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Abstract. We present a new method for the large-scale trust-region subproblem. The method
is matrix-free in the sense that only matrix-vector products are required. We recast the trust-region
subproblem as a parameterized eigenvalue problem and compute an optimal value for the parameter.
We then find the solution of the trust-region subproblem from the eigenvectors associated with two
of the smallest eigenvalues of the parameterized eigenvalue problem corresponding to the optimal
parameter. The new algorithm uses a different interpolating scheme than existing methods and
introduces a unified iteration that naturally includes the so-called hard case. We show that the new
iteration is well defined and convergent at a superlinear rate. We present computational results to
illustrate convergence properties and robustness of the method.
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1. Introduction. An important problem in optimization and linear algebra is
the trust-region subproblem: minimize a quadratic function subject to an ellipsoidal
constraint,

min
1

2
xTAx+ gTx subject to (s.t.) ‖x‖2 ≤ ∆,

where A ∈ R
n×n, A = AT ; x, g ∈ R

n and ∆ > 0. Two significant applications of
this basic problem are the regularization or smoothing of discrete forms of ill-posed
problems and the trust-region globalization strategy used to force convergence in
optimization methods.

A solution x∗ to the problem must satisfy an equation of the form (A+ µI)x∗ =
−g with µ ≥ 0. The parameter µ is the Tikhonov regularization parameter for
ill-posed problems and the Levenberg–Marquardt parameter in optimization. The
constraint might also involve a matrix C �= I, where C is often constructed to impose
a smoothness condition on the solution x∗ for ill-posed problems and to incorporate
scaling of the variables in optimization. We will not treat this case explicitly here.
However, in many applications the matrix C will be nonsingular and therefore with
a change of variables we can reduce the problem to the case we are considering.

∗Received by the editors September 23, 1999; accepted for publication (in revised form) June 20,
2000; published electronically November 10, 2000.

http://www.siam.org/journals/siopt/11-3/28887.html
†Department of Computational and Applied Mathematics, Rice University, 6100 Main St., Hous-

ton, TX 77005-1892 (mrojas@caam.rice.edu). Current address: CERFACS, 42, Avenue Gaspard
Coriolis, 31057 Toulouse CEDEX 1, France (mrojas@cerfacs.fr). The research of this author was
supported in part by NSF cooperative agreement CCR-9120008 and by the Research Council of
Norway.

‡Department of Applied Mathematics, State University of Campinas, CP 6065, 13081-970, Camp-
inas, SP, Brazil (sandra@ime.unicamp.br). The research of this author was supported by FAPESP
(93/4907-5), CNPq, FINEP, and FAEP-UNICAMP.

§Department of Computational and Applied Mathematics, Rice University, 6100 Main St., Hous-
ton, TX 77005-1892 (sorensen@caam.rice.edu). The research of this author was supported in part by
NSF grant CCR-9988393 and in part by the Los Alamos National Laboratory Computer Science In-
stitute (LACSI) through LANL contract 03891-99-23 as part of the prime contract (W-7405-ENG-36)
between the Department of Energy and the Regents of the University of California.

611

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296692611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


612 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

If we can afford to compute the Cholesky factorization of matrices of the form
A+ µI, then the method proposed by Moré and Sorensen (cf. [10]) is the method of
choice to solve the problem. However, in many important applications, factoring or
even forming these matrices is prohibitive. This has motivated the development of
matrix-free methods that rely only on matrix-vector products. The first method in
this class is the method of Steihaug [18] which computes the solution to the problem
in a Krylov subspace. This method is very efficient in conjunction with optimization
methods; however, it does not compute an optimal solution and cannot handle a
special situation known as the hard case, which we will describe later. New methods
based on matrix-vector products are the ones by Golub and von Matt [3], Sorensen
[17], Rendl and Wolkowicz [13], and Pham Dinh and Hoai An [12]. Recently, Lucidi,
Palagi, and Roma [8] presented new properties of the trust-region subproblem that
provide useful tools for the development of new classes of algorithms for this problem
in the large-scale context. Recently, we became aware of a new method proposed by
Hager [5], where an SQP approach is used to solve the trust-region subproblem.

Golub and von Matt [3] base their algorithm on the theory of Gauss quadrature
and do not include in their analysis the possibility of the hard case. Pham Dinh
and Hoai An [12] develop an algorithm based on the difference of convex functions.
Their strategy is very inexpensive, due to its projective nature, but needs a restarting
mechanism to ensure convergence to a global solution. The approaches of Sorensen [17]
and Rendl and Wolkowicz [13] recast the trust-region subproblem as a parameterized
eigenvalue problem and design an iteration to find an optimal value for the parameter.
The idea of formulating the trust-region subproblem in terms of an eigenvalue problem
is also exploited in Gander, Golub, and von Matt [1]. Rendl and Wolkowicz present
a primal-dual semidefinite framework for the trust-region subproblem, where a dual
simplex-type method is used in the basic iteration and a primal simplex-type method
provides steps for the hard-case iteration. At each iteration, the method computes the
smallest eigenvalue and corresponding eigenvector of the parameterized problem using
a block Lanczos routine. Sorensen’s algorithm provides a superlinearly convergent
scheme to adjust the parameter and finds the optimal vector x∗ from the eigenvector
of the parameterized problem, as long as the hard case does not occur. For the hard
case, Sorensen’s algorithm is linearly convergent. The algorithm uses the implicitly
restarted Lanczos method (IRLM) (cf. [16]) to compute the smallest eigenvalue and
corresponding eigenvector of the parameterized problem. The IRLM is particularly
suitable for large-scale applications since it has low and fixed storage requirements
and relies only on matrix-vector products.

In this work we present a new matrix-free algorithm for the large-scale trust-region
subproblem. Our algorithm is similar to those proposed in [13, 17] in the sense that
we solve the trust-region subproblem through a parameterized eigenvalue problem,
but it differs from those approaches in that we do not need two different schemes for
the standard case and the hard case. Our algorithm can handle all the cases in the
same basic iteration. We achieved this improvement over the methods in [13, 17] by
computing two eigenpairs of the parameterized problem and incorporating informa-
tion about the second eigenpair whenever it is appropriate. This strategy does not
substantially increase the computational cost over the method in [17]. We introduce
a two-point interpolating scheme that is different from the one in [17]. We show that
this new iteration is also convergent and that the convergence rate is superlinear.
Moreover, our convergence results naturally include the hard case, since no special
iterations are necessary. Such a unified approach is not achieved in either [13] or [17].
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LARGE-SCALE TRUST-REGION SUBPROBLEM 613

The organization of this work is the following. In section 2 we analyze the struc-
ture of the problem and motivate the algorithm. In section 3 we give a complete
characterization of the hard case with respect to the parameterized eigenproblems.
We describe the algorithm in detail in section 4. In section 5 we present the con-
vergence analysis. We describe preliminary numerical experiments in section 6 and
present some conclusions in section 7.

2. Structure of the problem. The problem we are interested in solving is

min ψ(x)
s.t. ‖x‖ ≤ ∆,

(2.1)

where ψ(x) = 1
2x

TAx+ gTx; A, g as before and ‖ · ‖ ≡ ‖ · ‖2 throughout the paper.
Due to the structure of (2.1), its optimality conditions are both necessary and

sufficient, as stated in the next lemma, where we follow [17] in the nonstandard but
notationally more convenient use of a nonpositive multiplier.
Lemma 2.1 (see [15]). A feasible vector x∗ is a solution to (2.1) with correspond-

ing Lagrange multiplier λ∗ if and only if x∗, λ∗ satisfy (A − λ∗ I)x∗ = −g with
A − λ∗ I positive semidefinite, λ∗ ≤ 0, and λ∗(∆− ‖x∗‖) = 0.

Proof. For the proof see [15].
In order to design efficient methods for solving problem (2.1) we must exploit the

tremendous amount of structure of this problem. In particular, the optimality condi-
tions are computationally attractive since they provide a means to reduce the given
n-dimensional constrained optimization problem into a zero-finding problem in a sin-
gle scalar variable. For example, we could define the function ϕ(λ) = ‖(A − λ I)−1g‖
and solve the secular equation ϕ(λ) = ∆, monitoring λ to be no greater than the
smallest eigenvalue of A, so that the Cholesky factorization of A − λ I is well de-
fined. Using Newton’s method to solve 1

ϕ(λ) − 1
∆ = 0 has a number of computationally

attractive features (cf. [10]) and we should use this approach when we can afford to
compute the Cholesky factorization of A − λ I. When computing a Cholesky factor-
ization is too expensive, we need to use a different strategy. The introduction of a new
parameter will make it possible to convert the original trust-region subproblem into
a scalar problem that is suitable for the large-scale setting. The conversion amounts
to embedding the given problem into a parameterized bordered matrix eigenvalue
problem. Consider the bordered matrix

Bα =

(
α gT

g A

)
and observe that

α

2
+ ψ(x) =

1

2
(1, xT )Bα

(
1
x

)
.

Therefore, there exists a value of the parameter α such that we can rewrite prob-
lem (2.1) as

min 1
2y

TBαy
s.t. yTy ≤ 1 + ∆2, eT

1 y = 1,
(2.2)

where e1 is the first canonical unit vector in R
n+1. This formulation suggests that

we can find the desired solution in terms of an eigenpair of Bα in the following way.

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



614 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Suppose that {λ, (1, xT )T} is an eigenpair of Bα. Then(
α gT

g A

)(
1
x

)
=

(
1
x

)
λ ,

which is equivalent to

α− λ = −gTx(2.3)

and

(A − λ I)x = −g .(2.4)

Now, let δ1, δ2, . . . , δd be the distinct eigenvalues of A in nondecreasing order.
Then

α− λ = −gTx =

d∑
j=1

β2
j

δj − λ
,(2.5)

where β2
j is the sum of the squares of the expansion coefficients of g in the eigenvector

basis, corresponding to all the eigenvectors associated with δj .
Observe that as a consequence of Cauchy’s interlace theorem (cf. [11, p. 186]), and

also from (2.5), the eigenvalues of A interlace the eigenvalues of Bα. In particular, if
λ1(α) is the smallest eigenvalue of Bα, then λ1(α) ≤ δ1. This implies that the matrix
A− λ1(α)I is always positive semidefinite independently of the value of α.

Equations (2.3)–(2.4) express λ and hence x implicitly in terms of α, suggesting
the definition of a convenient function as follows. Let † denote the pseudoinverse of a
matrix and let us define

φ(λ) ≡ gT (A − λ I)†g = −gTx.

Therefore,

φ′(λ) = gT [(A − λ I)†]2g = xTx,

where differentiation is with respect to λ, and x satisfies (A − λ I)x = −g. The
function φ appears in many contexts [2, 9, 19, 20] and Figure 1(a) shows its typical
behavior. It is worth noticing that the values of φ and φ′ at an eigenvalue λ of Bα
are readily available and contain valuable information with respect to problem (2.1),
as long as λ has a corresponding eigenvector with nonzero first component.

Finding the smallest eigenvalue and a corresponding eigenvector of Bα for a given
value of α, and then normalizing the eigenvector to have its first component equal
to one, will provide a means to evaluate the rational function φ and its derivative
at appropriate values of λ, namely, at λ = λ1(α) ≤ δ1. Moreover, λ1(α) is usually
well separated from the rest of the spectrum of Bα, particularly for small values of
∆. In these cases, we expect a Lanczos-type method to be very efficient in computing
this eigenvalue and the corresponding eigenvector. If we can adjust α so that the
corresponding x satisfies xTx = φ′(λ) = ∆2 with α− λ = φ(λ), then

(A − λ I)x = −g and λ(∆− ‖x‖) = 0
with A − λ I positive semidefinite. If λ ≤ 0, then x is a boundary solution for the
trust-region subproblem. In case we find λ > 0 with ‖x‖ < ∆ during the course of
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Fig. 1. Example of the typical pattern of φ(λ) (solid) and the straight line f(λ) = α∗ − λ
(dash-dotted). The three smallest eigenvalues of A are −2, −0.5, and 2. (a) General case with the
slope at λ∗ also plotted; (b) exact hard case; (c) near hard case; (d) detail of box in (c).

adjusting α, then this implies that the matrix A is positive definite and that ‖A−1g‖ <
∆. As shown in [10], these two conditions imply that problem (2.1) has an interior
solution that satisfies Ax = −g.

The availability of the values λ, φ(λ), φ′(λ) makes it possible to use rational
interpolation to adjust the parameter using these values as interpolation points. The
adjustment of α by means of rational interpolation consists of constructing a rational
interpolant φ̂ and finding a special point λ̂ such that φ̂′(λ̂) = ∆2. We then compute

the new parameter as α+ = λ̂ + φ̂(λ̂). In this approach it is necessary to safeguard
α+ to ensure convergence of the iteration. This idea was discussed in [6, 15] and used
in [17]. The algorithm in this paper follows this approach.

