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ON THE RESOLUTION OF THE GENERALIZED NONLINEAR
COMPLEMENTARITY PROBLEM∗

ROBERTO ANDREANI† , ANA FRIEDLANDER‡ , AND SANDRA A. SANTOS‡

SIAM J. OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 303–321

Abstract. Minimization of a differentiable function subject to box constraints is proposed as a
strategy to solve the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral
cone. It is not necessary to calculate projections that complicate and sometimes even disable the
implementation of algorithms for solving these kinds of problems. Theoretical results that relate
stationary points of the function that is minimized to the solutions of the GNCP are presented.
Perturbations of the GNCP are also considered, and results are obtained related to the resolution
of GNCPs with very general assumptions on the data. These theoretical results show that local
methods for box-constrained optimization applied to the associated problem are efficient tools for
solving the GNCP. Numerical experiments are presented that encourage the use of this approach.
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1. Introduction. The generalized nonlinear complementarity problem (GNCP)
is to find x ∈ R

m such that

F (x) ∈ K, G(x) ∈ K◦, F (x)TG(x) = 0,(1)

where F and G are continuous functions from R
m to R

n, K is a nonempty closed
convex cone in R

n, and K◦ denotes the polar cone of K.
We consider the case n = m, F,G ∈ C1, and K a polyhedral cone in Rn; that is,

given A ∈ R
q×n and B ∈ R

s×n, we have

K = {v ∈ R
n |Av ≥ 0, Bv = 0}

and

K◦ = {u ∈ R
n |u = ATλ1 + BTλ2, λ1 ≥ 0}.

This problem has many interesting applications, and its solution using special
techniques has been considered extensively in the literature. See [16, 17, 24] among
others. If K = R

m
+ ≡ {x ∈ R

m |x ≥ 0}, G(x) = x − F (x), and F : R
m → R

m, the
GNCP(F,G,K) reduces to the so-called implicit complementarity problem [20, 21]. In
particular, if G(x) = x, the GNCP reduces to the nonlinear complementarity problem,
denoted by NCP.

Our approach in this paper is to formulate the GNCP as an equivalent bound-
constrained smooth optimization problem. Differentiable bound-constrained minimiz-
ation is a well-developed area of practical optimization, and many methods and reli-
able software are available for large-scale problems. See, for example, [7, 8, 12, 26].
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304 R. ANDREANI, A. FRIEDLANDER, AND S. A. SANTOS

This motivated the authors to find equivalences between variational and complemen-
tarity problems and smooth box-constrained minimization problems (see [1, 13, 14,
15]).

We prove here that the GNCP is equivalent to a bound-constrained optimization
problem in the sense that a global minimizer with zero objective function value is a
solution of the GNCP. We also establish conditions for proving that stationary points
of the minimization problems are global minimizers and, consequently, solutions of the
GNCP. The GNCP (or GCP in other references) is a problem related to the variational
inequality problem (VIP). The VIP and other related problems were reformulated
by many authors as different minimization problems and systems of equations. See
[18, 22, 24, 25]. The reformulations of related problems as bound-constrained problems
in [1, 14, 15] that use the same approach as the one presented here cannot be extended
to obtain a merit function with the properties of the reformulation proposed in this
paper. As pointed out by one of the referees, the GNCP can be reformulated as a
mixed complementarity problem (MCP). In [4], Andreani and Mart́ınez prove results
for the MCP based on their work on the bounded VIP [5]. These results applied to the
GNCP lead to sufficient conditions on the functions F and G stronger than the ones
obtained in this paper. The sufficient conditions given in this paper on the functions
F and G that guarantee that stationary points of the merit function solve the GNCP
cannot be obtained from any of the previous results.

The objective functions of the minimization problems have a very simple struc-
ture that consists of a sum of terms that are polynomials in the original problem data
plus an additional term of the type (xT z)p, with p > 1. This term plays a funda-
mental role in the proof of the equivalence results, and p = 2 is especially interesting
for linear programming and linear complementarity problems, because in these cases
the objective function to be minimized is just a polynomial of fourth degree. It is
important to remark that no penalty parameters are needed in these problem for-
mulations, which we call the quartic approach. In [1, 13, 14, 15] some very simple
counterexamples show that when p = 1 the existence of stationary points that are
not global minimizers is possible. For the complementarity problem, [1, Theorem 2.4]
shows that if F ′ is positive definite, the merit function with p = 1 is such that its
stationary points are solutions of the original problem.

These merit functions preserve all the derivatives of the functions that define
the GNCP. Consequently, the global and local convergence properties depend on the
algorithm used for box-constrained minimization. This is a very important feature,
since it makes viable the use of algorithms that need high-order derivatives or their
approximations, such as the tensor methods of [23]. Any efficient algorithm for smooth
box-constrained minimization can be used, in particular, algorithms that do not rest
upon matrix factorizations at all, allowing us to deal with large-scale problems.

Complementarity and related problems have also been solved using algorithms
based on the projection equation. See [10] and references therein. These methods are
very efficient; however, their behavior is strongly dependent on the monotonocity of
the function that defines the problem. Failure of this condition results in divergence
of the sequences generated by these algorithms. Unlike the formulations in [22, 25],
the computation of the objective function of the equivalent minimization problem
considered here is straightforward, and projections on convex sets are not necessary
to compute either the objective function or the derivatives. Therefore, special algo-
rithms for dealing with nonsmoothness do not need to be devised. In [24], to obtain
the fundamental equivalence result for a cone that is not necessarily polyhedral, the
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GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM 305

authors assume the same conditions on the problem as we do here. However, even
for polyhedral cones, the implementation of the algorithm proposed there requires
projections that, in general, are very expensive to compute.

Using the same merit function of [17], a stronger result is obtained in [16] where
the GNCP is reformulated as a system of semismooth equations, and an unconstrained
differentiable formulation is given if K is the positive orthant. The conditions estab-
lished to ensure that a stationary point x∗ of the unconstrained minimization problem
is a solution of the GNCP are essentially that the Jacobian of F at x∗ (denoted by
F ′(x∗)) is invertible and that D(G′(x∗)[F ′(x∗)]−1)RRD is an S0-matrix, where D is a
convenient nonsingular diagonal matrix and R is the set of indices for which (1) does
not hold at x∗. (B ∈ R

n×n is an S0-matrix if there exists v ∈ R
n such that v ≥ 0,

v 
= 0, and Bv ≥ 0.) A trust-region method is proposed in [16] for solving the GNCP
based on these reformulations. This algorithm was implemented by the authors and
tested for some problems.

