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New approach to the theory of intermediate valence.
II. Magnetic susceptibility and magnetic instabilities
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The previously introduced formalism to study the properties of some intermediate-valence
solids is applied to calculate the magnetic susceptibility of various models and the instabilities of
the paramagnetic state against ferromagnetism and antiferromagnetism. Our main results are:
(i) A considerably enhanced susceptibility consisting of (a) a Hubbard-type Pauli contribution
and (b) a Van-Vleck-type term due to higher configuration admixing. (ii) Instabilities against
ferromagnetism and antiferromagnetism which are independent of the Van Vleck-type contribu-
tion and which differ somewhat from similar divergences found in the Hubbard model.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as I)
a theory of intermediate valence was presented. The
original Hamiltonian consisted of three terms:

(i) A band term in a magnetic field

r CI~CJ(p + $ h (C(tC;t —CIICll)
t t

(i~&~ I

where c; and c; are the creation and destruction
operators for Wannier states at site i and spin cr, t is
a band hopping parameter between nearest-neighbor
sites (ij ), and h is the externally applied magnetic
field multiplied by —, (g, Jhs) .

(ii) An ionic contribution which measures the en-
ergy of a ground configuration (4f)"as zero and the
states M of an excited configuration (4f)"+' as EM

XEMBJMBJM
t

JM
(1.2)

E+ =E +gph

where gp is the ratio of the ionic to the conduction
electron g factors.

(iii) A hybridization term,

+ h X VMe(BJMCJcr + CJ&rBJM)
JMa

where

(1.4)

V+) = V )
= V, V+) = V ) =0

we have taken the ground configuration to be a
singlet I G) and the configuration (4f)"+' to be a

doublet I+)„I—). The modified Fermi operators,
+JM, BJM def ined elsewhere, ' satisfy BJMB&M =—0,
which guarantees no simultaneous occupation of I+)
and

I

—). The energies of the excited states in the
(4f)"+' configuration are

t w t
HHF = $ UJ yJ yJ —X WJ y; yJ +K

Jcr (J&-
(1.6)

where the e-numbers U, W, and KdePendself-
consistently on expectation values of the form
(y; y; ) and (y; yJ ), as well as on the coefficients
(a' s, P's, and 8's) which appear in the diagonaliza-
tion of the ionic states

I o) -=I so&,

I» =--.IGi&+B.l+o);

li) =--.IG»+~, l-o&;
(1.7)

11l) —= a, I G tl& + g. I+i& + gdl —
1&

The energies of these states are Ep-0; E&, E~, and

E~i ~

In this paper we apply this formalism to study the
magnetic susceptibility of the paramagnetic state. We
apply this calculation to well-defined structures as a
function of the dynamic parameters t, E, V, and gp,

Our method consists of (a) complete diagonaliza-
tion of the intra-atomic terms (1.2), (1.4), and the
second term in (1.1); (b) projecting out of the upper
eight ionic states, retaining only the lowest four for
each ion; (c) conversion of these four states into
equivalent spin-

2
fermion states 10), I i), I i), and

I f j) and definition of their corresponding fermion
creation (y; ) and destruction (y; ) operators; (d)
expression of all the terms, the band terms in (1.1)
in particular, in terms of these new operators; and (e)
treatment of the resulting Hamiltonian, which in-
cludes one-particle (yty), two-particle (ytyyty), and
three-particle (ytyy"yyty) terms by a decoupling
scheme analogous to the Hartree-Fock approxima-
tion.

The resulting Hartree-Fock Hamiltonian is
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as well as of the average number of electrons per ion
(n + v), where n is the number of electrons in the
(4f)" configuration and 0 «v «2. In Sec. II we
describe the method employed to calculate the self-
consistent expectation values. In Sec. III we calculate
the uniform magnetic susceptibility of several models
and determine the instability conditions against fer-
romagnetism. Section IV deals with the Q %0 sus-
ceptibilities for specific examples and the instabilities
against antiferromagnetism. Section V contains a
summary and conclusions.

and

(y -y -) = P.8.. (2.8a)

(y+s, y )=r 8 (2.8b)

In Eq. (2.7) Rtt is a nearest-neighbor lattice vector; it

can be proved that for the states under consideration
v is not a function of the particular R& chosen as
long as all R~ are symmetry related.