3. Characterization of the hard case. We assumed in the previous discussion
that the smallest eigenvalue of Bα had a corresponding eigenvector with nonzero first
component. It remains to consider the possibility that all the eigenvectors associated
with λ1(α) have first component zero so that we cannot normalize any of them to
have its first component equal to one. In this case, the proposed strategy for solving
problem (2.1) breaks down. However, this can happen only when g is orthogonal to
S1, where Sj = {q | Aq = δjq}, j = 1, 2, . . . , d.

The condition g ⊥ S1 is a necessary condition for the occurrence of the so-called
hard case. Therefore, we call this situation a potential hard case. Observe that in a
potential hard case δ1 is no longer a pole of φ, as Figure 1(b) illustrates. We discuss
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616 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

the hard case in detail at the end of this section. At this point we will concentrate
on the potential hard case, which has intriguing consequences. We will show that in
a potential hard case, for all values of α greater than certain critical value α̃1, all the
eigenvectors corresponding to the smallest eigenvalue of Bα will have first component
zero. We will also show that for any α, there is always a well-defined eigenvector of Bα,
depending continuously on α, that we can safely normalize to have first component
one. If g �⊥ S1 or g ⊥ S1 and α ≤ α̃1, then this eigenvector corresponds to λ1(α).
If g ⊥ S1 and α exceeds the critical value α̃1 by a small amount, this parameterized
vector corresponds to the second smallest eigenvalue of Bα. A complete understanding
of this case leads to the main algorithm of this paper. The following results are the
basis for this understanding.
Lemma 3.1. For any α ∈ R and any q ∈ Sj, 1 ≤ j ≤ d, {δj , (0, qT )T} is an

eigenpair of Bα if and only if g is orthogonal to Sj.
Proof. The proof follows from the observation that g ⊥ Sj and Aq = δjq are

equivalent to (
α gT

g A

)(
0
q

)
= δj

(
0
q

)
.

If Z1(α) is the eigenspace of Bα corresponding to δ1, Lemma 3.1 establishes that
the set {(0, qT )T | q ∈ S1} is a subset of Z1(α). Note that while S1 corresponds to
the smallest eigenvalue of A, Z1(α) does not necessarily correspond to the smallest
eigenvalue of Bα. These subspaces have the same dimension for all but one exceptional
value of α. The following result states that there is a unique value of α for which
dimZ1(α) = dimS1 + 1.
Lemma 3.2. Suppose that g is orthogonal to Sj, 1 ≤ j ≤ d, and let pj =

−(A − δj I)†g. The pair {δj , (1, pT
j )

T} is an eigenpair of Bα if and only if α = α̃j,
where α̃j = δj − gTpj.

Proof. First we observe that g ⊥ Sj implies that g ∈ R(A − δj I) and therefore

(A − δj I)pj = −(A − δj I)(A − δj I)
†g = −g,(3.1)

since (A − δj I)(A − δj I)
† is an orthogonal projector onto R(A − δj I).

Now, let α = α̃j . Then(
α̃j gT

g A

)(
1
pj

)
=

(
α̃j + gTpj
g +Apj

)
= δj

(
1
pj

)
,

since by definition of α̃j we have α̃j + gTpj = δj and by (3.1), g +Apj = δjpj .
Suppose now that {δj , (1, pT

j )
T} is an eigenpair of Bα, i.e.,(

α gT

g A

)(
1
pj

)
= δj

(
1
pj

)
·

It follows directly from this relationship that α = α̃j = δj − gTpj .
The following corollary summarizes the main results from Lemmas 3.1 and 3.2.
Corollary 3.1. Suppose that g is orthogonal to Sj, 1 ≤ j ≤ d, and let Zj(α) =

{z ∈ R
n+1 | Bαz = δjz}. If α̃j = δj + gTpj with pj = −(A − δj I)†g, then

dimZj(α̃j) = dimSj+1 and for any other value of α, dimZj(α) = dimSj. Moreover,
if mj is the multiplicity of δj and {q1, . . . , qmj

} is an orthogonal basis for Sj, then{(
1
pj

)
,

(
0
q1

)
, . . . ,

(
0

qmj

)}D
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LARGE-SCALE TRUST-REGION SUBPROBLEM 617

is an orthogonal basis for Zj(α̃j) and{(
0
q1

)
, . . . ,

(
0

qmj

)}
is an orthogonal basis for Zj(α), for α �= α̃j.

The result in Lemma 3.1 was also stated in [17]; the idea behind Lemma 3.2 was
presented in [13]. We present here a general formulation of these results given in [14].
In the next results from [14], we establish that there always exists an eigenvector of
Bα that we can normalize to have first component equal to one, and we characterize
the eigenvalue to which this eigenvector corresponds.
Theorem 3.1 (see [14]). Let λ(α) be the smallest solution of the equation

φ(λ) = α− λ.

Then, for any value of α, λ(α) is an eigenvalue of Bα with a corresponding eigenvector
that can be normalized to have first component one.

Proof. Suppose first that g is orthogonal to Si, i = 1, 2, . . . , �, with 1 ≤ � < d.
Then

φ(λ) = gT (A − λ I)†g

=

d∑
j=	+1

β2
j

δj − λ
·

Let λ(α) be the smallest solution of the equation φ(λ) = α − λ. Then λ(α) ∈
(−∞, δ	+1). Since φ(λ) is strictly increasing on its domain and f(λ) = α − λ is
a decreasing straight line, we conclude that λ(α) is unique. Since λ(α) depends
continuously on α, so does p(α) = −(A − λ(α) I)†g and also v(α) = (1, p(α)T )T .
Let us see now that v(α) is an eigenvector of Bα associated with λ(α). Consider(

α gT

g A

)(
1

p(α)

)
=

(
α+ gTp(α)
g +Ap(α)

)
and note that

α+ gTp(α) = α− φ(λ(α))

= λ(α) by definition of λ(α).

Now, g ⊥ Si, i = 1, 2, . . . , �, implies that g ∈ R(A − λ I) for λ ∈ (−∞, δ	+1). Thus,
g ∈ R(A − λ(α) I) and we have (A − λ(α) I)p(α) = −g. It follows that

g +Ap(α) = λ(α)p(α)

and therefore, Bαv(α) = λ(α)v(α).
Suppose now that g is not orthogonal to S1. Then λ(α) ∈ (−∞, δ1) and this

implies A − λ(α) I is nonsingular and the previous proof holds with p(α) =
−(A − λ(α) I)−1 g.

The following result characterizes the smallest �+ 1 distinct eigenvalues of Bα if
g is orthogonal to the eigenspaces corresponding to the smallest � distinct eigenvalues
of A. In case g is not orthogonal to S1, then the lemma characterizes the smallest
eigenvalue of Bα. We will denote by λj(α), j = 1, 2, . . . , n+ 1, the eigenvalues of Bα
in nondecreasing order.
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618 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Lemma 3.3 (see [14]). Let {λ(α), v(α)} be the eigenpair of Bα given by Theorem
3.1 and define α̃i as in Lemma 3.2. Then if g �⊥ S1, then λ1(α) = λ(α).

If g ⊥ Sk, for k = 1, 2, . . . , � and 1 ≤ � < d, then
(i) if α = α̃i, 1 ≤ i ≤ �, then λj(α) = δj, j = 1, 2, . . . , �. In this case, λ	+1(α) is

the second smallest root of equation φ(λ) = α− λ;
(ii) if α < α̃1, then λ1(α) = λ(α) and λj(α) = δj−1, j = 2, . . . , �+ 1;
(iii) if α̃i−1 < α < α̃i, 2 ≤ i ≤ �, then λi(α) = λ(α), λj(α) = δj for j = 1, . . . , i−1,

and λj(α) = δj−1 for j = i+ 1, . . . , �+ 1;
(iv) if α > α̃	, then λj(α) = δj, j = 1, 2, . . . , � and λ	+1(α) = λ(α).
Proof. These results are a direct consequence of Cauchy’s interlace theorem,

Lemmas 3.1 and 3.2, and the properties of the functions φ(λ) and α− λ.
We can expect difficulties in practice when the vector g is nearly orthogonal

to the eigenspace S1. If this happens, there still exists λ∗ < δ1 and x∗ such that
(A − λ∗ I)x∗ = −g, ‖x∗‖ = ∆, with λ∗ quite close to δ1. We call this situation a
near hard case and Figure 1(c) illustrates it. In the detail shown in Figure 1(d), we
can see that in this case, the derivative φ′ changes rapidly for λ close to δ1, so the
problem of finding λ∗ satisfying the correct slope φ′(λ∗) = ∆2 is very ill-conditioned.

In the remainder of this section we discuss the hard case and present the results
that allow us to compute a nearly optimal solution for the trust-region subproblem in
this situation. The hard case can occur only when g ⊥ S1, the matrix A is indefinite or
positive semidefinite and singular, and for certain values of ∆. This case was analyzed
in [10] for medium-scale problems and discussed in [13, 17] in the large-scale context.
The precise statement is contained in Lemma 3.4 from [15]. We present a slightly
different proof here.
Lemma 3.4 (see [15]). Assume g is orthogonal to S1 and let p = −(A − δ1 I)†g.

If δ1 ≤ 0 and ‖p‖ < ∆, then the solutions of (2.1) consist of the set {x | x = p+z , z ∈
S1 , ‖x‖ = ∆}, with Lagrange multiplier λ∗ = δ1.

Proof. We need to show that if x = p+ z with z ∈ S1 and ‖x‖ = ∆, then {x, δ1}
satisfy the conditions in Lemma 2.1. It follows directly from the hypothesis and the
fact that δ1 is the smallest eigenvalue of A that A − δ1 I is positive semidefinite, that
δ1 ≤ 0, and that δ1(∆− ‖x‖) = 0. It remains only to show that (A − δ1 I)x = −g.
To see this, observe

(A − δ1 I)x = (A − δ1 I)(p+ z)

= −(A − δ1 I)(A − δ1 I)†g

since z ∈ N (A − δ1 I). Now, since g ∈ R(A − δ1 I) and (A − δ1 I)(A − δ1 I)†

is an orthogonal projector onto R(A − δ1 I), we have

(A − δ1 I)x = −g

which completes the proof.
As we can see, it is precisely in the hard case that in the process of adjusting α we

will compute values such that α > α̃1. As Lemma 3.3 establishes, in this case all the
eigenvectors corresponding to the smallest eigenvalue of Bα have first component zero.
Moreover, in a near hard case the eigenvectors will have very small first components
and dividing by these values will introduce large roundoff errors. Theorem 3.1 and
Lemma 3.3 suggest a strategy for handling this situation, namely, using the eigenvector
of Bα with the desired structure guaranteed by Theorem 3.1 and the corresponding
eigenvalue to obtain the interpolation points, so we can proceed with the adjustment
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LARGE-SCALE TRUST-REGION SUBPROBLEM 619

of the parameter α. We will need a safeguarding strategy to enforce convergence of
this iteration. We will describe this strategy in the next section where we present the
algorithm in detail.

The following results provide the theoretical basis for declaring convergence in
the hard case. Results within the same philosophy are presented in [10, 17]. The
idea behind these results is to exploit the information available at each iteration and,
with practically no additional cost, detect a nearly optimal solution in the hard case
or near hard case. Theorem 3.2, Lemma 3.5, and Lemma 3.6 contain these results.
Theorem 3.2 establishes that, under certain conditions, the last n components of a
special linear combination of eigenvectors of Bα form a nearly optimal solution for
problem (2.1). Lemma 3.5 establishes the conditions under which we can compute
the special linear combination, and Lemma 3.6 shows how to compute it. Theorem
3.2 follows from a more general result from [14] but we present a different proof here.
Lemma 3.5 is a reformulation of a result from [14] and Lemma 3.6 is from [14].
Theorem 3.2 (see [14]). Let λ1(α) be the smallest eigenvalue of Bα with a

corresponding eigenvector z1 = (ν1, z̃
T
1 )

T . Let λi(α) be any of the remaining n eigen-
values of Bα with a corresponding eigenvector zi = (νi, z̃

T
i )

T . Define Z = [z1 zi],

Z̃ = [z̃1 z̃i], and assume Z
TZ = I. Let η > 0.

If there exists t = (τ1, τ2)
T , with ‖t‖ = 1 such that

(i) (eT
1Zt)

2 = 1
1+∆2 , and

(ii) (λi(α)− λ1(α)) τ
2
2 (1 + ∆

2) ≤ −2ηψ(x̃) for x̃ = Z̃t
eT1 Zt

,

then

ψ(x∗) ≤ ψ(x̃) ≤ 1

1 + η
ψ(x∗),

where x∗ is a boundary solution for problem (2.1) with ψ(x∗) ≤ 0.
Proof. Since x∗ is a boundary solution of (2.1), we have ψ(x∗) ≤ ψ(x) ∀ x ∈ R

n

such that ‖x‖ = ∆. Therefore, in order to prove that ψ(x∗) ≤ ψ(x̃), it will suffice to
show that ‖x̃‖ = ∆.

