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Effect of band anisotropy on electronic structure of PbS, PbSe, and PbTe quantum dots
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We have calculated the electronic structure of spherical PbS, PbSe, and PbTe quantum dots using a four-
band envelope-function formalism that accounts for band anisotropy. By comparing our results with an ana-
Iytical calculation that assumes a spherical approximation ofttﬁJeHamiItonian, we show that the effects of
band anisotropy are more pronounced for the excited states and increase with the confinement. We also show
how the same technique can be applied to ellipsoidal quantum dots.

[. INTRODUCTION Nonetheless, an estimate based on a linear combination of
atomic orbitals method of thik valleys mixing was done,
The quantum problem of a zero-dimensional semiconducPresented in Appendix A, with the following conclusiofis}

tor system, the so-called quantum d@D), has been the the mixing breaks the degeneracy of theL4points, into a

subject of both theoretical and experimental studiBesides ~ (iPIet and a singlet state&2) the energy difference between

the general interest in the physics of reduced dimensionality"e™ faI_Is off e_xpolnentlal!lyt;/IV|th the qfuantum dcz[t S'ZS E’e'

systems, the electronic confinement can be exploited to taiIovrv?tralggll_r:wcnrqe?;:jr;gsy ge\?elrg; s?ﬁzfllln ?r)]eoih?sqsu;i?ﬂl;g isoap-

nonlinear optical properties that opens up practical applicabroximately 30 me\’/ only, falling to 0’3 meV for a more

tions, such as in optical devices for communicatiois. the tvDi ) : ’ '

) ypical 2-nm radius quantum dot.
case of the lead-salt semiconduct@®bS, PbSe, and Pb)le

recent works have shown that the blueshift that resulted from Therefore, thek P method, within the range of the ap-
PrOX|mat|on validity, is thus the most convenient approach to

th_e confinement has made possible _engineering _mater_ia Sart with. It allows one to calculate the ground and the ex-
with resonances around the spectral windows used in OIOt'cz?szlited states, with a low-computational effort. It has been

. . 3-8
telecommunicatior1.3- and 1.52m wavelengths™™ ‘widely and successfully applied to explain experimental data
The standard theory to model the quantum confinement ir, quantum dots structurfs? and quantum well/

semiconductor nanometer-sized QD’s is thep envelope- supperlatices heterostructuf@Even for very small dots, or
function approach. In this method, the bulk Bloch waveygry high-confinement energies, where the method per-
function is modulated by an envelope function that satisfie§ormance is not good, it is still worth using it to follow the
certain boundary conditions, usually set to null at the QDconfinement energies as the dot size decreases and then com-
surface(infinite barriey.>**° The infinite barrier approxima- pare the results with those obtained with a more sophisti-
tion, of course, prevents one from studying surface effectscated calculation.

The use of thek-p formalism for describing the electronic So far, envelope-function calculations of th_e electronic
structure of QD's faces some degree of arbitrariness in thétructure of lead-salt QD’s have assumed spherical symmetry
definition of both the quantum dot size and the boundary" both real and reciprocal space, and treated the residual
condition, which can be circumvented by using an effective®NiSOropy in the reciprocal space as a perturbation. The re-
dot radius. Also, it is known that the breakdown of the trans-SUlting  refatively - simple isotropic four-band - envelope-
lational symmetry can mix up the energy bands and can evve.‘Ct'g’” (IFBEF).probIe_m has peen SO'V‘?d by Kang and
break the degenerescence of different valleys away from th)._[:\h?e. The St?‘”'”g point of this caIcm_JIat|on is thexat
Brillouin-zone center. Th&- p method performance is thus < P Bulk Hamiltonian proposed by Mitchell and wattis

better for large quantum dots and for energies near the bof?lnd Dimmock;* which accounts for nonparabolicity, anisot-
tom of the bagn dq 9 ropy, and spin-orbit interaction. This approach has been suc-

_ - _ . cessfully applied to explain the absorption spectra of PbS
Alternative and more sophisticated approa¢heSto in- " ppse QD& For PbTe, however, the stronger asymme-

vestigate the electronic structure of semiconductor QD'Syy penyeen thé111) and the transverse directions requires a
based on first-principles calculations have been proposed. 'Honspherical approach.

