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FULLY AND STRONGLY
ALMOST SUMMING MULTILINEAR MAPPINGS

DANIEL M. PELLEGRINO AND MARCELA L.V. SOUZA

ABSTRACT. In this paper we generalize a theorem of
Kwapień which asserts that a linear operator T is absolutely
(1; 1)-summing whenever T ∗ is absolutely (q; q)-summing for
some q ≥ 1. We also introduce the classes of strongly and
fully almost summing multilinear mappings and investigate
structural properties such as a Dvoretzky-Rogers type theo-
rem and connections with other classes of absolutely summing
mappings.

1. Introduction. The success of the theory of absolutely summing
linear operators has motivated the investigation of new classes of
multilinear mappings and polynomials between Banach spaces. The
first possible directions of a multilinear theory of absolutely summing
multilinear mappings were outlined by Pietsch [15] and several related
concepts have been exhaustively studied by several authors. Recently
a question of Pietsch about Hilbert-Schmidt multilinear mappings was
answered by Matos in [8] and this work motivated the study of a
new class of multilinear mappings, called the space of fully absolutely
summing multilinear mappings, see [9, 16, 17].

The concept of almost summing operators was first considered for the
multilinear and polynomial cases by Botelho [3] and Botelho-Braunss-
Junek [4]. In [12] and [13] it is proved that whenever n ≥ 2 and
E1, . . . , En are L∞-spaces, every continuous n-linear mapping from
E1 × · · · × En into any Banach space F is almost 2-summing, showing
that coincidence results for almost summing mappings are much more
common than was known. These coincidental results motivate the
study of other natural directions for extending the concepts of almost
summing linear operators to polynomial and multilinear mappings.
Our first definition leads us to the space of strongly almost summing
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mappings which is strictly contained in the space of almost summing
mappings. Among other results, we will show that every continuous
scalar valued bilinear mapping defined on L∞-spaces is strongly almost
2-summing, generalizing a result of Botelho [3] about almost summing
bilinear mappings. The second definition we will work with, inspired in
[9], creates the space of fully almost summing mappings and furnishes
some new other interesting results.

Throughout, E, E1, . . . , En, F will stand for (real or complex) Banach
spaces. If 2 ≤ q ≤ ∞ and (rj)∞j=1 are the Rademacher functions, we
say that E has cotype q if there exists C ≥ 0 such that for any k ∈ N
and x1, . . . , xk ∈ E,

( k∑
j=1

‖xj‖q

)1/q

≤ C

( 1∫
0

∥∥∥ k∑
j=1

rj(t)xj

∥∥∥2

dt

)1/2

.

The infimum of the C is denoted by Cq(E). To cover the case q = ∞
we replace (

∑k
j=1 ‖xj‖q)1/q by maxj≤k ‖xj‖. If 1 ≤ q ≤ 2, we say

that E has type q if there exists C ≥ 0 such that for any k ∈ N and
x1, . . . , xk ∈ E,

( 1∫
0

∥∥∥ k∑
j=1

rj(t)xj

∥∥∥2

dt

)1/2

≤ C

( k∑
j=1

‖xj‖q

)1/q

The infimum of the C is denoted by Tq(E).

For p ∈ ]0,∞[, the space of all (xj)∞j=1 in E such that (〈ϕ, xj〉)∞j=1 ∈
lp for every continuous linear functional ϕ : E → K will be de-
noted by lwp (E). We define ‖.‖w,p in lwp (E) by ‖(xj)j∈N‖w,p =
supϕ∈BE′ ‖(〈ϕ, xj〉)j∈N‖p .

The following concept of absolutely summing multilinear mappings
is a natural generalization of the definition of absolutely summing
operators and has been explored by several authors, cf. [2, 7, 10 12].

Definition 1 (Alencar-Matos [1]). If p, q1, . . . , qn ∈ ]0,∞[, a
continuous multilinear mapping T : E1 × · · · × En → F is ab-
solutely (p; q1, . . . , qn)-summing, or (p; q1, . . . , qn)-summing, if there
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exists C > 0 such that

(1.1)

( ∞∑
j=1

‖T (x(1)
j , . . . , x

(n)
j )‖p

)1/p

≤ C
n∏

r=1

‖(x(r)
j )∞j=1‖w,qr

∀ (x(k)
j )∞j=1 ∈ lwqk

(Ek).