Note that Zt
eT1 Zt

= (1, x̃T )T and therefore

‖(1, x̃T )‖2 = 1 + ‖x̃‖2 =
∥∥∥∥ Zt

eT
1Zt

∥∥∥∥2

=
1

(eT
1Zt)

2

since ‖t‖ = 1 and ZTZ = I by hypothesis. Thus, by (i)

1 + ‖x̃‖2 = 1 +∆2.

This implies ‖x̃‖ = ∆ and therefore ψ(x∗) ≤ ψ(x̃).
To prove the other part of the inequality, observe that α + 2ψ(x∗) =

(1, xT
∗ ) Bα (1, x

T
∗ )

T . Thus, by Rayleigh quotient properties

α+ 2ψ(x∗) ≥ λ1(α)‖(1, xT

∗ )
T‖2.

Since ‖x∗‖ = ∆ it follows that ‖(1, xT
∗ )

T‖2 = 1 +∆2, and therefore

α+ 2ψ(x∗) ≥ λ1(α)(1 + ∆
2).(3.2)
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620 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

We now show that α+ 2ψ(x̃) = λ̃(1 + ∆2), with λ̃ = λ1(α)τ
2
1 + λi(α)τ

2
2 . Observe

that α+ 2ψ(x̃) = (1, x̃T ) Bα (1, x̃
T )T , and since (1, x̃T )T = 1

eT1 Zt
Zt, it follows that

α+ 2ψ(x̃) = tTZTBαZt
1

(eT
1Zt)

2

= [λ1(α)τ
2

1 + λi(α)τ
2

2 ] (1 + ∆
2),

by (i) and the fact that z1, zi are eigenvectors of Bα.
Thus, since τ 2

1 + τ 2
2 = 1, we have

α+ 2ψ(x̃) = [λ1(α)(1− τ 2

2) + λi(α)τ
2

2 ] (1 + ∆
2)

= [λ1(α) + (λi(α)− λ1(α))τ
2

2 ] (1 + ∆
2)

and therefore

α+ 2ψ(x̃)− (λi(α)− λ1(α))τ
2

2(1 + ∆
2) = λ1(α) (1 + ∆

2)

≤ α+ 2ψ(x∗) by (3.2).

If (λi(α)− λ1(α))τ
2
2(1 + ∆

2) ≤ −2ηψ(x̃), then
α+ 2ψ(x̃) + 2ηψ(x̃) ≤ α+ 2ψ(x∗)

and we can conclude ψ(x̃) ≤ 1
1+ηψ(x∗).

Therefore ψ(x∗) ≤ ψ(x̃) ≤ 1
1+ηψ(x∗) as claimed.

It follows directly from this result that

0 ≤ ψ(x̃)− ψ(x∗) ≤ − η

1 + η
ψ(x∗),

|ψ(x̃)− ψ(x∗)| ≤ η

1 + η
|ψ(x∗)| .(3.3)

The inequality (3.3) implies that under the conditions of Theorem 3.2, ψ(x̃) will
be arbitrarily close to ψ(x∗). We will call such x̃ a quasi-optimal solution for prob-
lem (2.1).

The next result establishes conditions for computing the vector t in Theorem 3.2.
Lemma 3.5 (see [14]). Let zi = (νi, z̃

T
i )

T , with νi ∈ R, z̃i ∈ R
n for i = 1, 2.

Define the matrices Z = [z1 z2] and Z̃ = [z̃1 z̃2], and assume Z
TZ = I. If ‖ZTe1‖2 ≥

1
β for β > 0, then there exists t ∈ R

2 with t �= 0 that satisfies

‖Zt‖2 = β(eT

1Zt)
2.(3.4)

Proof. Observe that we can rewrite (3.4) as

tTZTZt = β (eT

1Zt)
2

= β (tTZTe1e
T

1Zt)

which is equivalent to

tT [I − β ZTe1e
T

1Z] t = 0(3.5)

since ZTZ = I by hypothesis. Equation (3.5) will have a nontrivial solution only if the
matrix M = I −β ZTe1e

T
1Z is indefinite or positive semidefinite and singular. So, let
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LARGE-SCALE TRUST-REGION SUBPROBLEM 621

us study the eigenvalues of M . The two eigenpairs of the matrix M = I−β ZTe1e
T
1Z

are given by

{1− β eT

1ZZ
Te1, Z

Te1} and {1, v} with v ⊥ ZTe1 .

Therefore, (3.5) will have nontrivial solutions if 1− β eT
1ZZ

Te1 ≤ 0. In other words,
if ‖ZTe1‖2 = eT

1ZZ
Te1 ≥ 1

β , then there exists t ∈ R
2 with t �= 0 such that t satisfies

(3.5).
Note that choosing β = 1 +∆2 in Lemma 3.5 and normalizing t such that ‖t‖ = 1

will give a vector that satisfies the conditions of Theorem 3.2. The following lemma
provides a way of computing such a vector.
Lemma 3.6 (see [14]). Let β ∈ R, β > 0, and let z ∈ R

n. The equation

tT [I − βzzT ]t = 0(3.6)

in t with t ∈ R
n has 2(n − 1) nontrivial solutions if the matrix M = I − βzzT is

indefinite and has one nontrivial solution if M is positive semidefinite and singular.
Proof. Let P ∈ R

n×n be such that P Tz = ‖z‖e1 with P TP = I and apply this
orthogonal transformation to the matrix M to obtain

P T [I − βzzT ]P = I − β‖z‖2e1eT

1 .

Therefore, the solutions of (3.6) in this new basis are the solutions of

yT

( −θ 0
0 I

)
y = 0,

where θ = −1 + β‖z‖2e1eT
1 .

The nontrivial solutions of (3.6) are then given by t = Py, where
(1) y = (1,

√
θeT
i )

T and y = (−1,√θeT
i )

T with ei the ith canonical vector in R
n−1,

i = 1, 2, . . . , n− 1, if M is indefinite, i.e., if θ > 0, or
(2) y = e1, if M is positive semidefinite and singular, i.e., if θ = 0.
Therefore, (3.6) has 2(n − 1) nontrivial solutions if M is indefinite and has one

nontrivial solution if M is positive semidefinite and singular.
Remark. Suppose n = 2 and z = (ν1, νi)

T in Lemma 3.6. Then if ν1
2 + νi

2 > 1
β ,

the vector t = (τ1, τ2)
T is given by

τ1 =
ν1 − νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

, τ2 =
ν1 + νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

or

τ1 =
νi + ν1

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

, τ2 =
ν1 − νi

√
β(ν1

2 + νi2)− 1
(ν1

2 + νi2)
√
β

·

If ν1
2 + νi

2 = 1
β , then t is given by

τ1 =
ν1√

ν1
2 + νi2

, τ2 =
νi√

ν1
2 + νi2

·

The previous results are the basis for the algorithm in the next section. They
provide the necessary tools for handling the hard case and the standard case in the
same iteration and for computing a solution in the hard case. Theorem 3.2 and
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622 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Lemma 3.5 give mechanisms for approximating the vector x = p + z in Lemma 3.4
from a linear combination of eigenvectors of Bα. Theorem 3.2 also establishes con-
ditions under which the vector x computed in this way is a quasi-optimal solution
for problem (2.1). Moreover, Theorem 3.2 guarantees that if the second smallest
eigenvalue of Bα belongs to a cluster, as is the case, for example, in discrete ill-posed
problems, we can still build the special vector x̂ from an eigenvector associated with
the smallest eigenvalue of Bα and from an eigenvector associated with any eigenvalue
of the cluster—not necessarily the second smallest. Observe that Lemmas 3.5 and 3.6,
respectively, provide a way of computing the vectors x̂ and t needed in Theorem 3.2.
We use Theorem 3.2, Lemma 3.5, and Lemma 3.6 in one of the stopping rules in our
method. We describe the stopping criteria in section 4.5.

4. The algorithm. Keeping in mind the availability of a well-suited variant of
the Lanczos method, namely, the implicitly restarted Lanczos method (cf. [16]), we
will develop a rapidly convergent iteration to adjust α based on this process. Our
goal is to adjust α so that

α− λ = φ(λ), φ′(λ) = ∆2,

where

φ(λ) = −gTx, φ′(λ) = xTx,

with (A− λI)x = −g.
The approach of this work is similar to the one in [17] in the following sense.

We compute a function φ̂ which interpolates φ and φ′ at two properly chosen points.
Then, from the interpolating function φ̂ we determine λ̂ satisfying

φ̂′(λ̂) = ∆2 .(4.1)

Finally, we use λ̂ and φ(λ̂) to update the parameter α and compute the next
iterates {λ, x}. The new elements in our algorithm are the introduction of safeguards
for the sequence in α, the use of the information relative to the second smallest
eigenvalue of the matrix Bα, and the introduction of a different interpolating scheme,
where the currently available information is exploited to a greater extent. Considering
that the interpretation of the primal feasibility equations of [13] can be related to
(4.1), the description of our algorithm also has some flavor of the approach in [13],
where an inverse interpolation scheme is used to satisfy primal feasibility. However,
in the presence of the hard case, we do not need to combine distinct interpolating
functions, as in [13], nor switch to another algorithm as in [17]. In this section we will
assume that the vector g is nonzero. If g = 0, then problem (2.1) reduces to solving
an eigenvalue problem for the smallest eigenvalue of A. We shall first describe the
components of the algorithm and then present the complete method.

4.1. Interpolating schemes. To begin the iteration, we need a single-point
interpolating scheme. We use the approach derived in [17] which gives the following
expression for α1:

α1 = λ̂+ φ̂(λ̂) = α0 +
α0 − λ0

‖x0‖
(
∆− ‖x0‖

∆

)(
∆+

1

‖x0‖
)
,(4.2)

where

λ̂ = δ +
gTx0

‖x0‖∆ ·

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



LARGE-SCALE TRUST-REGION SUBPROBLEM 623

This method is linearly convergent and may be slow in some cases, so we will
use it just to obtain a second pair of iterates, which together with λ0, x0 will be the
starting values for a two-point method. In the two-point method we use the four
pieces of information available at the kth iteration, namely, φ(λk−1), φ

′(λk−1), φ(λk),

and φ′(λk) as follows. We compute λ̂ such that

1

∆
=

1√
φ′(λk−1)

(
λk − λ̂

λk − λk−1

)
+

1√
φ′(λk)

(
λ̂− λk−1

λk − λk−1

)
,(4.3)

obtaining

λ̂ =
λk−1‖xk−1‖(‖xk‖ −∆) + λk‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) ·(4.4)

This is equivalent to defining

φ̂(λ) =
γ2

δ − λ
+ η(4.5)

for any η and computing λ̂ such that 1√
φ̂′(λ̂)

= 1
∆ . It is easy to verify using (4.3) that

γ2 =
(λk − λk−1)

2‖xk−1‖2‖xk‖2
(‖xk‖ − ‖xk−1‖)2 and δ =

λk‖xk‖ − λk−1‖xk−1‖
‖xk‖ − ‖xk−1‖ ·

Ideally, η = φ(λ̂)− γ2

δ−λ̂ , where φ(λ̂) is the value we are going to estimate in order

to update α. Using the values φ(λk−1) and φ(λk), we first define ηj = φ( λj ) − γ2

δ−λj
,

for j = k − 1, k. Then, applying the linear interpolation philosophy on λj , ηj , and

defining the weights by means of the already computed value λ̂, we choose

η =

(
λk − λ̂

λk − λk−1

)
ηk−1 +

(
λ̂− λk−1

λk − λk−1

)
ηk .

After some manipulation we can express the updating formula for α as

αk+1 = λ̂+ ωφ(λk−1) + (1− ω)φ(λk)

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − λ̂)(λk − λ̂)

(λk − λk−1)

= ωαk−1 + (1− ω)αk

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − λ̂)(λk − λ̂)

(λk − λk−1)
,(4.6)

where ω = λk−λ̂
λk−λk−1

, αk−1 = λk−1 + φ(λk−1), and αk = λk + φ(λk).

As we discussed in section 3, we need a special strategy to obtain interpolation
points in potential hard cases. We describe this strategy in section 4.2.

4.2. Choice of interpolation points. According to Lemma 3.1, if the first
component of the eigenvector corresponding to the smallest eigenvalue of Bαk

is zero,
this will indicate a potential hard case and we will have λ1(αk) = δ1. However,
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624 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Lemma 3.3 establishes that for αk slightly larger than α̃1 there is an eigenvector with
significant first component that corresponds to the second smallest eigenvalue of Bα.
Therefore, we propose to use an eigenpair corresponding to an eigenvalue that is close
to the second smallest eigenvalue of the bordered matrix to obtain the interpolation
point whenever we detect a potential hard case. As we shall explain, not only can we
keep the size of the iterate xk under control, but we can also ensure convergence of
{λk, xk} to {δ1, p} by driving the parameter αk to the value α̃1 given by Lemma 3.2.
Recall that Lemma 3.2 established that there will be an eigenvector with significant
first component corresponding to λ1(αk) precisely when αk assumes the special value
α̃1 = δ1−gTp. Moreover, the use of a second eigenvector prevents numerical difficulties
in a near-hard-case situation.