In [17] an unconstrained minimization reformulation of the GNCP is considered
such that the merit function is differentiable when K = R

n
+. The sufficient conditions

for a stationary point x∗ of the merit function to be a global minimizer are that
F ′(x∗) is nonsingular and the product G′(x∗)[F ′(x∗)]−1 is a P0-matrix. (B ∈ R

n×n

is a P0-matrix if its principal minors are all nonnegative.) The authors suggest the
use of a first-order method for minimizing the merit function due to the fact that it
is once but not twice continuously differentiable.

The case of a general cone K was considered in [24], using an unconstrained
reformulation for the GNCP. It is proved there that x∗ is a solution of the GNCP if
F ′(x∗) is nonsingular and G′(x∗)[F ′(x∗)]−1 is positive definite. The evaluation of the
corresponding objective function is rather complicated and requires projections that
in general are not easy to compute.

Here we require, essentially, the same conditions as in [24] to guarantee that
stationary points of the minimizing problems are solutions of the GNCP. These as-
sumptions cannot be relaxed for a general cone K as we show with an example in
section 3. If K = R

n
+, we require a weaker condition on matrix G′(x∗)F ′(x∗)−1. If

F and G are affine functions with K polyhedral, the conditions are that G′F ′−1 is
positive semidefinite in the null space of B and the GNCP is feasible. Finally, an even
weaker condition is needed if F and G are affine and K = R

n
+.

If K is a general cone and it is not possible to ensure that G′F ′−1 is positive
definite at a stationary point of the merit function, a sequence of perturbed problems
can be constructed for which the strict monotonicity property holds and such that
the sequence of solutions of these perturbed problems converges to a solution of the
original one. The results related to this construction are valid for a general cone and
may be applied also to the results in [24].

The paper is organized as follows: In section 2 we associate with (1) a box-
constrained minimization problem, and we prove that assuming a local strict mono-
tonicity condition, stationary points of this problem are solutions of (1). In section 3
we consider perturbations of the original problem that allow us to deal with monotone
(not necessarily strict) functions. Numerical experiments are presented in section 4.
Finally, conclusions and lines for future research are discussed in section 5.

Notation. We denote by 〈·, ·〉 the Euclidean inner product on R
n and by ‖ · ‖

the norm induced by this inner product and its corresponding matricial norm. If B
is a real n× n matrix, B ≥ 0 (B > 0) means that B is positive semidefinite (positive
definite).
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306 R. ANDREANI, A. FRIEDLANDER, AND S. A. SANTOS

2. Equivalence results. The following minimization problem with simple bounds
is associated with the GNCP(F,G,K) defined in (1):

min f(x, z, λ)

subject to

{
z1 ≥ 0,
λ1 ≥ 0,

(2)

where

f(x, z, λ) = ‖RF (x) − z‖2 + ‖G(x) −RTλ‖2 + ρ〈z1, λ1〉2

and

R =

(
A
B

)
, z =

(
z1

0

)
∈ R

q × R
s, λ =

(
λ1

λ2

)
∈ R

q × R
s.

The next theorem states that solving problem GNCP(F,G,K) is equivalent to
finding the global minimizer of the optimization problem (2).

Theorem 1. If (x∗, z∗, λ∗) is a global minimizer of problem (2) with f(x∗, z∗, λ∗)
= 0, then x∗ is a solution of the GNCP(F,G,K). Conversely, if x∗ is a solution of
the GNCP(F,G,K), then there exist z∗, λ∗ such that (x∗, z∗, λ∗) is a global minimizer
of (2) with f(x∗, z∗, λ∗) = 0.

Proof. If f(x∗, z∗, λ∗) = 0, then

AF (x∗) = z1 ≥ 0, BF (x∗) = 0, implying that F (x∗) ∈ K,

G(x∗) = ATλ1
∗ + BTλ2

∗, with λ1
∗ ≥ 0, so G(x∗) ∈ K◦,

and

〈F (x∗), G(x∗)〉 = 〈F (x∗), RTλ∗〉 = 〈z∗, λ∗〉 = 〈z1
∗, λ

1
∗〉 = 0.

Conversely, if x∗ is a solution of the GNCP(F,G,K) then there exists λ∗ =
(λ1

∗, λ
2
∗) with λ1

∗ ≥ 0 such that G(x∗) = ATλ1
∗ + BTλ2

∗, z1
∗ = AF (x∗) ≥ 0, and

0 = F (x∗)TG(x∗) = F (x∗)T (ATλ1
∗ + BTλ2

∗) = (z1
∗)Tλ1

∗ + (BF (x∗))Tλ2
∗ = (z1

∗)Tλ1
∗.

Therefore, calling z∗ = (z1
∗, 0)T , we have that f(x∗, z∗, λ∗) = 0.

Global minimizers are very hard to find, especially in large-scale problems. Most
efficient large-scale algorithms for box-constrained optimization are guaranteed to
converge only to stationary points of the problem. Therefore, it is desirable to relate
stationary points of (2) to solutions of the GNCP.

Theorem 2. Let F (x), G(x) ∈ C1. If (x∗, z∗, λ∗) is a stationary point of (2) and
G′(x∗)[F ′(x∗)]−1 is positive definite in the null space of B, then x∗ is a solution of
the GNCP(F,G,K).

Proof. Let

H∗ = G′(x∗)[F ′(x∗)]−1,

w∗ = AF (x∗) − z1
∗,

u∗ = BF (x∗),
v∗ = G(x∗) −RTλ∗,
θ∗ = 〈z1

∗, λ
1
∗〉.
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GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM 307

If (x∗, z∗, λ∗) is a stationary point of (2), then there exist µ ∈ R
p
+ and γ ∈ R

s
+

such that

2G′(x∗)T v∗ + 2F ′(x∗)T (ATw∗ + BTu∗) = 0,(3)

−2Av∗ + 2ρθ∗z1
∗ − µ = 0,(4)

Bv∗ = 0,(5)

−2w∗ + 2ρθ∗λ1
∗ − γ = 0,(6)

〈µ, λ1
∗〉 = 0, 〈γ, z1

∗〉 = 0,(7)

λ1
∗ ≥ 0, µ ≥ 0, γ ≥ 0, z1

∗ ≥ 0.(8)

By (3) we have

HT
∗ v∗ + ATw∗ + BTu∗ = 0.(9)