the case of the Pb salts, which have direct band gaps at four | this paper we present an envelope-function model able
equivalent. points in the Brillouin zone, these methods haveto calculate the electronic structure of spherical quantum
the asset of allowing the mixing of thie valleys, but they  dots, accounting for band anisotropy. We call it anisotropic
require a much higher computational effort, which makesfour-band envelope functioAFBEF). The envelope func-
them prohibitive for large dots. Like tHé.ﬁ methods, they tions are expanded using a set of basis functions that already
also present some degree of arbitrariness in the definition ¢fatisfy the proper boundary conditigthe wave function is

the boundary condition, which is especially important fornull at the dot border This method can handle exactly the
small dots. Further, the sophisticated approaches give energisotropy and is simple enough to be solved using standard
levels but no insight about where they come from, which carfumerical algorithms and a personal computer. Furthermore
only be obtained comparing their result with those of a simdt can easily be extended to deal with quantum dots with
pler model. nonspherical geometries. Within tHéf) framework, we
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have performed a systematic study of the effects of the arthe unit of distance is the Bohr radiag=0.53 A and the
isotropy in the electronic structure of the lead-salt quantununit of energy is the hartree 1hartre@7.21 eV.E, is the
dots (PbS, PbSe, and PbJlewhich has not been done in bulk band gapzis the longitudinal axis parallel to the.11)
previous work. The degree of anisotropy is a parameter thalirection, andx andy are the transverse axes, perpendicular
was systematically changed to understand its effects on thg this direction,m;"(m;") are the far band contributions to
energy states and on the transition oscillator strengths. Th@ye longitudinaltransversgband-edge effective masses, and
dependence of these effects with the confinement was alsg andV, are the direct longitudinal and transverse momen-
studied. Each. point is treated separately, disregarding anytym matrix elements taken between the extreme valence and
coupling between them. conduction-band states.

The paper is organized as follows. In the next section we Equation (2) embodies the traditional effective-mass

grese|T|t the fr(])rmalri]sm of tlhe ?FBEF mlodell. F(I3"0|Wi_n9, inftheory as applied to the Pb sait&>?*For free Bloch elec-
ec. Ill we show the results of energy-level calculations o , =
PbS, PbSe, and PbTe spherical QD’s as functions of the dct)rfonS Eh,e envellope functions are plar.1elwaves |§)<|Q(
size and we compare the obtained results with the isotropi¢/N€rek is the displacement from the poihtin the recipro-
case(IFBEF).5 We show and discuss the transition oscillator €@ SPace. The eigenvalugsare the energy-band dispersion
strengths for these three materials, still using the isotropiéunctions E(k), which reproduce the true band functions,
case as a reference for comparison. Also, we show that th@xperimental or well calculated from first principles, up to
problem of a QD with the shape of an ellipsoid of revolution €nergies of 1 eV approximately. In this case it turns out that
is mathematically equivalent to a spherical one with a set othe band functions deviate much from the simpler parabolic
renormalized band parameters. Finally, in Sec. IV we preseriodel® For the case of spherical quantum dots with radtus
the conclusions of this paper. we assume a boundary condition

Il. THE ANISOTROPIC FOUR-BAND

ENVELOPE-FUNCTION MODEL Fi()=0 at |r|=R @)

The Pb salts have conduction-band minima and valenceand the envelopes are no longer plane waves but the solution
band maxima at the points, at the center of the hexagonal of four coupled second-order differential equations. In Ref. 6
faces of the Brillouin zone. The valence-band edge is s-likethe authors show a special solution for the isotropic case, that
doubly degenerate, due to spin, with the Bloch spin-orbitais whenm;”=m,” andV,=V,. They also calculate the an-
pair LgT(F, o) and Lgl(ﬁg)_ The conduction band edge is isotropy perturbation to check the extent to which their iso-
p-like, which, due to the crystal field and spin-orbit interac- tropic model is valid for thi: salts PbS and PbSe. In this case
tion, is doubly degenerate having the paif 7(r,o) and the envelope function§(r) are proportional to a single