There is an easy way to detect a potential hard case during an iteration. Let
(ν1, u

T
1 )

T be a unitary eigenvector of Bαk
corresponding to λ1(αk). Then, we declare

ν1 to be “small,” indicating a near hard case has been detected, if the condition
‖g‖|ν1| ≤ ε

√
1− ν1

2 holds for a given ε ∈ (0, 1). This is motivated as follows. Since
(A − λ1(αk) I)u1 = −gν1, we have

‖(A − λ1(αk) I)u1‖
‖u1‖ =

‖g‖|ν1|√
1− ν1

2

and hence ‖g‖|ν1| ≤ ε
√
1− ν1

2 ensures that ‖(A − λ1(αk) I)u1‖ ≤ ε‖u1‖. In other
words, {λ1(αk), u1} is an approximate eigenpair of A and the eigenvector (ν1, u

T
1 )

T

from the bordered matrix is essentially impossible to normalize. This is approxi-
mately the situation described in Lemma 3.1. Of course, this test can be made scale
independent by choosing ε = ε̂‖A‖, for ε̂ ∈ (0, 1).

When a near hard case has been detected, we need an alternative way to de-
fine the pair {λk, xk}. At each iteration, at essentially no extra cost, we compute
an eigenpair corresponding to the smallest eigenvalue of Bαk

, which we denote by
{λ1(αk), (ν1, u

T
1 )

T}, and also an eigenpair corresponding to an eigenvalue close to the
second smallest eigenvalue of Bα, which we denote by {λi(αk), (ν2, u

T
2 )

T}. If both
|ν1| and |ν2| are small, that is, if ‖g‖|ν1| ≤ ε

√
1− ν1

2 and ‖g‖|ν2| ≤ ε
√
1− ν2

2, then
we decrease the parameter αk. According to Theorem 3.1 there always exists an
eigenvector of the bordered matrix with significant first component for any value of α
and, as we mentioned before, according to Lemma 3.3, as αk approaches the critical
value, this normalizable eigenvector will correspond either to the first or to the second
smallest eigenvalue of Bαk

. In other words, for values of αk near the critical value,
either ‖g‖|ν1| > ε

√
1− ν1

2 or ‖g‖|ν2| > ε
√
1− ν2

2 will hold. Hence, after a possible
reduction of the parameter αk, the pair {λk, xk} is well defined if we compute it by
the following procedure:

If ‖g‖|ν1| ≤ ε
√
1− ν1

2, then set λk = λi(αk) and xk =
u2

ν2
·

Otherwise, set λk = λ1(αk) and xk =
u1

ν1
·

Since λk−1 and λk are not constrained to (−∞, δ1] but might belong to the interval

(δ1, δ	+1), the value λ̂ given by (4.4) may be greater than δ1. In this case, we set

λ̂ = δU , where δU is an upper bound for δ1. In section 4.3 we will show how to
obtain an initial value for δU and how to update this value. We will also show how to
safeguard α computed by (4.6).
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LARGE-SCALE TRUST-REGION SUBPROBLEM 625

4.3. Safeguarding. We need to introduce safeguarding to ensure global conver-
gence of the iteration. Let λ∗, x∗ be an optimal pair for problem (2.1), satisfying the
conditions in Lemma 2.1, except when there is only an interior solution, in which case
we define x∗ = −(A − λ∗ I)†g such that ‖x∗‖ = ∆. Let α∗ = λ∗ − gTx∗. Rendl and
Wolkowicz [13] presented the following bounds for the optimal parameter α∗:

δ1 − ‖g‖
∆
≤ α∗ ≤ δ1 + ‖g‖∆ .(4.7)

Computing a good approximation to δ1 can be nearly as expensive as solving the
given trust-region subproblem. For this reason, as observed in [13], we shall replace
the above bounds by some simple alternatives. First, note that any Rayleigh quotient

δU ≡ vTAv
vT v

gives an upper bound for δ1. Therefore, if the diagonal of the matrix A is

explicitly available, we take δU = min{aii | i = 1, . . . , n}; otherwise we take δU ≡ vTAv
vT v

,
where v is a random vector. From (4.7) we see that α∗ ≤ αU , for αU = δU + ‖ g‖∆.
Since α ≤ 0 implies Bα is not positive definite, we set α0 = min{0, αU} to ensure that
λ1(α0) ≤ 0. After solving for λ1(α0) and setting δL = λ1(α0) and αL = δL − ‖g‖

∆ , we
immediately have that αL ≤ α∗, since the interlacing property implies δL ≤ δ1. Using
this simple scheme to obtain δL and δU as initial lower and upper bounds for δ1, we
can start with

αL = δL − ‖g‖
∆

and αU = δU + ‖g‖∆ .(4.8)

We update the upper bound δU at each iteration using information from the eigen-
pair corresponding to the smallest eigenvalue of the bordered matrix in the following

way: δU = min{δU ,
uT

1 Au1

uT
1 u1
}, where uT

1 Au1

uT
1 u1

= λ1(αk)−ν1
gTu1

uT
1 u1

. As stated in section 4.2,

whenever we detect a potential hard case, {λ1(αk), u1} approximates an eigenpair of
A and λ1(αk) is a very good approximation to δ1. Thus, δU becomes a sharp estimate
of δ1 in this case.

At every iteration, we update one of the safeguarding bounds αL or αU so that we
always reduce the length of the interval [αL, αU ]. In case the value αk+1 predicted by
the interpolating schemes (4.2) or (4.6) does not belong to the current safeguarding
interval, we redefine αk+1 by means of a linear adjustment based on the upper bound
δU . If this choice is not in the interval [αL, αU ], we simply set αk+1 =

αL+αU

2 .

4.4. Initialization of α. As mentioned in section 4.3, there is a simple choice
for initializing α, given by α0 = min{0, αU}, with αU as in (4.8). This ensures that
λ1(α0) ≤ 0 but it has no additional properties. In an attempt to improve this initial
guess, we have developed a more sophisticated hot-start strategy based on the Lanczos
process. To begin, we compute the following j-step Lanczos factorization for the j
smallest eigenvalues of A:

AV = V T + feT

j ,(4.9)

where V TV = Ij , with Ij the identity matrix of order j (j � n ), T ∈ R
j×j tridiagonal,

V Tf = 0, and ej denotes the jth canonical unit vector in R
j .

The hot-start strategy consists of first changing variables in (2.1) using x = V y
and solving the j-dimensional problem

min 1
2y

TTy + gTV y

s.t. ‖y‖ ≤ ∆.
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626 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Then, we compute a solution {θ∗, y∗} to this lower dimensional trust-region sub-
problem by using the algorithm in [10], based on the Cholesky factorization of the
tridiagonal matrix T − θI, θ < δ1. The initial value to be used is α = θ∗ − gTV y∗.

We now show that we can use (4.9) to compute an eigenpair corresponding to the
smallest eigenvalue of Bα0 . Observe(

α0 gT

g A

)(
1 0
0 V

)
=

(
1 0
0 V

)(
α0 gTV
V Tg T

)
+

(
0
f

)
eT

j+1 .(4.10)

If we run the standard Lanczos process for A using v1 = g/‖g‖ as the initial
vector, then we obtain a tridiagonal matrix on the right-hand side of (4.10). This
provides a way of computing the smallest eigenvalue of Bα0 .

In numerical experiments, the use of this hot start for α did not substantially
improve the performance of the method.

4.5. Stopping criteria. At each iteration we check for a boundary solution, an
interior solution, or a quasi-optimal solution according to Theorem 3.2. We can also
stop if we reach a maximum number of iterations or if the length of the safeguarding
interval is too small. Given the tolerances ε∆, εHC , εα ∈ (0, 1), and εInt ∈ [0, 1), we
declare convergence of the algorithm according to the following criteria. Let (ν1, u

T
1 )

T

be the eigenvector corresponding to λ1(αk) and let {λk, xk} be the current iterates;
then we can write the stopping criteria in the following way.

1. Boundary solution.
We detect a boundary solution if

(| ‖xk‖ −∆ | ≤ ε∆ ∗∆) and (λ1(αk) ≤ 0).

If this condition is satisfied, the solution is

λ∗ = λ1(αk) and x∗ = xk.

2. Interior solution.
We detect an interior solution if

(‖u1‖ < ∆|ν1|) and (λ1(αk) > −εInt).

In this case, the solution is λ∗, x∗, where λ∗ = 0 and x∗ satisfies the linear system
Ax = −g, with A positive definite. The conjugate gradient method is a natural choice
for solving this system for most large-scale problems.

3. Quasi-optimal solution.
To declare that we have found a quasi-optimal solution, we first compute t and x̃ as

in Lemma 3.5, provided that the conditions of the lemma are satisfied. If t = (τ1, τ2)
T

and x̃ satisfy condition (ii) of Theorem 3.2, then x̃ is a quasi-optimal solution for

problem (2.1) and we set λ∗ = λ̃ and x∗ = x̃.
4. The safeguarding interval is too small.
If |αU−αL| ≤ εαmax{|αL|, |αU |}, then we stop the iteration and set λ∗ = λ1(αk).

If this criterion is satisfied and we do not have a boundary solution, then we are in
the hard case and α∗ is within εα of α̃1. If ν1 is large enough, we set p =

u1

ν1
. Since

‖p‖ < ∆ in this case, we compute x∗ as x∗ = p+ τz such that ‖x∗‖ = ∆, where the
vector z is an approximate eigenvector associated with the smallest eigenvalue of A.
Of the two possible choices for τ , we choose the one with smaller magnitude since this
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LARGE-SCALE TRUST-REGION SUBPROBLEM 627

value minimizes ψ(p+ τz) (see [10, p. 558]). This choice of τ is given by

τ =
∆2 − ‖p‖2

pTz + sign(pTz)
√
(pTz)2 − (∆2 − ‖p‖2) ·

The vector z is usually available in potential hard cases since in those cases the
eigenvectors corresponding to the smallest eigenvalue of Bαk

will often have a small
first component. In the rather unlikely situation where this vector is not available, we
increase the parameter and solve an eigenproblem for the smallest eigenvalue of the
bordered matrix. This strategy will provide an approximate vector in S1 as Lemma
3.3 guarantees.

If ν1 is too small or zero, we cannot compute a solution. This situation can arise
in practice because the eigensolver might not provide the eigenvector with significant
first component that the theory guarantees. We have not encountered this case in our
experiments.

4.6. The algorithm. Let us now put all these pieces together and present
LSTRS, our algorithm for the large-scale trust-region subproblem. We describe steps
2.1 and 2.5 of Algorithm 4.1 separately. In step 2.1 we adjust the parameter αk so that
the eigenvector corresponding to the smallest eigenvalue, or to an eigenvalue equal or
close to the second smallest eigenvalue of Bαk

, has a significant first component. We
might reduce the interval [αL, αU ] during this adjustment. In step 2.5 we correct the
parameter predicted by the interpolation schemes in case it does not belong to the
current safeguarding interval [αL, αU ]. We try a linear adjustment first and adopt the
middle point of the current interval as a last resort. Figure 2 shows Algorithm 4.1,
while Figures 3 and 4 show steps 2.1 and 2.5, respectively.

5. Convergence analysis.

5.1. Iterates are well defined.
Lemma 5.1. The iterates generated by Algorithm 4.1 are well defined.
Proof. In order to define the current iterate xk in Algorithm 4.1, we must ensure

that we can safely normalize an eigenvector, corresponding to either the smallest
eigenvalue or a value equal or close to the second smallest eigenvalue of Bαk

, to have
first component one. This is accomplished in step 2.1, where we adjust the parameter
αk until we can normalize one of these two eigenvectors to have first component one.
Theorem 3.1 and Lemma 3.3 guarantee that the adjusting procedure in step 2.1 yields
a value of α such that there exists an eigenvector that has significant first component
and is associated with the smallest eigenvalue or a value equal or close to the second
smallest eigenvalue of Bα.

5.2. Local convergence.

5.2.1. Preliminary results.
Lemma 5.2. Let λk, xk be the iterates at iteration k of Algorithm 4.1. Then

g ∈ R(A − λk I).

Proof. If λk, xk are the iterates at iteration k of Algorithm 4.1, then(
αk gT

g A

)(
1
xk

)
= λk

(
1
xk

)
.

Therefore, (A − λk I)xk = −g, which implies that g ∈ R(A − λk I).
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628 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Algorithm 4.1. LSTRS.

Input: A ∈ R
n×n, g ∈ R

n, ∆ > 0, ε∆, εν , εHC , εα ∈ (0, 1), εInt ∈ [0, 1).
Output: λ∗, x∗ satisfying conditions of Lemma 2.1.