Now, by (4), (6), and (7), we obtain

4〈Av∗, w∗〉 = 4ρ2θ2
∗ + 〈µ, γ〉,(10)

and (5), (9), and (10) imply that

〈v∗, HT
∗ v∗〉 + 〈Av∗, w∗〉 = 〈v∗, HT

∗ v∗〉 + ρ2θ3
∗ +

〈µ, γ〉
4

= 0.(11)

Therefore, by (5) and the fact that 〈v∗, HT
∗ v∗〉 > 0 in the null space of B, (11) implies

θ∗ = 0, 〈v∗, HT
∗ v∗〉 = 0.(12)

Since HT
∗ is positive definite in the null space of B, by (12), necessarily,

v∗ = 0.(13)

Thus, by (12) and (6),

2w∗ = −γ.(14)

If ai denotes the ith row of matrix A, using (13) and replacing w∗ and v∗ in (9),
we get

ATw∗ + BTu∗ =

q∑
i=1

ai(〈ai, F (x∗)〉 − (z1
∗)i) + BTBF (x∗) = 0.(15)

Let

I = {i ∈ {1, . . . , q} | (z1
∗)i = 0};

then, if i /∈ I, we have that (z1
∗)i > 0. But, by (7), we also have γi = 0. So, by (14),

(w∗)i = 〈ai, F (x∗)〉 − (z1
∗)i = 0 ∀ i /∈ I.(16)

Now, by (15) and (16)

ATw∗ + BTu∗ =
∑
i∈I

ai〈ai, F (x∗)〉 + BTBF (x∗) = 0.(17)
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308 R. ANDREANI, A. FRIEDLANDER, AND S. A. SANTOS

Premultiplying (17) by F (x∗)T , we obtain∑
i∈I

〈ai, F (x∗)〉2 + ‖BF (x∗)‖2 = 0,(18)

and by (18)

u∗ = BF (x∗) = 0, (w∗)i = 〈ai, F (x∗)〉 = 0 ∀ i ∈ I.(19)

Finally, (12), (13), (16), and (19) imply that f(x∗, z∗, λ∗) = 0.
In the following theorem we show that the hypothesis of Theorem 2 can be relaxed

if the functions F and G are affine.
Theorem 3. Let F (x), G(x) be affine, G′F ′−1 positive semidefinite in the null

space of B and GNCP(F,G,K) feasible. If (x∗, z∗, λ∗) is a stationary point of (2),
then x∗ is a solution of GNCP(F,G,K).

Proof. As in Theorem 2, we obtain (3)–(12). Since θ∗ = 0, the optimality
conditions read as

2G′T v∗ + 2F ′T (ATw∗ + BTu∗) = 0,(20)

−2Av∗ − µ = 0,(21)

Bv∗ = 0,(22)

−2w∗ − γ = 0,(23)

〈µ, λ1
∗〉 = 0, 〈γ, z1

∗〉 = 0,(24)

λ1
∗ ≥ 0, µ ≥ 0, γ ≥ 0, z1

∗ ≥ 0.(25)

Relations (20)–(25) are the necessary and sufficient conditions for a global minimizer
of the following convex quadratic minimization problem:

min f(x, z, λ) = ‖RF (x) − z‖2 + ‖G(x) −RTλ‖2

subject to

{
z1 ≥ 0,
λ1 ≥ 0.

(26)

Since, by hypothesis, the GNCP(F,G,K) is feasible, it turns out that (x∗, z∗, λ∗)
is a global solution of (26) with objective function value zero, and as θ∗ = 0, we get
f(x∗, z∗, λ∗) = 0.

The hypotheses of Theorem 2 can also be weakened if K = R
n
+, as we show in the

following theorem.
Definition 1. A matrix B ∈ R

n×n is column-sufficient if for v ∈ R
n, vi(Bv)i ≤

0 ∀ i implies vi(Bv)i = 0 ∀ i. A matrix B is called row-sufficient if BT is column-
sufficient.

Definition 2. A matrix B ∈ R
n×n is called an S-matrix if there exists v ∈ R

n

such that v ≥ 0 and Bv > 0.
Theorem 4. Let K = R

n
+ and F (x), G(x) ∈ C1. If (x∗, z∗, λ∗) is a stationary

point of (2) and G′(x∗)[F ′(x∗)]−1 is a row-sufficient S-matrix, then x∗ is a solution
of the GNCP(F,G,K).

Proof. In this case the optimization problem is

min ‖F (x) − z‖2 + ‖G(x) − λ‖2 + ρ〈z, λ〉2

subject to

{
z ≥ 0,
λ ≥ 0.

(27)
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GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM 309

Defining

w∗ = F (x∗) − z∗,
v∗ = G(x∗) − λ∗,
H∗ = G′(x∗)[F ′(x∗)]−1,

and

θ∗ = zT∗ λ∗,

the optimality conditions read as

2G′(x∗)T v∗ + 2F ′(x∗)Tw∗ = 0,(28)

−2v∗ + 2ρθ∗z∗ − µ = 0,(29)

−2w∗ + 2ρθ∗λ∗ − γ = 0,(30)

〈µ, λ∗〉 = 0, 〈γ, z∗〉 = 0,(31)

λ∗ ≥ 0, µ ≥ 0, γ ≥ 0, z∗ ≥ 0.(32)

By (29) and (30),

4(w∗)i(v∗)i = 4ρ2θ2
∗(λ∗)i(z∗)i + µiγi(33)

for i ∈ {1, . . . , n}. We can write (28) as

HT
∗ v∗ + w∗ = 0.(34)

Therefore, by (33) and (34),

4(v∗)i(HT
∗ v∗)i + 4ρ2θ2

∗(λ∗)i(z∗)i + µiγi = 0(35)

for i ∈ {1, . . . , n}. Since H∗ is row-sufficient, (35) implies that

(v∗)i(HT
∗ v∗)i = 0 for i ∈ {1, . . . , n} and θ∗ = 0.(36)

Using (29), (30), (33), (34), and (36), we have that

HT
∗ v∗ = −w∗ =

γ

2
≥ 0(37)

and

v∗ = −µ

2
≤ 0.(38)

If v∗ 
= 0, (37) and (38) contradict the fact that H∗ is an S-matrix (see [11]), and
therefore

v∗ = 0, w∗ = 0.(39)

Finally, by (36) and (39), f(x∗, z∗, λ∗) = 0.
If F and G are affine functions and K is the positive orthant, then the following

result holds.
Theorem 5. Let K = R

n
+, F (x), G(x) be affine such that G′F ′−1 is a row-

sufficient matrix. If GNCP(F,G,K) is feasible and (x∗, z∗, λ∗) is a stationary point
of (2), then x∗ is a solution of GNCP(F,G,K).
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310 R. ANDREANI, A. FRIEDLANDER, AND S. A. SANTOS

Proof. As in Theorem 4, we obtain (28) and (36). The rest of the proof mimics
that of Theorem 3.