Lgl(F,U) 25 \/alence and conduction bands have oppositespherical harmonic&/|"(r), _While when the anisotropy is
parities atL. Away from this point, the eigen spin orbitals are large we need a whole series of them.
combinations of these four spin orbitals modulated by enve-
lope functionsF;(r) such that A. The choice of the basis
W(r,o)=F(r)Lg 1(r,a)+Fo(r)Lg | (F,0) An inspection of the Hamiltonian in E¢2) shows that it
does not commute with the parity operaBitself but it does
+Fa(N)Lg 1(r,0) +Fa(Lg L(r,0). (1)  commute with

The envelope functions obey the equation

P O
H_ 0 Vik, Vik_ Fi Fi 0 P
0 H. Vi, —=Vk,||F> e F, P= 0 0 -P 0
Vik, Vik. —H, 0 Fs Fs 00 0 -p
Vtk+ _V|kz O _H+ F4 F4
@ having eigenvalues-1 and—1. Also it does not commute
where with the z angular momenté&.,, but it does commute with
E 1 1
Ho=—l+ — K+ —K2, L+: O 0 0
2 2m 2my-
0 L,—3 0 0
. d Jo=
ki=ki+ki, k=-iv, ky=—i—., (3) 0 0 L,+¢ 0
0 0 L,—3

ke=k,*ik ( i i a)

+=kKexiky=—i| —*i—|,
ax. oy having eigenvaluem+ %.

where we use the atomic unit system with the electron mass Therefore the following set of functions shows the desir-

m,=1, =1, and the electronic charge=1. In this case, able behavior for our basis:
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. r TABLE I. L point band parameters of the lead salts.
> Cl,l,nYIm(r)jO(nﬂ'ﬁ)
. hn Parameters PbS PbSe PbTe
Fa(r) E Y ( r ) Reference 29 29 30
> CanY) Y(Njo| N7
. Fa(r) | " R g B (eV)(T=300 K) 0.41 0.28 0.31
B e r . ® m,/m; 1.9 4.3 11.6
Fa(r) meey; ol
. ;} CaanYx (Mo nme my/m;” 3.7 3.1 1.2
Fa(r) ’ me /m; 2.7 8.7 10
r /m* 37 3.3 0.7
Y H)jol n Mo /MM
& CarnYx (Dol N7 2V2H=2P%m, (eV) 3.0 3.0 5.6
21 — 2
where 2V2H=2P%m, (eV) 1.6 1.7 0.52
(—D'==(-D*, (6)

form.2” The six radial integrals necessary to calculate the
that is,| is summed over the evefor odd integers whileh  matrix elements are listed in Appendix B. The product of the
is summed over the od(br even integers. The Dirac-like spherical harmonics can be evaluated using the Clebsh-
eigenvector F=[F(r),F,(r),Fs(r),F4(r)] is simulta- Gordon coefficientd® It is worth noticing that the product of
neously an eigenstate of the operatbrand J, above. The YT andY} always ends up wity™"M spherical harmonics
requirement that and\ have different parity is necessary in and, therefore, that thk, operator does not change the
order to make it an eigenfunction bfwhile the use omand  number while thek, , raises or lowers this number by 1.
m+ 1 values makes it an eigenfunction if. The functions The oscillator strengths for the direct interband transitions
Fi(r) already contain the boundary conditionratR once ~ are obfained straightforwardly from the eigenvectors
jo(nm)=sin(m)/nm=0. The infinite set of roots of through:
jo(nmr/R) form a complete set satisfying this boundary
condition?® Moreover, the eigenvector shows the Kramers 2(W(F)]e-p|W, ()
degeneracy required by the time-reversal symmetry. One ob- fi=
tains the Kramers partner of the std® by applying the

moEi

operator N R R
0 koo o = —=| | dr} (& PP[FE(NFY)
— oI
k| €0 oo + S (NN ~F5* (NFL0) — F§* (NFY(N)]
0 0 0 —-K A 5
0 0 K 0 +§FmemHm]. )

whereK is the complex conjugation operatdkY"=Y™
=(—1)™Y,™. One readily verifies that ifl ,F=(m+ 3)F
then J,KF= — (m+ 1)KF.