1. Initialization

1.1 Compute δU ≥ δ1, initialize αU using (4.8),

set α0 = min{0, αU}
1.2 Compute eigenpairs {λ1(α0), (ν1, u

T
1 )

T}, {λi(α0), (ν2, u
T
2 )

T}
corresponding to smallest eigenvalue and an eigenvalue

close to second smallest eigenvalue of Bα0

1.3 Initialize αL using (4.8)

1.4 Set k = 0
2. repeat

2.1 Adjust αk

2.2 Update δU = min

{
δU ,

uT
1Au1

uT
1u1

}
2.3 if ‖g‖|ν1| > εν

√
1− ν1

2 then

set λk = λ1(αk) and xk =
u1

ν1
if ‖xk‖ < ∆ then αL = αk end if
if ‖xk‖ > ∆ then αU = αk

else set λk = λi(αk), xk =
u2

ν2
and αU = αk end if

end if
2.4 Compute αk+1 by interpolation scheme

using (4.2) if k = 0 or (4.4) and (4.6) otherwise

2.5 Safeguard αk+1

2.6 Set k = k + 1
until convergence

Fig. 2. LSTRS: A method for the large-scale trust-region subproblem.

Lemma 5.3. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a boundary
solution of problem (2.1). Then

g ∈ R(A − λ∗ I).

Proof. If λ∗ < δ1, then A − λ∗ I is nonsingular and g ∈ R(A − λ∗ I). If λ∗ = δ1,
then g ⊥ N (A − λ∗ I) must hold and therefore g ∈ R(A − λ∗ I).

Remark. Since (A − λ I)(A − λ I)† and (A − λ I)†(A − λ I) are orthogonal
projectors onto R(A − λ I), we have that

g = (A − λ I)(A − λ I)†g = (A − λ I)†(A − λ I)g(5.1)

for any λ such that g ∈ R(A − λ I). In particular, Lemmas 5.2 and 5.3 imply that
(5.1) holds for λ = λk and λ = λ∗.

5.2.2. Technical lemmas. We present several technical lemmas that allow us
to prove our local convergence result. We will use the following notation:

Ak ≡ A − λk I and A∗ ≡ A − λ∗ I.(5.2)
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LARGE-SCALE TRUST-REGION SUBPROBLEM 629

Step 2.1. Adjust αk.

Input: εν , εα ∈ (0, 1), αL, αU , αk with αk ∈ [αL, αU ].
Output: αk, {λ1(αk), (ν1, u

T
1 )

T} and {λi(αk), (ν2, u
T
2 )

T}.
· Set α = αk

· if k > 0 then
compute eigenpairs {λ1(α), (ν1, u

T
1 )

T} and {λi(α), (ν2, u
T
2 )

T},
corresponding to smallest eigenvalue and an eigenvalue

close to second smallest eigenvalue of Bα
end if
· while

‖g‖|ν1| ≤ εν
√

1 − ν12 and ‖g‖|ν2| ≤ εν
√

1 − ν22

and |αU − αL| > εα ∗ max{|αL|, |αU |} do

αU = α

α = (αL + αU )/2

Compute {λ1(α), (ν1, uT
1 )T } and {λi(α), (ν2, uT

2 )T }
end while

· Set αk = α

Fig. 3. Adjustment of α.

Step 2.5. Safeguard αk+1.

Input: αk+1 computed by step 2.4 of Algorithm 4.1, δU ≥ δ1, αL, αU ,
φi = −gTxi, and φ′

i = ‖xi‖2, for i = k − 1, k.
Output: Safeguarded value for αk+1.

if αk+1 �∈ [αL, αU ]
if k = 0 then αk+1 = δU + φk + φ′

k(δU − λk)
else if ‖xk‖ < ‖xk−1‖ then αk+1 = δU + φk + φ′

k(δU − λk)
else αk+1 = δU + φk−1 + φ′

k−1(δU − λk−1)
end if
if αk+1 �∈ [αL, αU ] then set αk+1 = (αL + αU)/2 end if

end if

Fig. 4. Safeguarding of α.

The first lemma establishes a key relationship satisfied by the iterates computed
by Algorithm 4.1.
Lemma 5.4. Let λk, xk be the iterates at iteration k of Algorithm 4.1. Then

xk = −(A − λk I)†g.

Proof. First note that if λk, xk are the iterates at iteration k of Algorithm 4.1,
then they satisfy (

αk gT

g A

)(
1
xk

)
= λk

(
1
xk

)
.
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630 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Therefore

(A − λk I)xk = −g.(5.3)

In order to prove the result we need to consider two cases.
Case 1: λk �= δi, i = 1, 2, . . . , d.
In this case we have that A − λk I is nonsingular, (A − λk I)−1 = (A − λk I)†,

and from (5.3) we conclude

xk = −(A − λk I)†g.

Case 2: λk = δi, 1 ≤ i ≤ d.
If λk = δi, then (5.3) implies that g ⊥ Si. This follows from the observation that

for any q ∈ Si, we have 0 = qT (A − δi I)xk = −qTg. Corollary 3.1 now implies that
αk = α̃i and

xk = pi

= −(A − δi I)
†g,

since (1, xT
k )

T is an eigenvector of Bαk
. This concludes the proof.

Before presenting the next lemma, which provides useful relationships for the
convergence analysis, we introduce the following definition.
Definition 5.1. Let λi, xi and λj, xj be the iterates computed by Algorithm 4.1

at iterations i and j, respectively. Then we define

ρ(i, j) ≡ xT

i A
†
jxi + xT

j A
†
ixj.(5.4)

We can substitute any of the iterates by λ∗, y, with y = −A†
∗g. We denote this by

ρ(∗, j) and ρ(i, ∗), respectively.
Observe that if A = QDQT is an eigendecomposition of A, i.e., Q is an orthogonal

matrix and D is a diagonal matrix with the eigenvalues of A on the diagonal, we can
write ρ(i, j) in the following way:

ρ(i, j) = gTQD†
i (D

†
i +D†

j)D
†
jQ

Tg,

where Di = D − λiI and Dj = D − λjI. From this expression we obtain

ρ(i, j) =

d∑
k=1

β2

k(2δk − λi − λj)

(δk − λi)2(δk − λj)2
,(5.5)

where β2

k is the sum of the expansion coefficients of g in the eigenvector basis, cor-
responding to all the eigenvectors associated with δk. As before, we assume that
δ1, δ2, . . . , δd are the distinct eigenvalues of A in nondecreasing order.
Lemma 5.5. Let λi, xi, λj, xj, and λk, xk be the iterates computed by Algorithm

4.1 at iterations i, j, and k, respectively. Then
(i) (xi − xj)

Tg = (λj − λi)x
T
i xj;

(ii) (xi − xj)
Txk = (λi − λj)x

T
j A

†
ixk;

(iii) xT
i xi − xT

j xj = (λi − λj)ρ(i, j), with ρ(i, j) given by (5.4).
Moreover, (i)–(iii) also hold if we substitute any of the pairs above by λ∗, y, where

λ∗ is the Lagrange multiplier corresponding to a boundary solution of problem (2.1)

and y = −A†
∗g.

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



LARGE-SCALE TRUST-REGION SUBPROBLEM 631

Proof. Let us first prove (i). Observe that by Lemma 5.4

(xi − xj)
Tg = (A†

jg −A†
ig)

Tg.

Therefore, using (5.1) and the fact that Ai, A
†
i , Aj , A

†
j commute, we have

(xi − xj)
Tg = gT (A†

j −A†
i )g

= gTA†
i (Ai −Aj)A

†
jg

= (λj − λi)x
T

i xj.

To prove (ii), we use (5.1), Lemma 5.4, and the fact that Ai, A
†
i , Aj , A

†
j commute,

obtaining

(xi − xj)
Txk = gT (A†

i −A†
j)xk

= gTA†
j(Aj −Ai)A

†
ixk

= (λi − λj)x
T

j A
†
ixk.

Finally, let us prove (iii). By (5.1), Lemma 5.4, and the fact that Ai, A
†
i , Aj , A

†
j

commute, we have

xT

i xi − xT

j xj = gT [(A†
i )

2 − (A†
j)

2]g

= gT [(A†
i )

2A2

j −A2

i(A
†
j)

2]g

= gT (A†
i )

2(Aj −Ai)(Aj +Ai)(A
†
j)

2g

= (λi − λj)x
T

i (A
†
i +A†

j)xj

= (λi − λj)ρ(i, j).

Observe that (i)–(iii) hold for λ∗, y, since (5.1) holds for λ∗, y = −A†
∗g, and A∗

commutes with the matrices above. This observation concludes the proof.
Using the updating formula (4.6), we obtained the following result relating λk+1−

λ∗ with λk−1−λ∗ and λk−λ∗. This lemma provides a key relationship for establishing
the local convergence properties of Algorithm 4.1.
Lemma 5.6. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a boundary

solution of problem (2.1), with g �= 0. Let λk+1, xk+1 be the (k+1)st iterates computed
by Algorithm 4.1 using the two-point interpolating scheme given by (4.6) to update α.
Then, there exists a neighborhood B of λ∗ such that if λk−1, λk ∈ B, then λk+1

satisfies

|λk+1 − λ∗| ≤ C |λk−1 − λ∗||λk − λ∗|(5.6)

with C independent of k.
Proof. Let y = −A†

∗g and α∗ = λ∗ − gTy. We divide the proof into two cases
‖y‖ = ∆ and ‖y‖ < ∆. In each case, we first find an appropriate neighborhood of λ∗
and then prove (5.6) for λk−1, λk in that neighborhood.

Case 1: ‖y‖ = ∆.
We will first find a neighborhood B of λ∗ such that if λk−1, λk ∈ B, then λ̂ ∈ B,

with λ̂ given by (4.4). In this part of the proof we define the numbers � and m in the
following way.
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632 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Let 0 ≤ � < n and assume that g ⊥ Si, i = 1, 2, . . . , �, where � = 0 indicates that
g �⊥ S1. Let m = 0 if λ∗ < δ1 and m = � if λ∗ = δ1. Define

r1 =
δm+1 − λ∗

2
and B1 = {λ | |λ− λ∗| ≤ r1}

and suppose that λk−1, λk ∈ B1. Then by (4.4), Lemma 5.5(iii), and the fact that
‖y‖ = ∆, we have

λ̂− λ∗ = λk − λ∗ +
‖xk−1‖(‖xk−1‖+ ‖xk‖)(∆− ‖xk‖)

ρ(k − 1, k)∆
= (λk − λ∗)

[
1− ρ(∗, k)‖xk−1‖(‖xk−1‖+ ‖xk‖)

ρ(k − 1, k)∆(∆ + ‖xk‖)
]
.(5.7)

We will prove now that |λ̂− λ∗| ≤ |λk − λ∗|ϑ, with ϑ ∈ (0, 1).
Let ∆max = maxλ∈B1 ‖(A − λ I)†g‖ and ∆min = minλ∈B1 ‖(A − λ I)†g‖.

Therefore

‖xk−1‖(‖xk−1‖+ ‖xk‖)
∆(∆ + ‖xk‖) ≥

(
∆min
∆max

)2

.(5.8)

In view of (5.5) we have that for λk−1, λk ∈ B1

ρ(∗, k) ≥ (2δ	+1 − λ∗ − λk)

(δd − λ∗)2(δd − λk)2
‖g‖2 .

Since δm+1 ≤ δ	+1 and since
−δm+1+λ∗

2 ≤ λ∗ − λk ≤ δm+1−λ∗
2 , we have

ρ(∗, k) ≥ (2δm+1 − λ∗ − λk)

(δd − λ∗)2(δd − λk)2
‖g‖2

=
2(δm+1 − λ∗) + (λ∗ − λk)

(δd − λ∗)2[(δd − λ∗) + (λ∗ − λk)]2
‖g‖2

≥ 2

3
‖g‖2 (δm+1 − λ∗)

(δd − λ∗)4
·(5.9)

Using similar manipulations we obtain

ρ(k − 1, k) ≤ (2δd − λk − λk−1)‖g‖2
(δ	+1 − λk)2(δ	+1 − λk−1)2

≤ (2δd − λk − λk−1)‖g‖2
(δm+1 − λk)2(δm+1 − λk−1)2

≤ 3 · 24‖g‖2(δd − λ∗)
(δm+1 − λ∗)4

·(5.10)

It follows from (5.7), (5.8), (5.9), and (5.10) that

|λ̂− λ∗| ≤ |λk − λ∗|
∣∣∣∣∣1−

(
∆min
∆max

)2
1

72

(δm+1 − λ∗)5

(δd − λ∗)5

∣∣∣∣∣ ≡ |λk − λ∗|ϑ

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



LARGE-SCALE TRUST-REGION SUBPROBLEM 633

with ϑ ∈ (0, 1). Therefore λ̂ ∈ B1 whenever λk−1, λk ∈ B1.
Now, we use these results to establish (5.6). Let the neighborhood B be given by

B1 and let λk−1, λk ∈ B; therefore λ̂ ∈ B, and to prove (5.6) we need to consider two
possibilities λ̂ < δ1 and λ̂ ≥ δ1.