Remark . The results of Theorems 4 and 5 are valid with the following hypothesis:
There exists a partition of I = {1, . . . , n}, I = [I0, I1], where

F̃T = (FT
i∈I0 , G

T
i∈I1) and G̃T = (GT

i∈I0 , F
T
i∈I1)

such that G̃′(x∗)[F̃ ′(x∗)]−1 is a row-sufficient S-matrix or just row-sufficient if F and
G are affine.

3. Perturbed problems. The finite variational inequality problem VIP(F̂ ,Ω),

where F̂ : R
n → R

n and Ω ⊆ R
n is a closed convex set, is to find x ∈ Ω such that

〈F̂ (x), y − x〉 ≥ 0 ∀ y ∈ Ω.
In [1], for Ω = {x ∈ R

n | g(x) ≤ 0, Bx = c, x ≥ 0}, where g = (g1, . . . , gm)T ,
gi ∈ C1(Rn) is convex ∀ i = 1, . . . ,m, B ∈ R

q×n, and c ∈ R
q, the authors reformulated

the VIP(F̂ ,Ω) as an equivalent box-constrained smooth optimization problem. The
properties of the merit function proposed there are similar to the one considered in
section 2 of this paper for the GNCP.

We relate now the GNCP(F,G,K) with the VIP(G◦F−1,K) whenever F−1 exists.
Lemma 6. If F−1 exists, then x∗ is a solution of the GNCP(F,G,K) if and only

if F (x∗) is a solution of the VIP(G◦F−1,K).
Proof. If x∗ is a solution of GNCP(F,G,K), then

F (x∗) ∈ K, G(x∗) ∈ K◦, 〈F (x∗), G(x∗)〉 = 0.(40)

Since F−1 exists,

〈G(x∗), F (x∗)〉 = 〈G ◦ F−1(F (x∗)), F (x∗)〉 = 0(41)

and, as G(x∗) ∈ K◦,

〈G(x∗), y〉 ≥ 0 ∀ y ∈ K.(42)

By (40)–(42), F (x∗) ∈ K and

〈G ◦ F−1(F (x∗)), y − F (x∗)〉 ≥ 0 ∀ y ∈ K.(43)

This implies that F (x∗) is a solution of VIP(G◦F−1,K).
Conversely, if F (x∗) is a solution of VIP(G◦F−1,K), then

F (x∗) ∈ K.(44)

So, for 0 ≤ ε ≤ 1,

(1 + ε)F (x∗) ∈ K and (1 − ε)F (x∗) ∈ K(45)

and, since (43) holds for any y ∈ K, we obtain

〈G ◦ F−1(F (x∗)), F (x∗)〉 = 〈G(x∗), F (x∗)〉 = 0.(46)

By (43) and (46), 〈G(x∗), y〉 ≥ 0 ∀ y ∈ K, so G(x∗) ∈ K◦. Then, by (44) and (46), x∗
is a solution of GNCP(F,G,K).
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If F and G are affine functions we can guarantee that, if G◦F−1 is (not necessarily
strictly) monotone, stationary points of the merit function are solutions of the GNCP.

In general, we can have stationary points of the associated problem that are not
solutions of the original problem. Consider, for instance, the following example.

Example. Let F : R → R be defined as F (x) = x, G(x) = −1 if x ≤ 1 and
G(x) = (x − 1)2 − 1 if x ≥ 1, and K = R+. Observe that G ◦ F−1 is monotone and
convex. The GNCP(F,G,K) has the unique solution x∗ = 2. The merit function is
given in this case by

f(x, v, λ) =

{
(−1 − v)2 + (x− λ)2 + (λv)2 if x ≤ 1,

((x− 1)2 − 1 − v)2 + (x− λ)2 + (λv)2 if x ≥ 1,

and (0, 0, 0)T is a stationary point of reformulation (2) that corresponds to this prob-
lem.

In [1, Theorem 3.2] the authors proved that if F̂ is (not necessarily strictly)

monotone, the sequence of solutions of the perturbed problems F̂ + εkI, where I
is the identity matrix, converges to the unique solution of minimum norm of the
VIP(F̂ ,K).

In a similar way, given a sequence of strictly positive εk such that εk ↓ 0, we can
associate with the GNCP(F,G,K) a family of perturbed problems, as follows. For all
k ∈ N and x ∈ R

n we define

Gk(x) = G(x) + εkF (x).

In the following theorems we relate the solutions of the perturbed problems to
the solution of GNCP(F,G,K), where K is not necessarily a polyhedral cone. Thus,
these results may be used with the formulation proposed in [24].

Theorem 7. If GNCP(F,Gk,K) admits a solution xk ∀ k ∈ N and the se-
quence of solutions {xk} is bounded, then every limit point of {xk} is a solution of
the GNCP(F,G,K).

Proof. Since {xk} is bounded, it admits a convergent subsequence. Let K1 be an
infinite subset of N, and x∗ be such that

lim
k∈K1

xk = x∗.

If xk is a solution of GNCP(F,Gk,K), then

F (xk) ∈ K, G(xk) + εkF (xk) ∈ K◦, 〈F (xk), G(xk) + εkF (xk)〉 = 0.(47)

By the continuity of F and G and the closedness of K, limk∈K1 F (xk) = F (x∗) ∈ K,
limk∈K1 G(xk) = G(x∗) ∈ K◦, and F (x∗)TG(x∗) = 0.

Remark . In Theorem 7 there is no assumption of monotonicity on either the
original problem or the perturbed ones.

The result of [1, Theorem 3.2] is used next to characterize x∗ in the set of solutions
of GNCP(F,G,K), denoted by SOL(GNCP(F,G,K)). Also, SOL(VIP) denotes the
set of solutions of a VIP.

Theorem 8. Assume that G ◦ F−1 is monotone and that the set of solutions
of the GNCP(F,G,K) is not empty. Then the sequence {xk} of solutions of the
GNCP(F,Gk,K) converges to a solution x∗ of the GNCP(F,G,K) that is the unique
solution of the problem

min ‖F (x)‖ subject to x ∈ SOL(GNCP(F,G,K)).(48)
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312 R. ANDREANI, A. FRIEDLANDER, AND S. A. SANTOS

Proof . If xk is a solution of GNCP(F,Gk,K), then, by Lemma 6, F (xk) is a
solution of the VIP(Gk ◦ F−1,K).