In order to avoid trivialities we assume that 1/p ≤ 1/q1 + · · ·+ 1/qn.
Henceforth we will denote the space of all absolutely (p; q1, . . . , qn)-
summing n-linear mappings from E1 × · · · × En into F by the symbol
Las(p;q1,... ,qn)(E1, . . . , En; F ).

The infimum of the C > 0 for which (1.1) holds defines a norm (p
norm if p < 1) on the space of all absolutely (p; q1, . . . , qn)-summing
multilinear mappings. This norm is denoted by ‖.‖as(p;q1,... ,qn) and
Las(p;q1,... ,qn)(E1, . . . , En; F ) endowed with this norm is a Banach
space. When q1 = · · · = qn = q, we write Las(p;q)(E1, . . . , En; F ).
If 1/p = 1/q1 + · · ·+ 1/qn, we denote the (p; q1, . . . , qn)-summing mul-
tilinear mappings by Ld(q1,... ,qn)(E1, . . . , En; F ), and these mappings
are called p-dominated and constitute an important particular case due
to the strong analogy with the linear case.

2. A multilinear version for a theorem of Kwapień. In
this section we present an interesting generalization of the following
theorem, due to Kwapień.

Theorem 1 (Kwapień [6]). Let X be a Banach space and H a
Hilbert space. If u ∈ L (X; H) is such that u∗ is q-summing for some
1 ≤ q < ∞, then u is 1-summing and ‖u‖as,1 ≤ A−1

1 Bq ‖u∗‖as,q, where
A1 and Bq are the constants of Khinchin’s inequality.

The adjoint of T ∈ L(E1, . . . , En; F ) is defined by

T ∗ : F ∗ −→ L(E1, . . . , En;K)
ϕ −→ T ∗ϕ : E1 × · · · × En −→ K

with (T ∗ϕ)(x1, . . . , xn) = ϕ(T (x1, . . . , xn)).
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Theorem 2. If E1, . . . , EN are Banach spaces, H is a Hilbert space
and

T ∈ L(E1, . . . , EN ; H)

is such that T ∗ is almost 2-summing, then T is absolutely (1; 1)-
summing and

‖T‖as(1;1) ≤ A−1
1 ‖T ∗‖al,2 .

Proof. We first consider the case of an operator T : E1×· · ·×EN → ln2 ,
n ∈ N.

Consider x(k,1), . . . , x(k,m) ∈ Ek, 1 ≤ k ≤ N . Call on Khinchin’s
inequality, see [5, Theorem 1.10], to obtain

m∑
j=1

∥∥∥T (x(1,j), . . . , x(N,j))
∥∥∥

=
m∑

j=1

( n∑
k=1

∣∣∣ 〈
T (x(1,j), . . . , x(N,j)), ek

〉 ∣∣∣2)1/2

=
m∑

j=1

( n∑
k=1

∣∣∣ 〈
(x(1,j), . . . , x(N,j)), T ∗ek

〉 ∣∣∣2)1/2

≤
m∑

j=1

[
A−1

1

( ∫ 1

0

∣∣∣∣
n∑

k=1

〈
(x(1,j), . . . , x(N,j)), T ∗ek

〉
rk(t)

∣∣∣∣ dt

)]

= A−1
1

∫ 1

0

m∑
j=1

∣∣∣∣
〈

(x(1,j), . . . , x(N,j)),
n∑

k=1

rk(t)T ∗ek

〉∣∣∣∣ dt

≤ A−1
1

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)T ∗ek

∥∥∥∥∥
as(1;1)

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

dt.

Thus, since L(E1, . . . , EN ;K) = Las(1;1)(E1, . . . , EN ;K) holds isomet-
rically, we also obtain

(2.1)

m∑
j=1

∥∥∥T (x(1,j), . . . , x(N,j))
∥∥∥ ≤ A−1

1

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

×
∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)T ∗ek

∥∥∥∥∥ dt
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and, on the other hand, since T ∗ is almost summing we have
(2.2)( ∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)T ∗ek

∥∥∥∥
2

dt

)1/2

≤ ‖T ∗‖al,2 ‖(ek)n
k=1‖w,2 = ‖T ∗‖al,2 .