Case 1.1: ‖y‖ = ∆ and λ̂ < δ1.
In this case, we use formulas (4.4) and (4.6), obtaining

αk+1 = T1 + T2,

where

T1 =
αk−1‖xk−1‖(‖xk‖ −∆) + ‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖)
and

T2 =
‖xk‖‖xk−1‖(∆− ‖xk‖)(∆− ‖xk−1‖)(λk − λk−1)

∆(‖xk‖ − ‖xk−1‖) .

We will now find an upper bound for |T2|. From Lemma 5.5(iii), we have

T2 =
‖xk‖‖xk−1‖(∆− ‖xk‖)(∆− ‖xk−1‖)(‖xk‖+ ‖xk−1‖)

∆ρ(k − 1, k) ,

and since ‖y‖ = ∆ we can write

T2 =
‖xk‖‖xk−1‖(‖xk‖+ ‖xk−1‖)

ρ(k − 1, k)
(‖y‖ − ‖xk‖)(‖y‖ − ‖xk−1‖)

∆
.

Using Lemma 5.5(iii) we obtain

T2 =
‖xk‖‖xk−1‖(‖xk‖+ ‖xk−1‖)

ρ(k − 1, k)
(λ∗ − λk−1)(λ∗ − λk)ρ(k − 1, ∗)ρ(k, ∗)

∆(∆ + ‖xk‖)(∆ + ‖xk−1‖) ·

Now, since λk−1, λk ∈ B and since δm+1 ≤ δ	+1,

ρ(k − 1, k) ≥ 2

3
‖g‖2 (δm+1 − λ∗)

(δd − λ∗)4
,(5.11)

ρ(∗, k), ρ(∗, k − 1) ≤ 10 δd − λ∗
(δm+1 − λ∗)4

·(5.12)

Since for λk−1, λk ∈ B we also have ∆min ≤ ‖xk−1‖, ‖xk‖ ≤ ∆max, we obtain
|T2| ≤ C2 |λ∗ − λk−1| |λ∗ − λk|.(5.13)

We will use this estimate in a moment. First, we need to relate it to λk+1 − λ∗. To
do this, consider

αk+1 − α∗ =
(αk−1 − α∗)‖xk−1‖(‖xk‖ −∆) + (αk − α∗)‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) + T2 .

(5.14)

From Lemma 5.5(i), the definition of α∗, and since αj − λj = −gTxj for j > 0, we
have

αj − α∗ = λj − λ∗ − gT (xj − y)

= (λj − λ∗)(1 + xT

j y).(5.15)
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634 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Using (5.15) along with Lemma 5.5, (5.14) becomes

(λk+1 − λ∗)(1 + xT

k+1y) =
(λk−1 − λ∗)‖xk−1‖(‖xk‖ −∆)(1 + xT

k−1y)

∆(‖xk‖ − ‖xk−1‖)

− (λk − λ∗)‖xk‖(‖xk−1‖ −∆)(1 + xT
k y)

∆(‖xk‖ − ‖xk−1‖) + T2

=
(λk−1 − λ∗)(λk − λ∗)T3

∆(‖xk‖ − ‖xk−1‖)(‖xk‖+∆)(‖xk−1‖+∆) + T2,

where

T3 = (‖xk−1‖ − ‖xk‖)(‖xk−1‖+ ‖xk‖+∆)(1 + xT

k y)ρ(k − 1, ∗)
+ yT (xk−1 − xk)‖xk−1‖(‖xk−1‖+∆)ρ(k, ∗)
+ (ρ(k, ∗)− ρ(k − 1, ∗))‖xk−1‖(‖xk−1‖+∆)(1 + xT

k y) .

Now, by Lemma 5.5(ii) we have

yT (xk−1 − xk) = (λk−1 − λk)y
TA†

kxk−1(5.16)

and by Lemma 5.5(iii)

ρ(k, ∗)− ρ(k − 1, ∗) = xT

kA
†
∗xk + yTA†

ky − xT

k−1A
†
∗xk−1 − yA†

k−1y

= gTA†
kA

†
∗A

†
kg − gTA†

k−1A
†
∗A

†
k−1g + yT (A†

k −A†
k−1)y

= gT ((A†
k)

2 − (A†
k−1)

2)y + (λk − λk−1)y
TA†

kA
†
k−1y

= (λk − λk−1)(y
TA†

k−1A
†
ky + xT

k−1(A
†
k +A†

k−1)A
†
ky).

(5.17)

Therefore by (5.12), (5.16), (5.17), and since λk−1, λk ∈ B, we have
|T3| ≤ C3|λk − λk−1| .

We may now combine the estimates we have established for T1, T2, and T3 to give

|λk+1 − λ∗||1 + xT

k+1y| ≤ C3
|λk−1 − λ∗| |λk − λ∗| |λk − λk−1|

∆|(‖xk‖ − ‖xk−1‖)(‖xk‖+∆)(‖xk−1‖+∆)| + |T2|
≤ (C4 + C2)|λk−1 − λ∗| |λk − λ∗|

since λk−1, λk ∈ B, and (5.13) holds. Let us see now that 1
1+xT

k+1
y
< 1. Note that

xT

k+1y = gTA†
k+1A

†
∗g

=

d∑
j=	+1

β2
j

(δj − λk+1)(δj − λ∗)
≥ ‖g‖2
(δd − λk+1)(δd − λ∗)

·(5.18)

From this expression we can conclude xT
k+1y > 0 since λ∗ < δm+1 ≤ δd and also since

λk+1 < δm+1 ≤ δd, by the way we compute the iterates in Algorithm 4.1.

We can now claim (5.6) when ‖y‖ = ∆ and λ̂ < δ1.

Case 1.2: ‖y‖ = ∆ and λ̂ ≥ δ1.
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LARGE-SCALE TRUST-REGION SUBPROBLEM 635

In this case we must use the ideal safeguard, setting λ̂ = δ1. Before proceeding
with the proof, we point out that this can occur only when λ∗ = δ1. To see this
recall that, if λ∗ < δ1, we have B = {λ | |λ − λ∗| ≤ δ1−λ∗

2 }, and we proved that
λk−1, λk ∈ B implies λ̂ ∈ B. Therefore

λ̂− λ∗ ≤ δ1 − λ∗
2

,

λ̂ ≤ δ1 + λ∗
2

< δ1

if λ∗ < δ1.
To continue with the proof we write the formula for αk+1 in this case as

αk+1 = T4 + T5,

where

T4 = ωαk−1 + (1− ω)αk

and

T5 =
‖xk‖‖xk−1‖(‖xk‖ − ‖xk−1‖)
ω‖xk‖+ (1− ω)‖xk−1‖

(λk−1 − δ1)(λk − δ1)

(λk − λk−1)
·

Since λ̂ = δ1, we have ω =
λk−δ1
λk−λk−1

and therefore

ω‖xk‖+ (1− ω)‖xk−1‖ = (λk − δ1)‖xk‖+ (δ1 − λk−1)‖xk−1‖
λk − λk−1

=
(λk − δ1)ρ(k − 1, k) + ‖xk−1‖(‖xk−1‖+ ‖xk‖)

‖xk−1‖+ ‖xk‖(5.19)

by Lemma 5.5(iii).
Using (5.19), (5.4), and Lemma 5.5(iii), we obtain

T5 =
‖xk‖‖xk−1‖ρ(k, k − 1)(λk−1 − δ1)(λk − δ1)

(λk − δ1)ρ(k − 1, k) + ‖xk−1‖(‖xk−1‖+ ‖xk‖) .

By (5.11) and the hypothesis that λk−1, λk ∈ B, we have

|T5| ≤ C5|λk−1 − δ1||λk − δ1|.(5.20)

We now write

αk+1 − α∗ = ωαk−1 + (1− ω)αk − α∗ + T5

= ω(αk−1 − α∗) + (1− ω)(αk − α∗) + T5.

Equation (5.14) and the fact that λ∗ = δ1 yield

|λk+1 − λ∗||1 + yTxk+1| ≤ |λk−1 − λ∗||λk − λ∗|
|λk − λk−1| |yT (xk − xk−1)|+ |T5| .
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636 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Observe that |yT (xk − xk−1)| ≤ |gT (A − λk I)†(A − λk−1 I)†(A − λ∗ I)†g|, and
we can compute an upper bound for this term using the Cauchy–Schwarz inequality,
continuity of ‖·‖, and that λk−1, λk ∈ B. Therefore, by (5.20) and since λk−1, λk ∈ B

|λk+1 − λ∗||1 + yTxk+1| ≤ (C6 + C5)|λk−1 − λ∗||λk − λ∗|.

Using (5.18), we can now establish (5.6) when ‖y‖ = ∆ and λ̂ ≥ δ1.
Case 2: ‖y‖ < ∆.
In this situation, we are in the hard case and therefore λ∗ = δ1 and g ⊥ Si,

i = 1, 2, . . . , �, with 1 ≤ � < d. For this case we will find a neighborhood B of λ∗ such
that λk−1, λk ∈ B implies λ̂ > δ1.

Let the function ϕ(λ) ≡ ‖(A − λ I)†g‖. Then ϕ(λ) is strictly increasing in

(−∞, δ	+1), and there exist λa, λb such that ϕ(λa) =
∆y

2 and ϕ(λb) =
∆+∆y

2 , with
∆y = ‖y‖.

Let

r2 = min

{
δ1 − λa
2

,
δ1 − λb
2

,
δ	+1 − δ1

2

}
and B2 = {λ | |λ− λ∗| ≤ r2}.

Then for λk−1, λk ∈ B2

∆y
2
≤ ‖xk−1‖, ‖xk‖ ≤ ∆+∆y

2
,

and δ1 − r2 ≤ λk−1, λk ≤ δ1 + r2 < δ	+1 .

Now observe that using (4.4) and Lemma 5.5(iii) we can write

λ̂− λ∗ = λ̂− δ1

=
(λk−1 − δ1)‖xk−1‖(‖xk‖ −∆) + (λk − δ1)‖xk‖(∆− ‖xk−1‖)

∆(‖xk‖ − ‖xk−1‖) − δ1

= λk − δ1 +
‖xk−1‖(∆− ‖xk‖)(‖xk−1‖+ ‖xk‖)

∆ρ(k, k − 1)

≥ λk − δ1 +
∆y

2(∆−∆y)
4∆ρ(k, k − 1) .(5.21)

Observe now that for λk−1, λk ∈ B2

ρ(k, k − 1) ≤ 3 · 24‖g‖2(δd − δ1)

(δ	+1 − δ1)4
·(5.22)

Using (5.21) and (5.22) we obtain

λ̂− δ1 ≥ λk − δ1 +
∆y

2(∆−∆y)(δ	+1 − δ1)
4

3 · 26∆‖g‖2(δd − δ1)
·

Let

ζ ≡ ∆y
2(∆−∆y)(δ	+1 − δ1)

4

3 · 26∆‖g‖2(δd − δ1)
.
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LARGE-SCALE TRUST-REGION SUBPROBLEM 637

Observe that ζ is well defined since δd = δ1 would imply g ∈ R
n ⊥ = {0}. Observe

also that ζ > 0, since ∆ > ∆y and δ	+1 > δ1. Then, for λk ≥ δ1 − ζ we have λ̂ ≥ δ1.
So, let

r3 = min{r2, ζ} and B3 = {λ | |λ− δ1| ≤ r3}.

It follows that for λk−1, λk ∈ B3, we have λ̂ ≥ δ1 and we must use the ideal safe-

guard, setting λ̂ = δ1. The proof now proceeds as in Case 1.2, where the neighborhood
B is given by B3, and we use (5.22) instead of (5.10).

The analysis of the two cases concludes the proof.
Note that the assumption in Lemma 5.6 that the trust-region constraint is binding

at the solution includes the possibility of the hard case, since in this case x∗ =
−A†

∗g + z, with z ∈ S1 and ‖x∗‖ = ∆.
5.2.3. Local convergence result.
Theorem 5.1. Let λ∗ ≤ δ1 be the Lagrange multiplier corresponding to a bound-

ary solution of problem (2.1), with g �= 0. Let {λk}, {xk} be the sequences of iterates
generated by Algorithm 4.1 using the two-point interpolating scheme given by (4.6) to
update α. There exists a neighborhood B of λ∗ such that if λi−1, λi ∈ B, then for
k ≥ i− 1

(i) {λk} remains in B and converges q-superlinearly to λ∗;
(ii) {xk} converges q–superlinearly to y = −(A − λ∗ I)†g.
Proof. First we show that {λk} converges to λ∗ and that the rate of convergence

is superlinear.
Let r ∈ R, r > 0, and B = {λ | |λ − λ∗| < r} be the neighborhood of λ∗ stated

in Lemma 5.6 and suppose that λi−1, λi ∈ B, for i ≥ 1. Then, Lemma 5.6 implies
that there exists C such that

|λi+1 − λ∗| ≤ C |λi − λ∗| |λi−1 − λ∗|.(5.23)

Let r̂ = min{r, 1
2C }, define B̂ = {λ | |λ − λ∗| < r̂}, and observe that B̂ ⊂ B.