Since G ◦ F−1(x) is monotone and

Gk(x) ◦ F−1(x) = (G + εkF ) ◦ F−1(x) = G ◦ F−1(x) + εkx,(49)

we have that Gk ◦ F 1(x) is strictly monotone. As F is an homeomorphism, [1, The-
orem 3.2] implies that limk→∞ F (xk) = F (x∗), where F (x∗) is the unique minimum
norm solution of VIP(G ◦ F−1,K) and solves the problem

min ‖F (x)‖ subject to F (x) ∈ SOL(VIP).

Then, by Lemma 6, x∗ is a solution of GNCP(F,G,K) and is the unique solution of

min ‖F (x)‖ subject to x ∈ SOL(GNCP(F,G,K)).

The results obtained in this section allow us to solve GNCPs such that G ◦ F−1

is monotone using the approach developed in section 2 for the perturbed problems.

4. Computational experiments. Our set of experiments contains four fami-
lies: randomly generated problems in the positive orthant, implicit complementarity
problems from Outrata and Zowe [19], problems with general cones in R

n, and prob-
lems in three-dimensional cones with control of generated faces.

For the first family of problems, functions F and G are affine and both cones are
the positive orthant. Although quite simple, these problems contain essential elements
to start the investigation. By varying dimensions and features of the matrices that
define F and G, we have produced an extensive set of tests for which the theoretical
hypothesis of equivalence might hold or not.

In the second family our main objective was to solve problems already addressed
in the literature. We also extended the family of implicit complementarity problems
proposed in [19] to variable dimension, producing large-scale tests. For such problems,
however, the cones are the positive orthant as well.

General polyhedral cones were treated in the third and fourth families of problems.
In the third one, functions F and G are affine and the matrices A and B that define
the cones are generated to accomplish well defined problems, but without any specific
control. In the fourth family, we produced three-dimensional tests, so that geometrical
features of the cone, like control of edges and number of faces, were exploited to a
great extent.

The equivalent minimization problems (2), with simple bounded variables, were
solved using BOX-QUACAN, software developed by our research group at the State Uni-
versity of Campinas. It is based on the trust-region approach for solving large-scale
bound-constrained minimization and uses the infinity norm to define the trust-region,
so that the quadratic subproblems also have simple bounded variables. The subprob-
lems are solved by combining conjugate gradients with projected gradients and a mild
active set strategy (see [6, 12] or [9, p. 459]).

The code was developed in Fortran 77 double precision (Microsoft PowerStation)
and run on a Pentium 64MB RAM. The stopping criteria used are tolerance for the
objective function value εf = 10−10 and tolerance for the norm of the continuous
projected gradient εg = 10−6. We set ρ = 1 for all the tests.
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4.1. Randomly generated problems in the positive orthant. In our first
set of experiments we considered the problem of finding x ∈ R

n such that Mx+c ≥ 0,
Px + d ≥ 0, and (Mx + c)T (Px + d) = 0, where matrices M,P ∈ R

n×n and vectors
c, d ∈ R

n are given.
The problems were randomly generated to exploit specific features of matrices M

and P in a total of fourteen families as follows: M and P may be identical (families
1 to 6) or not (families 7 to 14); M and P may be symmetric (families 1 to 3 and 7
to 10) or not (4–6, 11–14); and matrices M and P may be regular (1, 2, 4, 5, 7, 8,
11, and 12) or singular (3, 6, 9, 10, 13, and 14). For each family, four values for the
dimension n were used (5, 50, 500, and 5000). For each dimension, three problems
were solved, with different seeds. For details on the generation, see [2].

Whenever M or P is invertible, the theoretical hypotheses of the equivalence
results of section 2 can be verified by analyzing properties of matrices PM−1 or
MP−1. There were some problems, from families 8, 12, and 13, that converged to
local nonglobal minimizers of (2), with merit function value greater than 10−1. For
problems from the first, second, fourth, and fifth sets, the theoretical hypotheses hold,
representing 28.5% of the total number of tests. For families 1, 2, 4, 5, and 7, the
algorithm computed the same solution that was generated for assembling the problem
data. For families 3, 6, 10, and 14, since both matrices M and P are singular, the
theoretical hypotheses fail, representing 28.5% of tests. For these tests, however, the
global solution of (2) was always obtained. There is no guarantee that the theoretical
hypotheses are valid for the test problems of sets 7, 8, 9, 11, 12, and 13, which represent
43% of tests. In fact, in 18 out of the 60 problems of these last six sets, at least one of
the values uTPM−1u or vTMP−1v, where u = Mx + c− z and v = Px + d− λ, was
negative. In the total of 168 problems solved, the hypotheses fail for 66 (39%), but
only 16 converged to local solutions of (2), which correspond to 24% of the candidates
for failure, and to 9.5% of the total of tests.

4.2. Implicit complementarity problems from Outrata and Zowe. In the
second set of experiments we solved implicit complementarity problems (see [19]) of
the following form:

Find y ∈ R
n such that

y −m(y) ≥ 0, F (y) ≥ 0, and 〈F (y), y −m(y)〉 = 0,

where mi : R
n → R, i = 1, . . . , n,

F (y) = Ay + b =


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 y +


1
1
1
1

 ,(50)

and m(y) = ϕ(Ay + b), with ϕ : R
n → R

n twice continuously differentiable.
As in [19, Examples 4.3 and 4.4], the following choices for function ϕ defined our

test problems:

POZ1: ϕi(λ) = −0.5 − λi, i = 1, 2, 3, 4, and

POZ2: ϕi(λ) = −1.5λi + 0.25λ2
i , i = 1, 2, 3, 4.

For each problem, three starting vectors were used, namely,

(a) (0.0, 0.0, 0.0, 0.0)T ,
(b) (−0.5,−0.5,−0.5,−0.5)T ,
(c) (−1.0,−1.0,−1.0,−1.0)T .
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In [19], Newtonian strategies were adopted to solve problems POZ1 and POZ2.
In the first approach, the iterative scheme to compute fixed points of an operator S
was

yk+1 = yk − (E − V k)−1(yk − S(yk)),

where V k ∈ ∂S(yk). In the second approach, a Newton variant scheme was applied
to the semismooth operator

H(y) := min{y −m(y), F (y)} = 0,

where min denotes the componentwise minimum of the two vectors in brackets.
Problems POZ1 and POZ2 were also solved in [16], with a trust-region approach

for solving the GNCP(F,G,Rn
+) using the merit function Φ : R

n → R defined by

Φ(x) :=
1

2

n∑
i=1

φ(Fi(x), Gi(x))2.