We write the momentum operators of the Hamiltonian
[Eq. (2)] in the following spherical polar form:

wheree represents the polarization of lighg; is the transi-
tion energy,f)zﬁlz, P, is the longitudinal momentum matrix
element as defined in Table I, add, , are the total electron
wave functions, as given in E@Ll). The indicesc,v refer to

the conduction and the valence bands, respectively. Only

i: \/ g \/ (Y L_+Y; 1|_+) (7) transitions between even and odd states are allowed. The

9z ar oscillator strength calculation uses only three of the six radial
integrals given in Appendix B and the product of spherical

L Ve harmonics®

12 S 31 oo We verified that the first term in the integral is usually

much smaller than the second one and can be neglected in
vEL + 1 Y°L the calculation. This is due to the fact that although béth
1kt \/5 and ¥, are expanded in the same set of Bloch functions,
which mcludes valenceH; ;) and conduction 3, func-
whereL,,L . are the usual angular momenta operators giveRions, this coupling of the conduction and valence-band-edge
in quantum mechanics textbooks. The Hamiltonian appliedstates is small for quantum dot radius up to 1 nm. Only for
to our basis Eq(5) leads to a set of homogeneous linearvery high confinement the first term in the integral becomes
equations for the coefficients | , whose eigenvalues are the important, but this would go beyond the confinement energy
energy eigenvalues being looked for. The matrix dimensiortange for which the four-band envelope-function approxima-
d is given by the number of coefficients, ,, which de- tjon is still valid.
pends on the quantum numbeéys, andm, | being equal or If we can neglect the first integral, only transitions be-
larger thanm. For a given paritydzn(3+2[15]+2['%l tween states with the same quantum numibeare allowed
—2m). The secular matrix is symmetric and the diagonaliza-and only the dipole moment of the Bloch functioRspolar-
tion was made by the Householder reduction to tridiagonaized along thez direction for a giverL valley remains. Al-

8
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though there is a selection rule for the light polarization for 3
one L valley, it must be remembered that each

QD has 4 different_L valleys Iocaled at Z, 2 = 3mm
=1//3(1,1,1),Z,=1/\3(1,1,1), Z3=1/y/3(1,1,1), andZ, \8 ic1nesl
=1//3(1,1,). Assuming a generic light polarizatioe " /
=(sin # cos¢,sinb sin ¢,cosp), the transition strength will

be proportional to the sume{Z;)?+(e-Z,)%+ (e-Zs)?
+(e-Z,)?=4%, therefore being totally independent of the po-
larization anglesf# and ¢. The oscillator strength is thus
simply 4/3 times the overlap integrals in E(@) and the
selection rules that apply for the direct transitions are differ-
ent parities r.m,=—1) and the samen quantum number
(Am=0).

>
B

¢

Energy (eV)

/
§

é
3 1 L L L ! 1 ! L
Ill. RESULTS AND DISCUSSION 1.0 15 20 25 3.0 35 40 45 50
The bulk parameters used in both isotropic and aniso- R (nm)
tropic calculations are presented in Table | for PbS, PbSe, 3 \ )
and PbTe quantum dots. The anisotropy increases in going
from PbS to PbSe to PbTe. For the isotropic calculations we 2L \

j=32,x=+1

used average band parametevsni™) defined by

) 1 5 2 1 1/ 2 1
V =—(2Vt+V|), —+=— _t+_t . (10)
3 m* 3\mS m,

Figure 1 shows the first three conduction and valence-
band energy states with=0 obtained for spherical QD’s
(T=300 K) as a function of the radius. The solid lines cor-
respond to the results of the spherical calculatitfBEF)
and the symbols correspond to the anisotropic calculation
(AFBEF). The eigenvalues resulting from the spherical cal-
culation are labeled by the corresponding angular momentum -3
guantum numberand by the parityr. The results show that
guantum confinement effects becomes stronger in going
from PbS to PbSe to PbTe. This is expected since the exciton
Bohr radius increases in the same wdyay(PbS)
<ap(PbSexay(PbTe)). There is almost no discrepancy be-
tween the spherical and the anisotropic calculation for the
PbS QD'’s states. For PbSe, there are appreciable differences
only for the excited levels, while for PbTe QD’s this discrep-
ancy is very important even for the ground states.