Suppose λi−1, λi ∈ B̂; then λi−1, λi ∈ B, and (5.23) holds.
Observe now that for λi−1, λi ∈ B̂ we have C|λi−1 − λ∗| ≤ 1

2 and therefore

|λi+1 − λ∗| ≤ 1

2
|λi − λ∗|

which implies λi+1 ∈ B̂ ⊂ B.
It follows inductively that if λi−1, λi ∈ B, then λk ∈ B for k ≥ i − 1 and this

implies

|λk − λ∗| ≤ 1

2k−i+1
|λi−1 − λ∗|

and therefore λk → λ∗ as k →∞.
To see that the rate of convergence is q-superlinear, observe that, by (5.23), for

k ≥ i we have

|λk+1 − λ∗|
|λk − λ∗| = C|λk−1 − λ∗|,

which goes to zero as k goes to infinity.
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638 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

In the second part of the proof we show that the sequence {xk} converges super-
linearly to y = −(A − λ∗ I)†g.

Recall from Lemma 5.4 that xk = −A†
kg and let us study xk − y which is given

by

xk − y = (A − λ∗ I)†g − (A − λk I)†g
= (A − λ∗ I)†((A − λk I)− (A − λ∗ I))(A − λk I)†g
= (λ∗ − λk)(A − λ∗ I)†(A − λk I)†g

using (5.1) and rearranging terms. Taking norms on both sides we have

‖xk − y‖ = |λk − λ∗| ‖(A − λ∗ I)†‖‖(A − λk I)†‖ ‖g‖
≤ Ĉ|λk − λ∗|(5.24)

for a positive constant Ĉ, since λk ∈ B, λ∗ ≤ δ1, and ‖g‖ is constant. Therefore, since
λk → λ∗ as k → ∞, we have that xk → y as k → ∞.

To see that the rate of convergence is q-superlinear, observe that (5.23) and (5.24)
imply

‖xk+1 − y‖
‖xk − y‖ ≤ |λk−1 − λ∗|

which goes to zero as k goes to infinity. This completes the proof.

5.2.4. Near hard case. The next lemma provides a relationship between the
function φ and the interpolating function (4.5). We will use this relationship in the
analysis of the near hard case.
Lemma 5.7. At iteration k of Algorithm 4.1 the interpolating function (4.5)

satisfies

φ̂(λ̂)− φ(λk) = (λ̂− λk)

[
xT

k xk−1 +
‖xk−1‖‖xk‖ρ(k, k − 1)(λ̂− λk−1)

(λk − λ̂)ρ(k, k − 1) + ‖xk−1‖(‖xk‖+ ‖xk−1‖)

]
,

with ρ(k, k − 1) as in (5.4) and λ̂ given by (4.4).
Proof. By (4.5) and Lemma 5.5(iii), we have

φ̂(λ̂) =
γ2

δ − λ̂
+ ωφ(λk−1)− ω

γ2

δ − λk−1

+ (1− ω)φ(λk)− (1− ω)
γ2

δ − λk

= φ(λk) + ωgT (xk − xk−1) +
ωγ2(λ̂− λk−1)

(δ − λ̂)(δ − λk−1)

+
(1− ω)γ2(λ̂− λk)

(δ − λ̂)(δ − λk)

= φ(λk) + (λ̂− λk)x
T

k xk−1 +
γ2(λ̂− λk)(λ̂− λk−1)

(δ − λ̂)(δ − λk)(δ − λk−1)

= φ(λk) + (λ̂− λk)x
T

k xk−1

+
‖xk−1‖‖xk‖(‖xk‖ − ‖xk−1‖)(λ̂− λk)(λ̂− λk−1)

(ω‖xk‖+ (1− ω)‖xk−1‖)(λk − λk−1)
,

where ω = λk−1−λ̂
λk−λk−1

. Thus, the result follows from Lemma 5.5.
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LARGE-SCALE TRUST-REGION SUBPROBLEM 639

A few comments are in order concerning the near hard case. As mentioned in
section 3, finding λ∗ < δ1 in a near hard case is a very ill-conditioned process. The
difference δ1 − λ∗ can be very small to the extent of being undetectable within the
given tolerances. The smaller the value δ1−λ∗, the harder it is to determine {λ∗, x∗}.
Furthermore, rounding errors generally will convert an exact hard case into a near
hard case. Although δ1 is still a pole of φ when g is not exactly orthogonal to S1,
the weight of such a pole is very small in comparison to the other poles because the
expansion coefficients of g in the basis of eigenvectors of A are practically zero for
those eigenvectors associated with δ1. The strategy that we follow in Algorithm 4.1
for dealing with this case consists of building an interpolating function that ignores
the pole δ1 at early stages, using the eigenpair corresponding to the second smallest
eigenvalue of Bαk

to obtain the interpolation points. In addition, we use the second
eigenpair to compute a vector that might be a quasi-optimal solution for the trust-
region subproblem as established in Theorem 3.2. Moreover, as that theorem and
related results established, it is not necessary to compute an eigenpair corresponding
to the second smallest eigenvalue. This is especially useful when the vector g is
orthogonal or nearly orthogonal to several eigenspaces corresponding to the smallest
eigenvalues of A, and those eigenvalues are clustered.

If we use information concerning a second eigenpair, then we will have λk > δ1.
This occurs because the first component ν1 of the eigenvector (ν1, u

T
2 )

T associated
with λ1(αk) is too small so that ‖u1/ν1‖ = ‖xk‖ becomes excessively large. Therefore
{λk, xk} is defined as {λi(αk), u2/ν2}. Intuitively, this is a good strategy since in
the exact hard case this would continuously select the correct eigenvector that will
approach (1, pT

1 )
T when α tends to the value α̃1, stated in Lemma 3.2, from either

side.
Now, at iteration k the parameter αk is updated as αk+1 = λ̂+ φ̂(λ̂) with λ̂ ≤ δU ,

where either λ̂ < δU , φ̂
′(λ̂) = ∆2, or λ̂ = δU , φ̂

′(δU) < ∆2. By the same arguments
of the proof of Case 1 in Lemma 5.6, there exists a neighborhood B of λ∗ such that
if λk−1, λk ∈ B, then λ̂ ∈ B, with |λ̂ − λk| = ϑ|λ∗ − λk|, for ϑ ∈ (0, 1). In other
words, eventually the safeguarding λ̂ = δU is no longer necessary. If λk−1, λk ∈ B,
then Lemma 5.7 implies that |φ̂(λ̂) − φ(λk)| = ϑ|λ̂ − λk||λ∗ − λk|. The agreement
between λ̂ and λk and between φ̂(λ̂) and φ(λk) drive αk toward α∗ = λ∗ + φ(λ∗).
As αk approaches α∗, the reduction of the safeguarding interval [αL, αU ] at every
iteration provides a means to avoid the numerical difficulties associated with a near
hard case, and eventually there is no need to use a second eigenpair of Bαk

. At early

stages, however, it might be that λ̂ = δU . Although φ(δ1) is infinite, the interpolating

function value φ̂(δU) is finite. Using αk+1 = δU + φ̂(δU) is essential in keeping the
process under control.

5.3. Global convergence.
Theorem 5.2. Algorithm 4.1 is globally convergent.
Proof. The goal of Algorithm 4.1 is to solve the trust-region subproblem either by

determining the existence of an interior solution or by computing an optimal value α∗
for the parameter α, such that the solution to the parameterized eigenvalue problem
for Bα∗ can be used to compute a boundary solution for the trust-region subproblem.
The global convergence of Algorithm 4.1 is achieved by keeping αk in an interval that
contains the optimal parameter α∗.

We first recall that the initial safeguarding interval [αL, αU ] contains the optimal
value α∗. Starting with that interval, the updating procedure for αL and αU guaran-
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640 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

tees that α∗ remains in the interval and that the safeguarding interval is reduced at
each iteration.

Therefore, since αk = λk − gTxk, after a finite number of iterations either the
sequence {λk} reaches the neighborhood of λ∗ of Theorem 5.1 that guarantees con-
vergence, or the length of the safeguarding interval |αU − αL| goes to zero with
αL ≤ α∗ ≤ αU .

6. Numerical experiments. In this section we present numerical experiments
to demonstrate the viability of our approach and to illustrate different aspects of our
method. We implemented Algorithm 4.1 (LSTRS) in MATLAB 5.3 using a Mexfile
interface to access the IRLM [16] implemented in ARPACK [7]. We ran our experi-
ments on a Sun Ultrasparc 10 with a 300 MHz processor and 256 megabytes of RAM,
running Solaris 5.6. The floating point arithmetic was IEEE standard double preci-
sion with machine precision 2−52 ≈ 2.2204 ·10−16. We present five sets of experiments.
In the first and second sets we study the sensitivity of LSTRS to different tolerances
for the trust-region radius and to different sizes of the trust-region radius, respec-
tively, for problems where the hard case is not present. In order to put our method in
context, we include the number of matrix-vector products required by the conjugate
gradient method to solve systems of the form (A − λ I)x = −g. The third set of
experiments illustrates the local superlinear rate of convergence. The fourth set shows
the behavior of LSTRS in the hard case. In the fifth set we provide a comparison
with the semidefinite programming approach presented in [13].

The following tolerances are fixed in all the experiments: εν = 10−2, εα =
10−8, εInt = 10

−8. We will indicate the values for the rest of the parameters when we
describe each particular set of experiments.

6.1. Different tolerances. In the first experiment, we show the behavior of
the method when different levels of accuracies of the norm of the trust-region solution
are required. The matrix A in (2.1) was A = L − 5I, where L is the standard
two-dimensional (2D) discrete Laplacian on the unit square based upon a 5-point
stencil with equally spaced mesh points. The shift of −5I was introduced to make
A indefinite. The order of A was n = 1024. We solved a sequence of 20 related
problems, differing only by the vector g, randomly generated with entries uniformly
distributed on (0, 1). We solved each of these problems for a fixed trust-region radius
∆ = 100 and for ε∆ = 10

−4, 10−6, 10−8, where ε∆ is the relative accuracy of the norm
of the computed solution with respect to ∆. The initial δU was the minimum of the
diagonal of A and α0 = δU . The tolerance for a quasi-optimal solution was set to
εHC = 10

−16 in order to allow the method to compute a boundary solution; otherwise
the quasi-optimal stopping criterion would be satisfied first.

For ε∆ = 10−4, 10−6 the number of Lanczos basis vectors was limited to 9,
and 6 shifts (i.e., 6 matrix-vector products) were applied on each implicit restart,
while for ε∆ = 10−8, the number of vectors was 20 with 14 shifts on each implicit
restart. The maximum number of restarts allowed was 45 for ε∆ = 10−4, 10−6 and
100 for ε∆ = 10−8. More basis vectors were needed for ε∆ = 10−8, since in this
case the eigenvalues were computed to a higher accuracy. We chose v1, the ini-
tial vector for the IRLM, in the following way. In the first iteration of LSTRS,
v1 = (1, 1, . . . , 1)/

√
n+ 1 and subsequently, v1 was the first column of the matrix

V containing the Lanczos vectors computed by the IRLM for the previous bor-
dered matrix. This choice standardized the initial vector along the set of tests
and performed better than a randomly generated vector, or the eigenvector corre-
sponding to the smallest eigenvalue of Bαk

, or the vector (0, gT )T . Note that the
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LARGE-SCALE TRUST-REGION SUBPROBLEM 641

Table 1
Average behavior for different tolerances.

ε∆ LSTRS IT LSTRS MV CG MV LSTRS MV
CG MV

10−4 6.00 64.00 43.45 1.47
10−6 7.50 83.00 57.00 1.46
10−8 6.55 183.40 71.55 2.56

Table 2
Average behavior for different tolerances allowing quasi-optimal solutions.

ε∆ LSTRS IT LSTRS MV CG MV LSTRS MV
CG MV

10−4 5.00 54.00 48.80 1.11
10−6 5.40 62.00 62.90 0.99
10−8 5.40 64.75 76.95 0.84

last two options have the additional disadvantage of preventing the IRLM from
finding the eigenspace of Bα corresponding to δ1 whenever a potential hard case
is present. As in [17], we relaxed the accuracy required in the eigenvalue solu-
tion and made it proportional to the relative accuracy in the computed solution.

Specifically, ‖Bαq − qλ‖ < εLan, where εLan = max{min{εLan, |∆−‖x‖
∆ |}, εmax} and

εmax = 0.125, 0.1, 0.075 for ε∆ = 10−4, 10−6, 10−8, respectively.
In Table 1 we report the average number of iterations of LSTRS (LSTRS IT), the

average number of matrix-vector products required by LSTRS (LSTRS MV), and the
average number of matrix-vector products required by the conjugate gradient method
(CG MV) to solve the system (A − λ∗ I)x = −g to the same accuracy ε∆ in the norm
of the computed solution of LSTRS. The value of λ∗ was the optimal value computed
by LSTRS.