The function φ(a, b) =
√
a2 + b2 − a − b is the Fischer–Burmeister one, with the

property φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.
In Tables 1 and 2 we present, for comparative purposes, numerical results of [19]

and [16] for problems POZ1 and POZ2, respectively. Our results are reported in
Table 3, where the notation INNER, MVP, OUTER, and FE is used to indicate the number
of iterations and matrix-vector products performed by the inner (quadratic) solver,
and the number of iterations and functional evaluations performed by the outer (trust-
region) algorithm. We also included the final value of our merit function f(x, z, λ),
together with the norm of the projected gradient ‖gp‖ at the final approximation.

Table 1
Previous results: Problem 1 (POZ1: n = 4).

OZ95 JFQS98

Start
First approach

ITER

Second approach
ITER

ITER FE Φ

(a) 2 14 5 17 7.65D−18
(b) 2 41 4 16 9.71D−15

(c) V 2 singular 56 5 11 3.43D−24

Table 2
Previous results: Problem 2 (POZ2: n = 4).

OZ95 JFQS98

Start
First approach

ITER

Second approach
ITER

ITER FE Φ

(a) 3 15 5 17 1.05D−18

(b) V 2 singular 15 4 16 4.89D−15

(c) V 2 singular No convergence 5 11 7.05D−22

The results of our approach compared quite well with [16] and were, by far,
superior to the results of [19]. For problem POZ1, starting points (a) and (b) provide
similar results in terms of computational effort, although point (b) generates a solution
with slightly better quality. For this problem, starting with point (c), on the other
hand, requires twice as many inner iterations and matrix-vector products as starting

D
ow

nl
oa

de
d 

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.1

26
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s
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Table 3
Results using our approach (n = 4).

Problem Start OUTER FE INNER MVP f(x, z, λ) ‖gp‖
POZ1 (a) 4 5 24 30 2.31D−10 8.61D−06

(b) 4 5 22 39 1.55D−14 7.03D−08
(c) 4 5 45 68 6.63D−11 7.77D−06

POZ2 (a) 5 6 48 74 4.25D−12 2.33D−06
(b) 6 8 104 171 1.15D−14 8.25D−08
(c) 3 4 31 60 9.43D−11 2.25D−05

Table 4
Additional tests with larger dimensions.

Problem Start OUTER FE INNER MVP f(x, z, λ) ‖gp‖
POZ1 (a) 7 10 125 236 1.26D−11 5.48D−06
n = 40 (b) 6 8 102 313 3.16D−13 4.52D−07

(c) 5 7 84 176 1.11D−10 6.62D−06

POZ1 (a) 8 12 146 205 2.42D−12 8.69D−07
n = 400 (b) 7 10 126 201 5.66D−12 1.59D−06

(c) 6 8 94 206 1.44D−11 2.32D−06

POZ1 (a) 9 14 143 311 1.59D−12 7.79D−07
n = 4000 (b) 8 12 123 377 7.43D−12 2.26D−06

(c) 7 9 99 289 1.96D−11 2.91D−06

POZ2 (a) 7 11 127 248 4.36D−12 2.45D−06
n = 40 (b) 6 9 116 201 1.89D−11 2.56D−06

(c) 6 8 104 176 6.90D−13 7.44D−07

POZ2 (a) 9 14 143 227 6.64D−13 5.35D−07
n = 400 (b) 7 11 135 367 1.75D−11 2.74D−06

(c) 7 10 120 203 6.30D−13 4.93D−07

POZ2 (a) 10 15 157 394 2.98D−12 9.12D−07
n = 4000 (b) 9 14 161 385 7.84D−11 5.18D−06

(c) 8 12 161 309 1.21D−12 4.94D−07

Table 5
Average results of our approach.

Problem n OUTER FE INNER MVP

POZ1 4 4.0 5.0 30.3 45.7
40 6.0 8.3 103.7 241.7
400 7.0 10.0 122.0 204.0
4000 8.0 11.7 121.7 325.7

POZ2 4 4.7 6.0 61.0 101.7
40 6.3 9.3 115.7 208.3
400 7.7 11.7 132.7 265.7
4000 9.0 13.7 159.7 362.7

with (a) or (b). For problem POZ2, the starting point that generated the highest cost
was (b).

To assess the reliability of our approach, we enlarged the dimension n of problems
POZ1 and POZ2, allowing n = 40, n = 400, and n = 4000. Matrix A ∈ R

n×n and
vector b ∈ R

n are the natural extensions of (50), as are the starting vectors (a), (b),
and (c). Results are presented in Table 4, where one can see that the computational
effort grows very slowly as n increases. The greatest difference happens between n = 4
and n = 40, but from 40 to 400 and from 400 to 4000 the cost does not grow as much
as in the first case. Such differences in the increasing factors can be better appreciated
by the average values shown in Table 5.
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4.3. Problems with general polyhedral cones in R
n. In this third set of

experiments we address the problem of finding x ∈ R
n such that Mx + c ∈ K,

Px + d ∈ K◦, and (Mx + c)T (Px + d) = 0, where the sets K, K◦ are defined by

K = {v ∈ R
n |Av ≥ 0, Bv = 0},

K◦ = {u ∈ R
n |u = ATλ1 + BTλ2, λ1 ≥ 0},

with A ∈ R
q×n, B ∈ R

s×n given. Matrices M,P ∈ R
n×n and vectors c, d ∈ R

n are
also given.

The problems were randomly generated quite similarly to our first set of exper-
iments. For details, see [2]. According to the features of matrices M and P , we
divided the set of tests into three families: (1) M = P , indefinite and nonsymmetric;
(2) M = P , indefinite and symmetric; (3) M 
= P , indefinite, nonsymmetric, and
singular. For families (1) and (2) the theoretical hypotheses of the equivalence results
hold since PM−1 = I.

For each family, six sets for the dimensions (n, q, s) were considered: (10, 5, 1),
(10, 10, 1), (10, 15, 1), (100, 50, 5), (100, 100, 5), and (100, 150, 5). For each set of di-
mensions, three problems were generated, with different seeds. The arithmetic means
of the results are reported in Tables 6 and 7, where we present the number of iterations
(INNER) and matrix-vector products (MVP) performed by the inner (quadratic) solver,
and the number of iterations (OUTER) and functional evaluations (FE) performed by
the outer (trust-region) algorithm.