We verified that the convergence of th¢'j, [n(r/R)]
expansions becomes slower for higher anisotropies, higher
states and stronger confinement but, yet, the method does
converge even for the extreme cases. As an example, consid-
ering the lowest radiugl-nm radiug and the highest anisot-
ropy (PbTe QD studied, the convergence for the first three
conduction and valence-band states was achieveddfor
=200. All the calculation results presented in this paper Al
were done fom=1=15 (d=465). 10 1.5 20 25 3.0 35 40 45 50

The fundamental transition energies of PbS, PbSe, and R (nm)

PbTe QD'’s, calculated by the AFBEF model, are presented

in Fig. 2, as functions of the dots radii. The effect of the FIG. 1. Energy levels obtained by the IFBEfnes) and the
anisotropy in the energy position of these transitions igAFBEF (symbolg calculations as functions of the QD radius. Parts
shown in Fig. 3, where the difference between the results of®: (b), and(c) show the results for PbS, PbSe, and PbTe, respec-
the IFBEF and the AFBEF calculation is plotted. For PbStively:

PbSe, and PbTe, this energy difference is, respectively, abowegligible, it is a significant contribution for PbTeAE
0.3%, 0.5%, and 4% of the transition energy, for QD radius=250 meV for 1 nm PbTe QD

ranging from 1 to 5 nm. Although for PbS and PbSe the In order to better understand the role of the anisotropy in
anisotropic contribution to the ground transition is almostthe energy spectrum, we play with the PbTe band parameters

Energy (eV )

1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
R(nm)

Energy (eV)
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2.0 —
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R ) I
o o = L
A 2 |1 .1
15 r . O ‘l" g I /, ‘| ".
Lo = \
LA = I 91 4
VoL = 7 \ )
Lo 2 ’ V I ;
] (@) I ‘I I
2 A .
10} NN N I :
O, A T T T . T T L Il__l_l T
B a 075 * 100 125 ‘150 175
8. a Energy (eV)
Bugia
05| o FIG. 4. Transition strengths of a 4-nm PbTe QD assuming dif-
N ferent sets of band parameters. From top to bottom the degree of
1.0 1.5 20 25 3.0 35 4.0 45 50 band anisotropy increases=0,0.25,0.5,0.75, and 1. The dotted

R (nm)

and dashed arrows show the energy levels evolve by adding the
anisotropy.

FIG. 2. Calculated fundamental transitions of PSjuare,

PbSe(circle), and PbTetriangle QD’s. The dotted lines are guide

for the eyes.

starting from the isotropic cadas defined in Eq(10)] and
going to the true material parameters shown in Table I. Fig=
ure 4 shows the transition energies and oscillator strength

top graph shows the isotropic result and the bottom one th
result using the true parameters. In between, the used paral
eters correspond to a linear interpolation between the spherb
cal and true parameters, such [a8= Pgsprt A (Pirue™ Pspn) |
wherep stands for all band parameteksis a measure of the
amount of anisotropy. From top to bottom it varies from 0 to
1 in steps of 0.25. One sees that by increasing the anisotro
(M) the position of the transitions change significantly and so
does the oscillator strengths. The transitions spread out in the
energy spectrum and the oscillator strengths are redistrib-

uted.

Figure 5 shows the AFBEF calculation of the energy
spectra of the lead salt QD'SRE4 nm) with all the al-

lowed transitions Am=0) and the corresponding oscillator
strengths. Parts a, b, and c refer to PbS, PbSe, and PbTe,
respectively. For comparison, also presented in the same fig-
ure are the analogous results using the IFBEF mdubgd
graphs. As explained in the previous section, the transitions
strengths between states with different quantum nunnber
Rre negligible. The obtained results show that for PbS, the

imilar energy spectra up to 1.5 eV. For higher-energy levels
'Nowever the two calculations show different results. For
’pbSe and PbTe, in which the band anisotropy is more impor-
tant, strong differences between the two calculations appear
for much lower-energy levels. They are already significant
for the first excited state in PbSe while for PbTe the differ-
Rhce is already important for the ground state.

