coo) + p ~2EO/5
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Inverting the Laplace-transformed components of
r, we find

(o,'((u —(o,)(1 —c

osage)

0 0
——' sinQO,

(2.15)

r,'(6) = —1+ (p, '„Eo/h 'fl') (1 —cosQe) .

Next we obtain the solution for 5r in the approxi-
mation in which the term 5&v x 5r in (2.9) is ne-
glected. Then, using

—(5r) = (g x 5r + 5(g x r,dt (2.16)

with the solutions obtained for the 4", and 5r, com-
ponents of the vector 5r, we obtain the part of
d(5r, )/dt that is quadratic in the strength of the
weak field E„namely,

5r,(e=o)=0, 5r,'(e=o)=o, 5&(e=o)=0.

(2.21)

S = I/r in—, (2.22)

where 7. is the homogeneous relaxation time and
n = ~, —+ . This procedure represents a consid-
erable simplification of the calculations.

After a rather lengthy calculation, where the
average over the phases is also taken, we find

e note, however, that because of the formal
analogy between the averaging procedure used in
(2.20) and the Laplace transform, it is not neces-
sary to find the components 5r', (e) of the vector 6r
by an inverse Laplace transformation and then take
the average over the homogeneous broadening pro-
cesses. It is enough to choose as the Laplace
transform parameter

d
dt
—(5r,) = 5(u, 5r, —5ur, 5r, . (2.17)

dS' Aug p, '„E,'

The equations of motion for the components of
5r in the rotating frame M' are

dt
—(5r,') = &o,'5r,'+ (~ —~,)5r,'+ 5ur,'rt,

&& r(vl(s, y', z) [1+(x --z)'] s'Q)

1
(1+y') (1+z') [ (1+y' —z') '+ 4z'] '

dt
—(5r2) = —((u —(o,)5r,' —(o,'5r,' —5~,'r', , (2.18)

where

(2.23)

—(5r,') = (o', 5r,' —(u,'5r', + 5(o',r2 —r', 5ur,'

where the prime indicates the rotated quantities,
Eq. (2.13), and

x = r((oi —(o,), z = 2(u)i/c)vr,

s = (p.„E,/h)r, y'= (x --,'z)'+ s',
q(s, y', z) = (1+y' —3z') (1+zx —1.5z'+ —,'s')

+ z(z' —y' —3)(x —2.5z),
(Oa =— costa, (o', =+ " ' sing, ,

Q = ~(Qg+ Q2),

5u)', = —(p,„E,/h) cos[(ur, —(o )t+y, ],
5(o,'= (p, »E,/h) sin[((o. —u) )t+ y, ],

(2.19)

.dW " «d8dW (2.20)

in the rotating-wave approximation; & and co, are
Doppler frequencies defined by (2.7).

The system of equations (2.18) is solved using
Laplace transforms (see the Appendix). Then, the
power density absorbed [Eq. (2.6)] is averaged
over the homogeneous broadening mechanisms
using the Poisson distribution (2.5) as the weight
function:

with

Q, = (2x —z)((1 —z' + y') (x —2 z) + 2z [ 1 —z(x —1.5z) ]),
Q, =2((l z'+y')[1 —z(x —1.5z)] —2z(x —-', z)).

The parameter s=(p»E, /h)r is called the satura
tion parameter. The parameter z = 2(sr+/c) v7 is
related to the component of the velocity of the mol-
ecule along the direction of the lasers beams. (c
is the speed of light in vacuum. )

In the limit of no saturation (s= 0), and for mole-
cules with zero velocity v along the beam axis, we
get

d W

Schmo

p.»E, (2.24)
To perform the Laplace transform we change the

independent variable t to 8= t —t', where t' is the
time of the last interruption (by collision or spon-
taneous decay). We assume the following initial
conditions:

i.e. , a Lorentzian curve with full linewidth at half-
maximum intensity 2/7, as expected.

In Figs. 1-3 the homogeneous power density
(dW/dt)„, absorbed from the weak wave (2.23),
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FIG. 1. Bel.ative homogeneous absorbed power density
(dW/Ch)z/(dS'/N)z p from the weak em wave vs detuning
frequency x = 7 (~z —c p) . Absorption dependence on satura-
tion for molecules with zero-velocity (v = 0) component
along the laser beam; (d&/Ch)H p

= (d'+/&t)z (s = 0 v = 0,
g =0) =2NSmp (p(2Eg/k)7 erg/seccm v' is the homoge-
neous relaxation time (sec); saturation parameter
8 = (pg2E(/+)7, assuming the values a = 0, b = 0.10, c= 0.50,
d=0.80, ande =1.0.

normalized to (2.24) for x = 0, is shown for several
values of the parameters s and z.

The final step of the calculation is to take the
average over the velocities of the molecules,
namely,

(2.25}

FIG. 3. Same as Fig. 2, but with saturation parameter
s = 0.10.

=fs(~z, —~o) ( ) dn. (2.27)

is the Gaussian distribution of velocities in the
units of 7, the homogeneous relaxation time.