It is now easy to prove that for the paramagnetic
and ferromagnetic ground states

II. CALCULATION OF SELF-CONSISTENT
AVERAGES FOR THE PARAMAGNETIC

AND FERROMAGNETIC STATES

The functions p and ~ satisfy several useful
properties. In particular

Pl+Pi=v (2.9)

For states with complete translational symmetry,
i.e., the paramagnetic and ferromagnetic states, a
change from localized operators, y& and y& to Bloch
state operators I k and I k

(2.10)

In addition if p (S ) is considered a function of S,
it is proved in Appendix A that in the model with
nearest-neighbor- interactions only

zr(s ) = — x dx,d p(x)
S dx

lk —= (N) ''Xexp(ik Ri)yi
J

(2.1) where z is the number of nearest neighbors. If we

recall the definitions from I
automatically reduces Eq. (1.6) to diagonal form

A
1

———(a„)', Bt-=a„(X1—a„)
H„„=XE„.r„'.r„.+ac,

ko
(2.2)

Dt —= (Xt —a„), Xt =— (aga—, + Pygmy)

(2.1.1)

where, for W )0,
Ek

———U + O' S(k) (2.3)

[see Eq. (1.7)] and four equivalent expressions ob-
tained by exchanging ]~ j and u ~d, we now ob-
tain

and

S(k) =——Xexp(i k Rtt) (2.4)

I, s(k) «s. ,

0, S(k) &S (2.5)

With these definitions we may now introduce the
basic functions which are necessary for the calcula-
tion of the self-consistent averages. These are

with nn being nearest neighbors. The function S(k)
is a dimensionless band structure with a well-defined
lower bound S [e.g. , (—6) for simple cubic, (—8) for
body-centered, and (—12) for face-centered cubic] as
well as an upper bound SM[(+6) for sc; (+8) for bcc,
and (+4) for fcc].

We now define two "Fermi levels" S such that for
spin o., states with S(k) «S are occupied and those
with S(k) & S are empty. We also define f ( k )
such that

Ut =E1+(Ett —Et Et) pt+2zr(Btrt+Dtrtpt)

and a similar expression for Uf,

1 [ 41+2Btpt +Dt (pt r 1)
—2Dtrtr 1]—

and a similar expression for W~, and

[(E1l E
1

E1)P1P 1

+2zt [Btptr1+ BtPtr 1+D 1r1 (pt —r 1)

+Dirt(pzt —r21)]]

(2.12)

(2.13)

(2.14)

&„=by=0, Et=h, E)=—h

E =0, U=Etl

and K =0. Therefore

It should be noted that the limit of well-defined
valence corresponds to V =0, which yields

al = ad = as = —1, pz = pg =0

and

p. =p(s.) =—N-' Xf.(k)
k

r =r(s ) =N' Xexp(ik Rtt)f—(k)
k

(2.6)

(2.7)

HHF(I =0) = X ry yj +X~(y ty 1-y ty~t)
t t

(2.15)

which is identical to the original band Hamiltonian
(1.1).
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The total energy per site of the system can now be written

S=N '
(HHF) = Etpt +Etpl + (Et t —El —El) pl pl

+zr [3 trt +A ttt +2Btptrt +2Btptrt + atilt(p& rl) +Blat(pt (2.16)

This equation should be minimized with respect to p
and r, subject to the constrains (2.9) and (2.10).
The value at the minimum we denote by h,„.

III. MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility is obtained from

Q2 gX—=—( —,g.pa)'
, h 0

We write

1 1

~t 2"+ ~l- 2'

(3.1)

(3.2)

where 8-0 if h =0 in the paramagnetic case. %e
keep all terms in an expansion in 8 up to second-
order terms. In particular

b =-b, +b,g+b, s' (3.3)

and, if p (S ) and r (S ) are considered functions
of the Fermi levels S, we obtain

g 1 p (So)5
p'(So) 2 [p'(So))'

(3.4)

r'(So)
p'(S, ) 2Z p'(S,)

(3.5)

&.,= &o - St'/462

and the susceptibility is given by

(3.6)

Complete expressions for 6'0, 6'~, and u2 are given in
Appendix B. All these are explicit functions of the
magnetic field h. The minimization described in Eq.
(2.16) with its attendant constraints is now reduced
to a minimization with respect to g in Eq. (3.3). This
yields

Vleck contribution; it arises from magnetic moment
of the ionic configuration (4f)"+' as it is mixed into
the ground state by the hybridization. The second
term [($~) /2h2] is a modified Pauli susceptibility. It
reduces exactly to the Pauli form when V =0, and it
contains (as discussed later) a typical Hubbard fer-
romagnetic enhancement and a modified magnetic-
field-dependent bandwidth.

In what follows we show the results of explicit cal-
culations as applied to specfic band-structure models.

A. Simple cubic band

TABLE I: Relationship between So and the number of
electrons, v, in the conduction band.

Simple cubic
So

Face-centered
cubic

Rectangular
density of states

For a symmetric simple cubic band with nearest-
neighbor interactions only S = —6 and SM =+6. In
Table I we give the one-to-one correspondnce
between So and the number of electrons v. In Fig. 1

we show the susceptibility as a function of So and for
r/E =—0.02, go =3, and various values of the hybridi-
zation V/E. As V =0 we obtain the usual replica of
the density of states of the normal Pauli susceptibili-
ty. For finite values of V there is a considerable
enhancement and. for V —E an enhancement factor
of the order of 100 can be observed. As a function
of the number of electrons (or equivalently So) there
is a value of V/E for which the susceptibility
diverges; this indicates instability with respect to fer-
romagnetism. In Fig. 2 we show in the (t, V) plane

x/( —,g.pa)'=[ —bo +(hI)'/2&2jo-o

and the magnetization M by

(3.7)

(3.g)
M = —&o +—h. , (262bi' —h~6i)'
g,~a 4(h j)'

where all derivatives are with respect to h. In partic-
ular, since h~ is odd in h and So even in h,
M(h =0) =0 as expected for a paramagnetic state.

The susceptibility expression (3.7) consists of two
terms. The first term (—So ) can be called a Van
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FIG. 1. Susceptibility for a simple cubic example as a

function of So for various values of V/E. The parameters
are t/E = —0.02 and the ratio of the ionic to the band g fac-
tors is 3. The one-to-one correspondence between So and

the number of electrons is given in Table I. Note the diver-

gence of the susceptibility for given values of the parame-
ters.

the line divergent susceptibility for various values of
So. For values of

enlarger

than those on the curve,
the paramagnetic state is unstable. It should be not-
ed that that instability occurs for V —E in all cases.

B. Face-centered-cubic band

10
0

I I

0.4 0.8
I

1.2

V/E

SIMPLE CUBIC

I

2.0 2.4

Similar graphs to those shown in Sec. III A are
shown here for a nearest-neighbor only face-
centered-cubic band. Here S = —12 and SM =4 and
the band is asymmetric; The correspondence
between So and v is given in Table I. Figure 3 shows
the susceptibility as a function of So for
t/E =—0.02, go =3, and various values of V/E.
Figure 4 gives the values of t/E and V/E for which
the susceptibility diverges, with So being a parameter
in this case. The results are qualitatively similar to
those for the simple cubic example, except that the
band density of states is asymmetric and therefore so
are the susceptibility and the instability curves.