The technique presented hef&FBEF calculation can

£l
02sF 2 S
" = C
! = [ (b)
0.20 F o [ l
‘_ - L
o~ “ — =
> 015f : g I |
~ ‘A = L - I Il lI
5 . 5
< 010 3 F
A C | (©)
| N C I
0.05 AL C .
O\"'O TAALA r
0.00 D___.D::::B:::ZBZI::Q:::: rzaQeesQeree) C | |I
1 1 n 1 1 n 1 I
1 2 3 4 5 0.6 08 1.0 12 1.4
R (nm) Energy (eV)

FIG. 3. Energy difference between the IFBEF and AFBEF cal-
culations of the ground-state energy for Rs§uare, PbSe(circle),
and PbTetriangle as a function of the QD radius.

FIG. 5. Transition strengths of P48), PbSe(b), and PbTec)
QD’s with 4-nm radius. The isotropi€anisotropi¢ results corre-
spond to the togbottom graphs.
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also be applied in the case of QD’s with nonspherical shape. APPENDIX A: MIXING OF THE FOUR L POINTS
The mathematical difficulty of dealing with boundary condi-
tion in an ellipsoidal surface is overcome by rescaling the
coordinate axes such that the ellipsoid is transformed in a . o
sphere in the new coordinate system. The simplest case p(k,r) =2 exp —12/X2)expik- D) p(r—T),

would be an ellipsoid of revolution. For example, starting !

from an oblate or prolate ellipsoidaioriented QD, we elon-  where the¢ are Wannier functions that can be constructed
gate or contract theaxis (the new axig'=z/a, ais ascale  ith small enough widti! andk means each of the wave
facton, transforming the ellipsoidal QD in a spherical one inyectors of the four pointk. The parameteX controls how

the new axesy,z’. This means that th&,=—i%(d/dz)  extensive in space is the function and is related to the radius
operator must be replaced By=k;/a in Eq. (2). By defin-  of the dot. WhenX tends to infinity these wave functions

ing the longitudinal band parameters suchmgs =a2m;”  tend to become Bloch waves.
and V[ =V, /a, the Hamiltonian remains the same and the With the four wave functions we construct &4 secular

mathematical problem of the ellipsoidal QD is reduced to thénatrix ofH—E, whereH is the one-electron Hamiltonian for

problem of a spherical QD with renormalized band param-the perfect crystal made out of the dot material. Among the

. ) . . . ._, . eigenvalues, three are degenerate and the fourth is a singlet.
eters. For instance, if one starts with an isotropic material Nhe energy difference between the triplet and the singlet is
k space,m"=m, and V,=V,, with an ellipsoidal shape

We assume that the dot eigenfunctions have the form

where the longitudinal axisz(axis) is 10% longer than the SHON,— S{HON,

transverse ones, this would be mathematically equivalent to AE=4(N 3Ny (Ng—N )Vm

the problem of a spherical boundary condition with the pa- 0 P T

rametersm/ =1.21m, and V| =0.91V,. In this case the an- S{200N, — SO,

- - - : i +4 Voot - - - Al
isotropy in real space was transformed into an anisotropy in (Ng+3N7)(Ng—Nj) * 200 (A1)

the reciprocal space. Analogously, an elongation of 20% is

equivalent tom/ =1.44m, and V| =0.83V,. We would like  the sum extending over the many shells of neighbors (110),
to point out that the resulting anisotropy showed by the(200), (211), ... . The many symbols are the following:
renormalized parameters is weaker than the anisotropy of the

true lead-salt material(Table |, that is, Mm/m))~ e N 21u2
~1.96, (m,/m)"=1.36,V,/V,=0.73 in PbS and NO_W(k)"Mk»‘; exp(—21%/X5),
(m/m)~=9.7, (m/m,) " =14.3,V,/V,=0.30 in PbTe.