Now consider T ∈ L(E1, . . . , EN ; H) whose adjoint T ∗ is almost
summing.

If x(k,1), . . . , x(k,m) ∈ Ek, 1 ≤ k ≤ N , identify the span of the
T (x(1,j), . . . , x(N,j))′s, j = 1, . . . , m with ln2 for an appropriate n and
define by Ψ such identification. Let P ∈ L(H) be the orthogonal
projection onto this span. We have P ∗ = P and by (2.1) and (2.2), we
obtain

m∑
j=1

∥∥∥T (x(1,j), . . . , x(N,j))
∥∥∥

=
m∑

j=1

∥∥∥Ψ ◦ P ◦ T (x(1,j), . . . , x(N,j))
∥∥∥

≤ A−1
1 ‖T ∗ ◦ P ∗ ◦ Ψ∗‖al,2

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

≤ A−1
1 ‖T ∗‖al,2 ‖P ∗‖ ‖Ψ∗‖

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

≤ A−1
1 ‖T ∗‖al,2 ‖P‖ ‖Ψ‖

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

= A−1
1 ‖T ∗‖al,2

∏N

i=1

∥∥∥(x(i,j))m
j=1

∥∥∥
w,1

.

Therefore, T is absolutely (1; 1)-summing and ‖T‖as(1;1,... ,1) ≤
A−1

1 ‖T ∗‖al,2.

3. Almost and strongly almost summing multilinear map-
pings. The first attempts to a concept of almost summability for poly-
nomials and multilinear mappings are due to Botelho [3] and Botelho-
Braunss-Junek [4].
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Definition 2 (Botelho-Braunss-Junek [4]). If p1, . . . , pn ≥ 1, a
continuous n-linear mapping T : E1 × · · · × En → F is said to be
almost (p1, . . . , pn)-summing if there exists C ≥ 0 such that

( 1∫
0

‖
k∑

j=1

T (x(1)
j , . . . , x

(n)
j )rj(t)‖2 dt

)1/2

≤ C
n∏

r=1

‖(x(r)
j )k

j=1‖w,pr

for every k and any x
(l)
j in El, l = 1, . . . , n and j = 1, . . . , k.

The space of all almost (p1, . . . , pn)-summing multilinear mappings
from E1×· · ·×En into F will be denoted by Lal(p1,... ,pn)(E1, . . . , En; F ).
When p1 = · · · = pn = p we write Lal,p(E1, . . . , En; F ).

The infimum of the C > 0 for which last inequality holds defines a
norm and turns the space of all almost (p1, . . . , pn)-summing multilin-
ear mappings a Banach space.

The first nontrivial coincidence result for almost summing mappings
is due to Botelho [3] and asserts that every scalar valued bilinear
mapping defined on L∞-spaces is almost 2-summing. Further recent
work of the first named author showed other coincidence situations:

Theorem 3 (Pellegrino [12, 13]). If n ≥ 2 and E is an L∞-space,
then

L(nE; F ) = Lal,2(nE; F ),

regardless of the Banach space F .

As we have mentioned, motivated by these several coincidence theo-
rems, we will give a more restrictive concept, related to the definition
of almost summing mappings and next we will show that we still have
nontrivial coincidence results in this new situation.
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Definition 3. A continuous n-linear mapping is said to be strongly
almost (q1, . . . , qn)-summing if there exists C > 0 such that

( ∫ 1

0

∥∥∥∥
k∑

j1,... ,jn=1

T (x(1)
j1

, . . . , x
(n)
jn

)rπ(j1,...jn)(t)
∥∥∥∥

2

dt

)1/2

≤ C
n∏

r=1

∥∥∥∥(x(r)
j )k

j=1

∥∥∥∥
w,qr

for every k, where π is any injection from N× · · · × N into N.