We are interested in describing the kind of ex-
periments of which that of Hansch et gE. ' is an
example. We assume then that the linewidth of the
Gaussian line, h~~, is much bigger than the homo-
geneous linewidth 6&„. Then, the expression
(2.25) can be written

where (2.28}

f (5) 0 + (Ts/T)262
G (2.26)
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FIG. 2. Same as Fig. 1, but with absorption dependence
on the velocity components v of the molecules along the
laser beam, no saturation effects (s = 0), and a = 0,
5 =0.20, c =1.0, d=-2.0, e =3.0, and f=-5.0 (in units of
c/2, ~).

nor„. ,=(2/~)(1+ s')'~'. (2.29)

We could also obtain the relative depths D, of the
dip for several values of the saturation parameter
s. In particular, for s = 1 the absorption attenuates
by 25% for its unsaturated value (s = 0).

In Fig. 7 the Doppler-broadened absorbed power
density (2.27) is displayed for various values of the

is calculated for several ratios of the homogeneous
and inhomogeneous linewidths b ups/h&o~ and for
several values of the saturation parameter
s=(IJ.»E,/h)7 The case. in which hors/h+„=20 and
s = 0.10 represents the experimental situation of the
narrowest homogeneous linewidth measured by
Hansch et a/. ,

' in which b, or„= 300 MHz and the
saturation parameter is kept small to avoid power
broadening of the fine-structure line. In Figs. 4
and 5 the integral Z [Eq. (2.28) ] is shown for sev-
eral values of the saturation parameter. In Fig. 6
we display J for s =0.10 in more detail. The line-
width of the "dip" in the absorption curve obeys
the expression for a saturated Lorentzian line-
width,
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FIG. 8. Same as Fig. 7, but with the saturation pa-
rameter s =0.10.

&to«„are given by Eq. (2.29). The strength of
the dips are also predicted from the spectra cal-
culated. We also conclude that there is an optimum
saturation power which gives a prominent dip and
beyond which the dip suffers "power broadening. "
The influence of this effect in the linewidth of the
dips is described by expression (2.29).

There is an intermediate region in which the
homogeneous and inhomogeneous broadening mech-
anism superpose and in the wing, the absorption
line is purely Gaussian.

It is our hope that these calculations may lay the
groundwork for further refinements which might
deal, for example, with the small but important
shifts in the line center known to occur in satura-
tion spectroscopy.
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S
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APPENDIX: SOLUTION OF Eg. (2.16) AND ITS AVERAGE
OVER THE RELAXATION BROADENING MECHANISMS

(HARD COLLISIONS PLUS SPONTANEOUS DECAY)

The procedure is as follows: Equation (2.16) is
solved using the Laplace-transform method and a
rotation of the coordinate axes. The rotation vec-
tor is &o = (0, 0, &o ). The equations of motion for
the components of 5r in the rotating frame M' are

where

a, S

b, = S(S'+ 0'), Q' = (&o —&o,)'+ p~»E', /h '. (A3)

The inverse transformation and the average over
the relaxation mechanisms required in (2.20) can
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be accomplished using the transform parameter
(2.22). The main steps which lead to (2.23) are as
follows:

~ d6 dg

n=(d, —(d, (t&, =at'+Q, , (t), =kz, .
Thus

I', —I', = ,' e—'~2[t&r2(s )+ i6r,'(S )]+c.c. ,

where

where

~"(do 02&2 (I I )2 S7-
S = I/v —ia, S, =S*=1/a+in.

Replacing 2(I', —I",) by Z, and averaging over the
phases (t)0 and (t)„we get

(Z, &» =a (S'+"",'+&S (ra —a.& (y, (S &+(X(S )&+ " ', ' ' )[(2, -2)+((a, +a, )&,

where

2 g2 'E' A A(Sf I 12 2 ~12 1. 1 A I l2 1 2 3
~l g @2g2 1 P 2g2 2

2 2 2 2
(S$ ~ ~12 2 I l2 1 1 A V'12+1 A5 A6

SQ SQ 2

and where

co —no S 1 S S 1 S S
O' S'+a' 2 S'+(a —0)' S'+(a+0)' 20 S +(a —0)' S'+(a+0)')'

1 S S (u —(a)0 S 1 S S
20 S'+(a —0)' S'+(S+a)' O' S'+a' 2 S'+(a —0)' S'+(a+0)')

(d —coo ot 1 tx+ 0 Q —0!"( ~ )' *
( -0)') '

1 ++0 Q —a
2Q S'+(n+0)' S'+(n —&)'

1 n+u 0 —a 1 ~+~
n' S'+a' 2 S'+(n+n)' S'+(V —a)' 2n S'+(n+n)' S'+(n —n)' '

S'+n' ' ' S'+(n+0)' ' ' S'+(n —0)' ' ' S'+n' ' ' S'+(n —Q)' ' ' S' (+n0+)' '

Thus

(
0 t"22 2 Re(Z )dt H 2 ST eo

which gives Eq. (2.23).
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