Table 6
Average results: Problems with n = 10, s = 1.

q Family INNER MVP OUTER FE

5 1 136.7 170.3 9.0 10.0
10 184.0 257.0 11.3 12.3
15 309.0 436.7 18.0 19.0
5 2 168.0 213.0 11.3 12.3
10 168.7 232.3 11.8 12.8
15 208.3 282.3 12.7 13.7
5 3 208.7 253.3 10.0 11.0
10 278.7 371.7 13.0 14.0
15 485.7 640.7 19.7 20.7

Table 7
Average results: Problems with n = 100, s = 5.

q Family INNER MVP OUTER FE

50 1 1021.0 1373.0 35.7 36.7
100 2199.3 2971.3 72.0 73.0
150 3946.3 5103.0 113.3 114.0
50 2 1064.7 1421.0 37.0 38.0
100 2167.7 2833.0 67.3 68.3
150 4291.3 5720.3 124.3 125.3
50 3 7397.7 7922.0 101.0 102.0
100 160724.0 166259.0 1856.0 1857.0
150 102189.0 112886.0 957.3 963.0

We denote the figures of Tables 6 and 7 by T k
ij , where k ∈ {1, 2, 3} represents

each family, i ∈ {1, 2, 3} corresponds to rows with q = 5, 10, 15 (Table 6), i ∈ {4, 5, 6}
corresponds to rows with q = 50, 100, 150 (Table 7), and j ∈ {1, 2, 3, 4} is the corre-
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sponding column with the values INNER, MVP, OUTER, and FE. Based on these values,
we define cost measures to guide our analysis.

Concerning the effort spent by the algorithm, there are two aspects we would like
to address: How is such effort related to the problem dimension, and how is it related
to the problem features? Considering each dimension separately, we started by defin-
ing two cost measures, per inner iteration (MVP/INNER) and global (INNER/OUTER), as
follows:

me1(i) =
1

3

∑
k

T k
i2

T k
i1

and me2(i) =
1

3

∑
k

T k
i1

T k
i3

for i = 1, 2, 3, 4, 5, 6.
For a better understanding of the average values represented by these two mea-

sures, we also computed the minimum and maximum values:

m1(i) = min
k

T k
i2

T k
i1

, M1(i) = max
k

T k
i2

T k
i1

, m2(i) = min
k

T k
i1

T k
i3

, and M2(i) = max
k

T k
i1

T k
i3

.

Results are reported in Table 8, where the triples contain

(m1(i),me1(i),M1(i)) and (m2(i),me2(i),M2(i))

for i = 1, . . . , 6.

Table 8
Measures of effort per problem dimension.

Dimension

(q)
(m1,me1,M1) (m2,me2,M2)

5 (1.22, 1.24, 1.26) (14.69, 16.54, 20.03)

10 (1.34, 1.36, 1.38) (14.79, 17.50, 21.34)

15 (1.33, 1.37, 1.42) (16.49, 19.28, 24.11)

50 (1.09, 1.25, 1.34) (28.24, 41.04, 66.12)

100 (1.06, 1.24, 1.35) (30.49, 48.74, 83.55)

150 (1.09, 1.24, 1.34) (34.24, 54.99, 95.91)

With the aim of analyzing results according to the family of generated problems,
we define two additional measures for each one of sets 1 to 3. The weights ln(n+2q+s)
and

√
ln(n + 2q + s) were introduced to filter dependence of dimension and somehow

make uniform the computed values:

me3(k) =
1

6

(
3∑

i=1

T k
i2

ln(11 + 10i)T k
i1

+

6∑
i=4

T k
i2

ln(100i− 195)T k
i1

)

and

me4(k) =
1

6

(
3∑

i=1

T k
i2√

ln(11 + 10i)T k
i1

+

6∑
i=4

T k
i2√

ln(100i− 195)T k
i1

)

for k = 1, 2, 3. We stress that the values 11+10i, i = 1, 2, 3, and 100i−195, i = 4, 5, 6
are, respectively, the dimensions 21, 31, 41 and 205, 305, 405 used in the tests. Results
are shown in Table 9, where we also include minimum (m3,m4) and maximum values
(M3,M4).
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Table 9
Measures of effort per problem family.

Family (m3,me3,M3) (m4,me4,M4)

1 (0.50, 0.54, 0.58) (23.08, 37.16, 54.70)

2 (0.51, 0.54, 0.56) (23.19, 37.02, 53.86)

3 (0.43, 0.48, 0.54) (31.34, 81.58, 151.38)

Observing Table 8, one can see that the effort of the inner solver is always in-
ferior to 1.5 matrix-vector products per iteration. Moreover, it is slightly larger
for smaller problems (dimensions n + 2q + s ∈ {21, 31, 41}) than for larger ones
(n + 2q + s ∈ {205, 305, 405}), although the dispersion between minimum and max-
imum values grows with increasing q. This last comment also applies to the global
effort measure me2, that grows as q increases, together with the length of intervals
[m2,M2]. Although dimension differs by a factor of ten for the two sets of problems,
figures of (m2,me2,M2) are about twice as large when the two sets are compared.

Concerning Table 9, the main conclusions are that symmetry of matrices M and
P does not seem to interfere in the performance of our approach, since families 1 and
2 produced quite similar results for both triples (m3,me3,M3) and (m4,me4,M4).
The singularity of matrices M and P , on the other hand, showed significant effects,
especially as far as the global performance is concerned.

This set of experiments consists of 54 tests. For the 27 problems of smaller
dimension, the final objective function value was always inferior to 10−5. Considering
the 27 large ones, for 8 problems of the third family the final objective function values
were greater than 10−2, indicating convergence to a local nonglobal solution. This
amounts to 55.6% success among problems for which the theoretical condition of
equivalence does not hold. We stress, however, that whenever the hypothesis is valid,
a global solution was reached.

4.4. Problems in three-dimensional cones with control of generated
faces. In the fourth set of experiments we addressed the problem of finding x ∈
K = {v ∈ R

n |Av ≥ 0} such that Tx + c ∈ K◦ = {v ∈ R
n |ATλ = v, λ ≥ 0} and

xT (Tx + c) = 0. We generated the polyhedral cones K with q faces, such that their
edges were the lines x

y
z

 =


r cos

(
2π
q k
)

r sin
(

2π
q k
)

1

 t, t ∈ R, k = 1, . . . , q.