It is important to observe that the particular choice of π is irrel-
evant. The linear space composed by the n-linear strongly almost
(q1, . . . , qn)-summing mappings from E1 × · · · × En into F is denoted
by Lsal(q1,... ,qn)(E1, . . . , En; F ). When q1 = · · · = qn = q we denote by
Lsal,q(E1, . . . , En; F ).

One can verify some analogy with the linear definition of almost
summing operators since, as in the linear case, if p>2 the only n-linear
mapping which is strongly almost p-summing is the trivial mapping.

Proposition 1. If p > 2, the unique multilinear mapping which is
strongly almost (p, . . . , p)-summing is the null mapping.

Proof. If T ∈ Lsal,p(mE; F ), then

( ∫ 1

0

∥∥∥∥
n∑

j1,... ,jm=1

T (x, . . . , x)rπ(j1,... ,jm)(t)
∥∥∥∥

2

dt

)1/2

= ‖T (x, . . . , x)‖
( ∫ 1

0

∣∣∣∣
n∑

j1...jm=1

rπ(j1,... ,jm)(t)
∣∣∣∣
2

dt

)1/2

= ‖T (x, . . . , x)‖
( ∫ 1

0

∣∣∣∣
nm∑
j=1

rj(t)
∣∣∣∣
2

dt

)1/2

≥ C2(K)−1 ‖T (x, . . . , x)‖
( ∣∣∣∣

nm∑
j=1

12

∣∣∣∣
)1/2

= C2(K)−1 ‖T (x, . . . , x)‖nm/2.
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Thus, since T is strongly almost (p, . . . , p)-summing, we will be able to
find C > 0 such that

nm/2 ‖T (x, . . . , x)‖ ≤ C
∥∥(x)n

j=1

∥∥m

w,p
= C ‖x‖m

nm/p.

Therefore
‖T‖ ≤ Cnm/p−m/2 ∀n ∈ N.

Making n → ∞, we have ‖T‖ = 0, whenever p > 2.

One can also check that if dim E < ∞ and p ≤ 2, then Lsal,p(nE; E) =
L(nE; E), and this fact is a first indication that one can expect a
Dvoretzky-Rogers Theorem for strongly almost summing mappings.

As immediate outcome of the contraction principle, see [5], we can
justify the denomination “strongly” in our definition by observing that
every strongly almost (q1, . . . , qn)-summing n-linear mapping is almost
(q1, . . . , qn)-summing. Since the random variables on Definition 3 are
still independent and symmetric, we can invoke the concepts of type
and cotype and obtain some natural connections. Firstly, we need some
definitions.

Definition 4 (Matos [9]). A continuous n-linear mapping T :
E1 × · · · × En → F is said to be fully (p; q1, . . . , qn)-summing if there
exists C ≥ 0 such that

( ∞∑
j1,... ,jn=1

∥∥∥T (x(1)
j1

, . . . , x
(n)
jn

)
∥∥∥p

)1/p

≤ C

n∏
l=1

‖(x(l)
j )∞j=1‖w,ql

∀ (x(l)
k )∞k=1 ∈ lwql

(El).

In this case we write T ∈ Lfas(p;q1,... ,qn)(E1, . . . , En; F ). The infimum
of the C is denoted by ‖.‖fas(p;q1,... ,qn).

Several results about fully summing mappings can be found in [9,
16, 17]. Now the same standard reasoning used for almost summing
mappings, see [3], can be analogously used in order to obtain the
following proposition:
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Proposition 2. If F has finite cotype q, then every F -valued
strongly almost (p1, . . . , pn)-summing multilinear mapping is fully
(q; p1, . . . , pn)-summing. On the other hand, if F has type q, then
every fully (q; p1, . . . , pn)-summing multilinear mapping is strongly al-
most (p1, . . . , pn)-summing. In particular, if F is a Hilbert space, then

(3.1) Lfas(2;2,... ,2)(nE; F ) = Lsal,2(nE; F ).

The next corollary is a generalization of Theorem 7.1 of [3].

Corollary 1. If E is an L∞-space, then Lsal,2(2E;K) = L(2E;K).

Proof. Since every scalar valued continuous bilinear mapping defined
on L∞-spaces is 2-dominated, see [2], and since Ld(2,2)(2E;K) ⊂
Lfas(2;2,2)(2E;K), see [13], then, by (3.1), Lsal,2(2E;K) = L(2E;K).