(A2)

which is effectively the number of cells inside the dot,

V. CONCLUSIONS Ny = (K| (k")) =2 exp(—21%/X*)exdil - (K'—K)]
We have calculated the energy spectrum of lead-salt !

spherical QD’s using & p formalism. The anisotropic four- for differentL point vectorsk andk’. Further, lettingn mean
band envelope-function model presented here accounts fullhe vectors of a shell of neighbors such as the shell of vectors
for the bands anisotropy, which allowed us to calculate, the/2(110), a/2(101),..., or the shell a/2(200),..., we
electronic structure of PbTe QD’s. The effects of the anisothave
ropy in the transition energies and strengths were systemati-
cally investigated, simply by changing the degree of anisot- ,;_2 E
ropy in the band parameters. Our results show that for PbS ~0™
QD'’s, where the band parameters are almost isotropic, the
complete calculation is only important if one is interested in A R
high-excited states. For PbSe and PbTe QD’s however the SI=> > exp(—I2X2—|[+n|%X?)
effects of the band anisotropy both in the transition positions [ n, shell
and strengths are very pronounced, especially for the excited oo e e
states, and they increase with the confinement. The complete xexp(—ik-mexil - (k'=k)],
(anisotropi¢ calculation is thus necessary to obtain the enyyhere the last definition refers tb points with different
ergy spectra of these materials. Furthermore, we have shown >
) . LT ave vector.

that the same technique can be applied to an ellipsoidal Qﬁgl . .

! ; ; .~ The energy parameteks; are the matrix elements of the
by rescaling the coordinate axes and transforming the QD IDanni .

; ; ; annier functions

a spherical one, with renormalized band parameters.

) exp( —12/X2—|T+n|2/x?)exp(—ik-n),

I n,shell

Vi=((r)|H|#(r—n))
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TABLE Il. Factors determinind. point mixing.

‘/iR . §12°°)N0— ngoO)N1 S(lzzo)No_ Sé)zzo)N1
a (Ng+3N3)(No—N3y) (No+3N1)(No—N3)
10.317 6.03kx10 8 —2.676x10° 8
9.251 5.54% 107 —1.518<10°°©
8.261 1.37%10°6 —5.313x10°®
5.004 1.69% 104 —5.512x10"*
4.353 4.79% 104 —1.530<10°°
2.309 1.81K10°2 —5.118<10 2
1.290 1.525%10°* —3.607x10°*
1.033 2.73%10°! —5.887x10 ¢

Therefore, the energy parametatsare related to the band-
width. Typically, for bandwidths in the order of 10 eV Ref.
32 the energy parametevsare in the order of 0.5 eV.

Therefore we can make a crude estimate of the splitting

AE using this value for th&’s and calculating the multipli-
ers(Table Il) as functions of the effective radi& given by
47R33=a°Ny/4. The first nonzero multiplier belongs to the
shell (200). The lattice parameter of PbTeais 6.462 A3
For a dot radius ofR=1.0 nm (J2R/a=2.2), andV;
=0.5 eV we obtaimM\E=30 meV, and falls by a factor of

100 when the radius doubled to 2 nm. Further, with increas-

ing R, AE falls off exponentially and becomes increasingly
negligible.

APPENDIX B: RADIAL INTEGRALS

The solutions of the radial integrals that appear in the

calculation are presented below:

1 1
f tzf(n,t)f(p,t)dt=§5m,n, (B1)
0

where

B sin(nmrt)

f(n)="—r—;

n andp are integers ant=r/R.
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7363
fltzf nt)mdt— nSi{m(n+p)
o ( ’ dt2 =m [77( p]
+anSi@(p—n)]
- szpzan,p, (B2)
1 1 df(p,t) 1
fotzf(n,t)? d?c dt=—§wn8[w(n+p)]
—EwnS[w(p—n)], (B3)
1 1 T ]
ftzf(n,t)—zf(p,t)dt=+E(n+p)Sl[7-r(n+p)]
0 t

7T .
- g(n—p)Sl[w(n—p)].

(B4)

1

)

df(p,t)

2
tef(n,t) at

1
dt=— ECi(nW— p)

1 . 1
+ ECl(mﬁL pm)— Eln(n+ p)

1
+§In(n—p)
20P it 4 p=odd
+4{ n?—p?
0 if n+p=even,
(B5)

1 1 1 1
Jtzf(n,t)Tf(p,t)dt ECI(HW—DW)—ECI(I’IW—FDW)
0

1 1
+ Eln(n+ p)— Eln(n—p) (B6)
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