Therefore, K was defined by computing the rows of matrix A as the normal vectors
to the support planes of the cone faces. In other words, the vector that defines the
ith row of matrix A (i = 1, . . . , q) is given by the cross-product

cos
(

2π
q (i− 1)

)
sin
(

2π
q (i− 1)

)
1

r

×


r cos

(
2π
q i
)

r sin
(

2π
q i
)

1

 =


sin
(

2π
q i
)(

cos 2π
q − 1

)
− cos

(
2π
q i
)

sin 2π
q

cos
(

2π
q i
)(

1 − cos 2π
q

)
− sin

(
2π
q i
)

sin 2π
q

r sin 2π
q

.

The problems were generated as follows. Given the values of the radius r and
of the dimension q (number of faces of cone K), we built matrix A and created two
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types of solutions x∗, at the boundary and in the interior of K, respectively. Next we
randomly generated matrix T , keeping it symmetric, and produced four families of
problems, namely, (1) T indefinite, (2) T positive definite, (3) T positive semidefinite,
and (4) T negative semidefinite. For more details, see [2].

The tests were produced by varying r ∈ {0.1, 1, 10}, q ∈ {3, 4, 5, 6, 9, 12}, the four
families of matrices T , and the two kinds of generated solution x∗, which amounted
to 144 problems. Three distinct seeds were chosen to generate problems for each
selection of r, q, T , and x∗.

To analyze the robustness of the proposed approach, since half of the generated
problems do not satisfy the hypothesis of the equivalence result (families 1 and 4, with
matrices T indefinite and negative semidefinite, respectively), we observed that for
the 72 problems with x∗ generated at the boundary of the cone, 29 out of the 72 × 3
tests stopped at local nonglobal solutions. This corresponds to success for 86.6% of
the total and 73.2% of the candidates for failure. For problems with x∗ generated in
the interior of the cone, six problems converged to local nonglobal solutions, in a total
of 72 × 3 problems. In this case, the measures of success are 97.2% of the total and
94.4% of the problems without theoretical guarantee of convergence. Summing up the
two blocks of tests, there were 35 failures, representing success in 91.9% of total and
83.8% of the universe of problems that do not satisfy the hypothesis of equivalence
result.

There are some salient features that emerge from the results. First, the com-
putational cost of the inner solver grows with the problem dimension, reaching its
maximum for q = 9 and q = 5 if x∗ is generated at the boundary and in the interior
of K, respectively.

It is also evident that the degree of difficulty of the generated problems grows as
the radius r decreases: r = 10 produces the easiest problems whereas r = 0.1 generates
the most difficult ones. Recall that in this set of experiments our problem is to find
x ∈ K = {v ∈ R

n |Av ≥ 0} such that Tx + q ∈ K◦ = {v ∈ R
n |ATλ = v, λ ≥ 0}, so

the requirements for K and K◦ are different.
Grouping problems according to the features of matrix T , there are 36 problems

for each family (6 dimensions q, 3 values for r, and 2 types of generated x∗). We have
computed the ratios INNER/nt and OUTER/nt, where nt = n + 2q is the dimension
of problem (2), and calculated average values, presented in Table 10, together with
minimum and maximum values.

Table 10
Measures of effort per problem features.

Family INNER/nt OUTER/nt

Minimum Average Maximum Minimum Average Maximum

1 6.3 15.6 51.1 0.3 0.6 1.4
2 1.6 12.2 33.4 0.2 0.6 1.2
3 3.9 13.6 35.8 0.3 0.6 1.1
4 1.7 16.4 153.3 0.1 0.6 2.1

Observing the figures of Table 10, we see that solving problems from families 1
and 4 (T indefinite and negative semidefinite, respectively) demands more effort than
solving those from families 2 and 3 (T positive definite and positive semidefinite, re-
spectively). The largest dispersion, that is, the largest interval (minimum, maximum),
occurs for the fourth family, because of an outlier. Removing this discrepant value,
the triples become (1.7, 14.5, 46.2) and (0.1, 0.7, 1.2), with dispersions similar to those
of the first family.
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5. Conclusions. We proposed a smooth box-constrained minimization refor-
mulation of the GNCP(F,G,K), assuming that K is a polyhedral cone. Any efficient
minimization algorithm for solving this kind of problems may be used. The study of
perturbed problems gives information about the solutions of a GNCP(F,G,K) for a
general cone K with very mild assumptions on the problem data.

Computational experiments are presented which encourage the use of our ap-
proach. Four groups of problems were addressed: randomly generated problems in
the positive orthant, implicit complementarity problems from Outrata and Zowe,
problems with general cones in R

n, and problems in three-dimensional cones with
control of generated faces.

The numerical results showed that the solution of the GNCP using (2) was found
in the majority of the tests, even without accomplishment of theoretical hypothesis,
meaning that the behavior of the method does not depend strongly on the sufficient
conditions that guarantee the equivalence. Quantifying this robustness, considering
only the universe of problems without theoretical support for convergence, for the first
set of experiments the amount of failure was 24%. In the third and fourth sets, local
nonglobal solutions were reached in 44% and 16% of the tests, respectively. No doubt,
in the absence of theoretical support, the convergence to global solutions is more
frequent for problems of smaller dimensions. The second set of problems, included
for comparative purposes, formed by implicit complementarity problems, contained
large-scale experiments (dimension up to 3 × 4000 = 12000) for which our approach
had a very good performance. The third set of experiments revealed that general
polyhedral cones might produce quite difficult problems, especially as the dimension
increases. The fourth group of tests was created to investigate geometrical features
of the cone K. Besides noticing that, for the generated three-dimensional problems,
thinner cones need more effort than wider ones, we observed that the increasing
number of edges and faces did not substantially augment the amount of effort needed
to solve the problems. As a natural extension of this work, we would like to investigate
the possibility of approximating a general cone by a polyhedral one. This leads us
to look for further connections between theory and practice concerning geometrical
and algebraic properties of general cones and their relationship with GNCP defined
in these sets. We are also interested in studying the behavior of our approach applied
to problems with nonlinear functions F and G and polyhedral cones.

An important question that arises concerns whether limit points of the sequences
generated by the minimization algorithm exist. The boundedness of the level sets of
the merit function is a sufficient condition for the existence of these limit points, and
results in this sense are given in [3, 17]. This matter deserves future research.
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