We also have some structural properties, such as:

Proposition 3. If every continuous n-linear mapping T : E1 ×
· · · × En → F is strongly almost (q1, . . . , qn)-summing, then every
continuous r-linear T : Ej1 × · · · × Ejr

→ F is strongly almost
(qj1 , . . . , qjr

)-summing, where 1 ≤ r ≤ n, j1, . . . , jr ∈ {1, . . . , n} and
jt = js if t = s.

If p > 1 and dimE = ∞, we know that Lal,p(E; E) = L(E; E) [4,
Example 4]. As a corollary of this result and Proposition 3, we have a
Dvoretzky-Rogers theorem for strongly almost summing mappings.

Corollary 2. If 1 < p ≤ 2 we have Lsal,p(nE; E) = L(nE; E) ⇔
dimE < ∞.

We can observe that, despite the fact that the definition of strongly
almost summing mappings is restrictive, we do not have to look further
to find examples of such mappings. A simple computation asserts, for
example, that if u : E → F is an almost p-summing linear mapping
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and ϕ is a continuous linear functional, then

T : E × E −→ F : T (x, y) = u(x)ϕ(y)

is strongly almost (p, 2)-summing.

4. Fully almost summing mappings. The next concept, sug-
gested by Matos, is also natural and furnishes various interesting con-
sequences.

Definition 5. A continuous n-linear mapping T is fully almost
(p; p1, . . . , pn)-summing if there exists C > 0 such that

( ∫
I

∥∥∥∥
k∑

j1,...jn=1

T (x(1)
j1

, . . . , x
(n)
jn

)
n∏

s=1

rjs
(ts)

∥∥∥∥
p

dλ

)1/p

≤ C

n∏
r=1

∥∥∥(x(r)
j )k

j=1

∥∥∥
w,pr

for every natural k, where λ is the Lebesgue measure over the Borel
sets of I = [0, 1]n.

The linear space of all fully almost (p; p1, . . . , pn)-summing n-linear
mappings from E1 × · · · ×En into F will be represented by the symbol
Lfal(p;p1,... ,pn)(E1, . . . , En; F ). The infimum of the constants C is
denoted by ‖.‖fal(p;p1,... ,pn). In the case p1 = · · · = pn = q we write
Lfal(p;q)(E1, . . . , En; F ) and ‖.‖fal(p;q).

It must be mentioned that we are no longer able to explore type
and cotype as we did in last section, since we do not have independent
random variables anymore. In fact it is not hard to see that the random
variables

rjk : [0, 1]2 −→ [0, 1] : rjk(t, s) = rj(t)rk(s)

are not independent since λ(r−1
11 (1) ∩ r−1

12 (1) ∩ r−1
21 (1) ∩ r−1

22 (−1)) = 0,
whereas

λ(r−1
11 (1)).λ(r−1

12 (1)).λ(r−1
21 (1)).λ(r−1

22 (−1)) = 1/8,

where λ denotes the Lebesgue measure over the Borel sets of [0, 1]2.
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In order to obtain nontrivial examples of n-linear fully almost (p; q)-
summing mappings we must have q ≤ 2, since it can be proved that if
q > 2 and T ∈ Lfal(p;q)(nE; F ) for some n ∈ N, then T = 0.

The following property shows more similarity with the definition of
strongly almost summing mappings.

Proposition 4. If Lfal(p;p1,... ,pn) (E1, . . . , En; F ) = L (E1, . . . ,
En; F ), then

Lfal(p;pk1 ,... ,pkj
)

(
Ek1 , . . . , Ekj

; F
)

= L (
Ek1 , . . . , Ekj

; F
)

whenever kr ∈ {1, . . . , n}, with 1 ≤ r ≤ n and kr = ks if r = s.

Proof. The case n = 2 is illustrative. If T ∈ L (E1; F ), we must show
that T ∈ Lfal(p;p1) (E1; F ). Let us consider ϕ ∈ E′ and a ∈ E such
that ϕ (a) = 1. Define

R : E1 × E2 −→ F

(x, y) −→ R (x, y) = T (x)ϕ (y) .