We observe that for ε∆ = 10−4, 10−6 the behavior in [17] is reproduced: a trust-
region solution requires fewer than twice as many matrix-vectors products on average
than the number needed to solve a single linear system to the same accuracy using
conjugate gradients. For ε∆ = 10

−8, even though LSTRS requires more matrix-vector
products, the cost of LSTRS is less than three times the cost of solving one system
by conjugate gradients.

If we repeat the experiment, setting the tolerance for a quasi-optimal solution to
εHC = 10−6, we obtain the results in Table 2, where we observe the low number of
matrix-vector products required by LSTRS. In this experiment we used nine Lanczos
basis vectors for all cases and allowed a maximum of 45 restarts.

6.2. Different trust-region radii. The second experiment illustrates the be-
havior of LSTRS for different sizes of the trust-region radius. The matrix A in (2.1)
was of the formA = UDUT withD diagonal and U = I−2uuT , uTu = 1. The elements
of D were randomly selected from a uniform distribution on (−5, 5). Both vectors u
and g were randomly generated with entries uniformly distributed on (−0.5, 0.5) and
then u was normalized to have unit length. The order of A was n = 1000. We solved a
sequence of 10 problems generated with different seeds, for a fixed tolerance ε∆ = 10

−6

and ∆ varying from 100 to 0.0001 by a factor of 10, for a total of 70 problems. The
initial δU was set to −4.5 and α0 = min{0, αU}. The tolerance for a quasi-optimal
solution was set to εHC = 10

−6.
The parameters for the IRLM were the following. For ∆ = 100, 10 the number of

Lanczos basis vectors was 30, and 20 shifts were applied on each implicit restart, while
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642 M. ROJAS, S. A. SANTOS, AND D. C. SORENSEN

Table 3
Average behavior for different trust-region radii.

∆ 100 10 1 0.1 0.01 0.001 0.0001
IT 9.9 7.7 4.6 4 3.8 3 3

LSTR MV 1032.4 354 46.9 38.8 37.2 29.4 29.4
CG MV 921.4 410 29.3 28.7 27.2 12 12.5

‖g+(A − λ∗ I)x∗‖
‖g‖ 10−3 10−3 10−2 10−11 10−2 10−2 10−13∣∣∆−‖x∗‖
∆

∣∣ 10−16 10−16 10−8 10−9 10−12 10−10 10−7

for ∆ ≤ 1, the number of vectors was nine with six shifts on each implicit restart.
The maximum number of restarts was 150 and 45, respectively. The difference in
the number of basis vectors is due to the fact that for larger radii the hard case
and near hard case are more likely to occur, and therefore the smallest eigenvalues
of the bordered matrix become more clustered and the IRLM needs more space and
iterations to compute the desired eigenpairs to the required accuracy. The initial
vector for the IRLM was chosen as in section 6.1. We relaxed the accuracy required in
the eigenvalue solution in the following way. The initial values for εLan were 0.03, 0.1,
and 0.25 for ∆ = 100, 10, and ∆ < 10, respectively. The value of εLan was kept the

same until |∆−‖xk‖
∆ | < 0.1, when εLan = 0.015, 0.05, and 0.125 for ∆ = 100, 10 and

∆ < 10, respectively. The results of the experiment are shown in Table 3, where we
also report the average number of matrix-vector products required by the conjugate
gradient method to solve the systems (A − λk I)x = −g for λk generated by LSTRS.

As observed in [17], the conjugate gradient method has a much easier time for
smaller values of ∆.

6.3. Superlinear convergence. The purpose of the third experiment was to
verify superlinear convergence. The matrix A was again set to A = L − 5I with L
the 2D discrete Laplacian on the unit square, but now n = 256. The vector g was
randomly generated with entries uniformly distributed on (−0.5, 0.5). We studied
problems with and without hard case. To generate the hard case, we orthogonalized
the vector g randomly generated as before against the eigenvector q corresponding to
the smallest eigenvalue of A. We accomplished this by setting g ← g − q(qTg). For
the problem without hard case the trust-region radius was ∆ = 10 and ε∆ = 10−11.
For the problem with hard case the radius was ∆ = 100 and εHC = 10−11. The
eigenproblems were solved with the MATLAB routine eig. The results are shown in

Table 4, where we report the quantity |∆−‖xk‖
∆ | for the problem without hard case

and the quantity
(λi(α)−λ1(α)) τ2

2 (1+∆2)

−2ηψ(x̃)
from Theorem 3.2 for the problem with hard

case.
The quantity ‖(A − λ∗ I)x∗ + g‖/‖g‖ was of order 10−14 for problem (a) and

10−7 for problem (b). An asterisk ∗ in the hard case means that we could not check
for a quasi-optimal solution since the conditions of Lemma 3.5 were not satisfied.

6.4. The hard case. The fourth experiment illustrates the behavior of the
method in the hard case. The matrix A was of the form A = UDUT , with D =
diag(d1, . . . , dn) and U = I − 2uuT , uTu = 1. The elements of D were randomly
generated with a uniform distribution on (−5, 5) then sorted in nondecreasing order
and di set to −5 for i = 1, 2, . . . , �, allowing multiplicity � for the smallest eigenvalue
of A. Both vectors u and g were randomly generated with entries selected from a
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LARGE-SCALE TRUST-REGION SUBPROBLEM 643

Table 4
Verification of superlinear convergence for problems without hard case (a) and with hard case (b).

k
∣∣∆−‖xk‖

∆

∣∣
0 8.739485e-01
1 1.101152e+01
2 7.790406e-01
3 5.987336e-01
4 1.247129e-01
5 2.593978e-02
6 3.410990e-04
7 1.038581e-06
8 4.049703e-11
9 8.704149e-15

k
(λi(αk)−λ1(αk)) τ

2
2 (1+∆2)

−2ηψ(̃x)

0 1.694375e-01
1 ∗
2 4.112269e-02
3 9.276102e-03
4 6.306448e-04
5 5.851597e-06
6 4.159997e-09
7 2.116485e-09
8 7.976599e-10
9 1.267130e-12

(a) (b)

uniform distribution on (−0.5, 0.5) and then u was normalized to have unit length.
The order of A was n = 1000.

In this case, the eigenvectors of the matrix A are of the form qi = ei − 2uui, i =
1, . . . , n, with ei the ith canonical vector in R

n and ui the ith component of the vector
u. This provides complete control in the generation of the hard case. In fact, if � = 1,
the vector g was orthogonalized against q1 computed by the formula given above.
For � > 1, g was computed as the sum of the vectors in an orthonormal basis for
the orthogonal complement of S1. After this, a noise vector s was added to g and
g ← g+s

‖g+s‖ . Both hard case and near hard case were generated by adding noise vectors
of norms 10−8 and 10−2, respectively. To ensure that the hard case really occurred,
we computed ∆min = ‖(A− d1I)

†g‖ and set ∆ = 2∆min. The problems were solved
to the level εHC = 10

−6. The initial δU was set to −4.5 and α0 = min{0, αU}.
The parameters for the IRLM were chosen as follows: for the hard case, 9 Lanczos

basis vectors with 6 shifts on each implicit restart and a maximum of 45 restarts; for
the near hard case, 18 Lanczos basis vectors with 12 shifts on each implicit restart and
a maximum of 90 restarts. The different number of basis vectors is due to the fact that
in the near hard case the smallest eigenvalues of the bordered matrix become more
clustered and the IRLM needs more space in order to compute the desired eigenpairs.
The tolerance εLan was fixed at 10

−2.
In Table 5(a), (b) we summarize the average results for a sequence of 10 prob-

lems, generated with different seeds, for problems with hard case and near hard case,
respectively.

6.5. Comparison with the semidefinite programming (SDP) approach.
Finally, we compared LSTRS with the SDP approach of [13]. In this experiment, we
solved two different families of problems. For each family, we generated 10 problems
of each type (easy and hard case) with different seeds and solved them with Algorithm
4.1 (LSTRS) and the SDP approach of [13]. In all cases, the eigenproblems were solved
with the function eig of MATLAB, so that the eigenpairs available to both methods
had the same level of accuracy and also to avoid the inconsistencies associated with
having two different eigensolvers. We report the average number of iterations (IT),
average magnitude of the residual ‖(A − λ∗ I)x∗ + g‖/‖g‖, and average relative
accuracy in the norm of the trust-region solution, |∆−‖x∗‖|/∆. Since we were using
the function eig as the eigensolver, we are also reporting the average number of calls
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Table 5
(a) The hard case and (b) near hard case, when S1 has dimension � ≥ 1.

� MV IT
‖(A − λ∗ I)x∗+g‖

‖g‖
1 683.9 9.6 10−2

5 790.4 12.1 10−2

10 1301.9 22.6 10−2

(a)

� MV IT
‖(A − λ∗ I)x∗+g‖

‖g‖
1 1153.5 10 10−3

5 1039.9 9.7 10−3

10 1063.5 9.7 10−3

(b)

Table 6
Comparison with SDP approach. First set of problems, εHC = 10−8.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = L− 5I Easy LSTRS 5.0 5.0 10−13 10−7

case SDP 4.8 5.8 10−3 10−3

Hard LSTRS 8.0 9.7 10−9 10−16

case SDP 9.1 10.1 10−7 10−7

to the eigensolver (SOLVES) to provide a means of comparing the amount of work
needed by each method. It is important to point out that in large-scale applications
the computational effort will concentrate on solving the eigenvalue problems, and
therefore in such situations we should also compare the cost of solving each eigenvalue
problem.

In the first family of problems, the matrix A was A = L − 5I of order n = 256
and the vector g was randomly generated with entries uniformly distributed on (0, 1).
As in section 6.3, we orthogonalized g against the eigenvector of A corresponding to
δ1 to generate the hard case. For both easy and hard cases we added a noise vector
to g, of norm 10−8. The trust-region radius was ∆ = 100. We used ε∆ = 10−6 and
we ran the experiments with εHC = 10

−8 and εHC = 10
−6. We report these results in

Tables 6 and 7, respectively.
In the second family of problems, A, g, and ∆min were generated exactly as in

section 6.4, where A = UDUT of order n = 256. For the easy case, ∆ = 0.1∆min and
for the hard case ∆ = 5∆min. The tolerances used for Algorithm 4.1 were ε∆ = 10

−6

and εHC = 10
−6. The results are reported in Table 8.

The previous tests indicate a marginal advantage to our algorithm in most cases.
We believe this is partially due to the fact that in the SDP approach it is necessary to
compute the smallest eigenvalue of A in order to begin the major iteration, while our
approach avoids this extra calculation. From the comparative results, we can see that
LSTRS obtained solutions with improved feasibility over the ones computed by the
SDP approach. Moreover, LSTRS required slightly less computational effort overall
to compute the solutions, especially in the hard case.

7. Conclusions. We have presented a new algorithm for the large-scale trust-
region subproblem. The algorithm is based upon embedding the trust-region problem
into a family of parameterized eigenvalue problems as developed in [17]. The main
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Table 7
Comparison with SDP approach. First set of problems, εHC = 10−6.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = L− 5I Easy LSTRS 4.5 4.5 10−2 10−8

case SDP 4.8 5.8 10−3 10−3

Hard LSTRS 7.0 8.7 10−7 10−16

case SDP 9.1 10.1 10−7 10−7

Table 8
Comparison with SDP approach. Second set of problems.

IT SOLVES
‖g+(A − λ∗ I)x∗‖

‖g‖
∣∣∆−‖x∗‖

∆

∣∣
A = UDUT Easy LSTRS 7.8 8.7 10−3 10−14

case SDP 4.4 5.4 10−4 10−4

Hard LSTRS 6.4 12.5 10−3 10−8

case SDP 13.8 14.8 10−5 10−5

contribution of this paper has been to give a better understanding of the hard-case
condition and to utilize this understanding to develop a better treatment of this case.
As a result, we have designed a unified algorithm that naturally incorporates both
the standard and hard cases.

We have proved that the iterates for this new algorithm converge either to an
optimal pair for the trust-region subproblem or to a pair that can be used to construct
a quasi-optimal solution. We have proved that the rate of convergence is superlinear
and we have demonstrated this computationally for both the standard and hard cases.
This result represents a major improvement over the performance of the method
originally presented in [17]. That approach used a different iteration for the hard case
that was linearly convergent. In practice this behavior seemed to occur often and
greatly detracted from the performance. We have also compared our method to the
SDP approach presented in [13], obtaining better results in terms of feasibility.

Our motivation for developing the LSTRS method came from some important
large-scale applications. In particular, the regularization of ill-posed problems such
as those arising in seismic inversion [21] provides an important class of trust-region
subproblems. It was shown in [14] that near hard cases are common for this class
of problems, where the vector g is nearly orthogonal to eigenspaces corresponding to
several of the smallest eigenvalues of A. The work in [14] also reports the successful
application of LSTRS to the regularization of discrete forms of ill-posed problems
from inverse problems, including problems with field data.

Further work should include an analysis of the quasi-optimal solutions computed
by LSTRS, the use of LSTRS within a trust-region method for the solution of large-
scale optimization problems, and an analysis of such a method in light of the work in
[4].
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