Since R ∈L (E1, E2; F ), then by hypothesis R ∈Lfal(p;p1,p2) (E1, E2; F )
and, making y1 = a, y2 = y3 = · · · = 0, we get∫ 1

0

∥∥∥∥∑m

j=1
rj(t)T (xj)

∥∥∥∥
p

dt

=
∫ 1

0

∥∥∥∥∑m

j=1
rj(t)R(xj , a)

∥∥∥∥
p

dt

=
∫ 1

0

∫ 1

0

∥∥∥∥∑m

j,k=1
rj(t)R(xj , yk)

∥∥∥∥
p

dt dθ

=
∫ 1/2

0

∫ 1

0

∥∥∥∥∑m

j,k=1
rj(t)rk (θ)R(xj , yk)

∥∥∥∥
p

dt dθ

+
∫ 1

1/2

∫ 1

0

∥∥∥∥∑m

j,k=1
rj(t)rk (θ)R(xj , yk)

∥∥∥∥
p

dt dθ

=
∫ 1

0

∫ 1

0

∥∥∥∥∑m

j,k=1
rj(t)rk (θ)R(xj , yk)

∥∥∥∥
p

dt dθ

≤ ‖R‖p
fal(p;p1,p2)

∥∥∥(xj)
m
j=1

∥∥∥p

w,p1

‖a‖p .
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This shows that T ∈ Lfal(p;p1) (E1; F ). The same reasoning furnishes

Lfal(p;p2) (E2; F ) = L (E2; F ) .

It also can be checked that every finite type multilinear mapping is
fully almost (p; 2)-summing and an adequate use of the Rademacher
functions furnishes

L(E1, . . . , En; F ) = Lfal(p;1,... ,1)(E1, . . . , En; F ),

for every 0 < p < ∞.

The next theorem asserts that, similarly to a result for almost sum-
ming mappings (see [3, Theorem 4.1]), we have an inclusion theorem
concerning dominated mappings and fully almost summing mappings.

Theorem 4. Let E1, . . . , En, F be Banach spaces. If r, r1, . . . , rn ∈
]0,∞], with 1/r = 1/r1 + · · · + 1/rn, then

Ld(r1,... ,rn)(E1, . . . , En; F ) ⊂ Lfal(r;2)(E1, . . . , En; F ).

Proof. Let us consider T ∈ Ld(r1,... ,rn)(E1, . . . , En; F ) and xk
j ∈ Ek,

with j = 1, . . . , m and k = 1, . . . , n. Denoting ‖T‖d(r1,... ,rn) = ‖T‖d,
and by applying the Grothendieck-Pietsch domination theorem for
multilinear mappings, we obtain:(∫

I

∥∥∥∥∑m

j1,··· ,jn=1
rj1(t1) . . . rjn

(tn)T (x1
j1 , . . . , xn

jn
)
∥∥∥∥

r

dλ

)1/r

=
( ∫

I

∥∥∥∥T

(∑m

j1=1
rj1(t1)x

1
j1 , . . . ,

∑m

jn=1
rjn

(tn)xn
jn

)∥∥∥∥
r

dλ

)1/r

≤
{∫

I

∥∥∥∥T

∥∥∥∥
r

d

∏n

k=1

[ ∫
BE′

k

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

· dμk(ϕk)
]r/rk

dλ

}1/r

= ‖T‖d

{∫
I

∏n

k=1

[ ∫
BE′

k

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

· dμk(ϕk)
]r/rk

dλ

}1/r

=
⊗
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Since 1/r = 1/r1 + · · · + 1/rn, denoting

Ck(tk) =
[ ∫

BE′
k

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

dμk

]r/rk

and invoking the Hölder inequality, we have∫
I

∏n

k=1
Ck(tk) dλ

≤
∏n

k=1

[ ∫
I

|Ck(tk)|rk/r dλ

]r/rk

=
∏n

k=1

[ ∫
I

∫
BE′

k

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

dμk dλ

]r/rk

=
∏n

k=1

[ ∫
BE′

k

1∫
0

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

dtk dμk

]r/rk

.

Replacing the above inequality in
⊗

, and by applying Khinchin’s
inequality, we have

⊗
≤ ‖T‖d

∏n

k=1

[ ∫
BE′

k

1∫
0

∣∣∣∣ϕk

(∑m

jk=1
rjk

(tk)xk
jk

)∣∣∣∣
rk

dtk dμk

]1/rk

≤ ‖T‖d

∏n

k=1
(Brk

)
{ ∫

BE′
k

(∑m

jk=1

∣∣〈ϕk, xk
jk

〉∣∣2 )rk/2

dμk

}1/rk

≤ ‖T‖d

∏n

k=1
(Brk

) ‖(xk
j )m

j=1‖w,2.

Hence, T ∈Lfal(r;2)(E1, . . ., En; F) and ‖T‖fal(r;2) ≤ ‖T‖d

∏n
k=1(Brk

),
where the Brk

are the constants of Khinchin’s inequality.

Proposition 5. If 1 ≤ p ≤ 2 and F has type p, then

Lfas(p;q1,... ,qn)(E1, . . . , En; F ) ⊂ Lfal(p;q1,... ,qn)(E1, . . . , En; F ).

Proof. The case n = 2 is illustrative. The other cases are analogous.
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Given T ∈ Lfas(p;q1,q2)(E1, E2; F ), xk
j ∈ Ek, j = 1, . . . , m and

k = 1, 2, we have

( ∫ 1

0

∫ 1

0

∥∥∥∥∑m

j1,j2=1
rj1(t1)rj2(t2)T (x1

j1 , x
2
j2)

∥∥∥∥
p

dt1 dt2

)1/p

≤
[ ∫ 1

0

( ∫ 1

0

∥∥∥∥∑m

j1=1
rj1(t1)

∑m

j2=1
rj2(t2)T (x1

j1 , x
2
j2)

∥∥∥∥
2

dt1

)p/2

dt2

]1/p

≤ Tp(F )
[∫ 1

0

(∑m

j1=1

∥∥∥∥∑m

j2=1
rj2(t2)T (x1

j1 , x
2
j2)

∥∥∥∥
p)p/p

dt2

]1/p

= Tp(F )
[∑m

j1=1

∫ 1

0

∥∥∥∥∑m

j2=1
rj2(t2)T (x1

j1 , x
2
j2)

∥∥∥∥
p

dt2

]1/p

≤ Tp(F )
[∑m

j1=1

( ∫ 1

0

∥∥∥∥∑m

j2=1
rj2(t2)T (x1

j1 , x
2
j2)

∥∥∥∥
2

dt2

)p/2]1/p

≤ Tp(F )2
[∑m

j1=1

(∑m

j2=1

∥∥∥∥T (x1
j1 , x

2
j2)

∥∥∥∥
p)p/p]1/p

≤ Tp(F )2 ‖T‖fas(p;q1,q2)
‖(x1

j)
m
j=1‖w,q1‖(x2

j)
m
j=1‖w,q2 .

Corollary 3. If Ej is an L∞ space, j = 1, . . . , n and F has type 2
and cotype 2, then

L(E1, . . . , En; F ) = Lfal(2;2)(E1, . . . , En; F )

Proof. It suffices to use the last proposition and observe that

L(E1, . . . , En; F ) = Lfas(2;2)(E1, . . . , En; F )

for such spaces, see [14].

Proceeding as in the proof of the last proposition, one can also obtain:

Proposition 6. If F has finite cotype p, then

Lfal(p;q1,... ,qn)(E1, . . . , En; F ) ⊂ Lfas(p;q1,... ,qn)(E1, . . . , En; F ).
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Observe that a direct consequence of Theorem 4 and Proposition 6
give us the following result, which generalizes Theorem 3.15 of [5]:

Corollary 4. Let E1, . . . , En and F be Banach spaces. If F has
cotype q < ∞, q1, . . . , qn ∈ ]0,∞] and 1/q = 1/q1 + · · · + 1/qn, then

Ld(q1,... ,qn)(E1, . . . , En; F ) ⊂ Lfas(q;2)(E1, . . . , En; F ).

This result was obtained recently, and independently, by Pérez-Garcia
and Villanueva in [14, Theorem 3.10].
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