C. Band with a rectangular

density of states

Although the theory we developed assumes a

known crystal structure with well-defined number
and location of the nearest neighbors, the relation
(2.10) [see also Appendix A] allows us to extend our

FIG. 2. Curves of diverging susceptibility for the simple
cubic case of Fig. 1 in the (—t/E)-(V/E) plane and for vari-
ous values of So. Curves for positive values of S0 are al-

most identical to the corresponding negative values (—So).

and the use of Eq. (2.10) yields

T(S) = p(S) —[p(S)] (3.10)

With these expressions we obtain from Eq. (3.2)

g = —,
'

(pt —pt) = —,
' z(Sl —St) (3.11)

calculation to an arbitrary density-of-state curve if we

specify the number of neighbors z. In particular for a

rectangular density of states, i.e., a constant value

between S and SM and zero otherwise, all integrals

in our calculation can be performed analytically and

thus we can shed more light into the physical
mechanisms of our model. %e choose S = —z;
SM=z, and

p(S) = (S+z)/2z
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FIG. 3. Susceptibility for a face-centered-cubic example as
a function of So for various values of V/E. The parameters
are t/E -—0.0 and the ratio ot' the ionic to the band g fac-
tors is 3. The one-to-one correspondence between So and
the number of electrons is given in Table I. Note the asym-
metry of the curves and the divergence of the susceptibility
for specific values of the parameters.

10 3

ET

The instability condition can be observed by replac-
ing Eqs. (3.9)-(3.11) into the expression of Si in
Appendix B, Eq. (B3) and finding values of the
parameters which make b2 0 for It 8-0 [see Eq.
(3.7)]. Since in this case A t

- A i A and similarly
for all other coefficients 8 and D, we obtain

10 I

0.4
I

1.2
V/E

I I

1.6 2.0 2.4

(3 12)
A +8 (2 —v) D(v'/4 —v'/16—)

FIG, 4. Curves of divergent susceptibility for the face-
centered-cubic case of Pig. 3 in the (-t/E)-(V/E) plane and
for various values of So.

If the right-hand side of Eq. (3.12) is smaller than
2z t t ~, the paramagnetic state is stable. In Fig. 5 we
show the line of instabilities in the (t/E) (&/E)-
plane and in the (t/E) vplane. The res-ults are again
similar to the other two cases, and the instability ap-
pears when V —E. Three points are worth remark-
ing. Although the values of the susceptibility depend
on the g factor of the ion and on its magnetic
behavior, the curve of instabilities is independent of
them. This can be seen from the condition

if we make

8 D 0, tA ~T
(3.ld)

%'ith these changes the ferromagnetic instability con-
dition (3.12) reduces to

8 2(h -0) -0 2z) Tt Ip (3.15)

which determines the instabilities.
A second point of interest is that our fermion

Hamiltonian can be reduced to a Hubbard Hamiltoni-
an'

and, since (2z t T t) ' ~ S(aF) is the constant density
of states in the rectangular model, this yields the
eel)-known relationship4

(3.16)
H„g Ty; y& +Xl,vttv t ~

(&1&~ I
(3.13)

A final point is that although this rectangular,
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1.0

LLI

N 0.5—
1

0
0

0.6

l

V/E S(k) = —S(k+Q)

is satisfied.
We now define as in Secs. I-III

(4.1)

strict ourselves to study the instabilities of the
paramagnetic state with respect to a single Q antifer-
romagnetic arrangement, i.e., we study the conditions
for a divergent magnetic susceptibility of wave vector
Q. We choose Q to be a unique point in the Brillouin
zone such that it divides the original crystal structure
into two interpenetrating highly symmetric and
equivalent subiattices (e.g. , two simple cubic struc-
tures from a body-centered-cubic lattice, point H in

the bcc Brillouin zone; two face-centered-cubic lat-
tices from a simple cubic crystal, 4 point R in the sc
Brillouin zone). These structures are such that: (i)
the denstiy of states is symmetric with respect to
electron-hole interchange, and therefore the dimen-
sionless energy parameters S(k) such that S =—SAr,

(ii) the relationship

0.4—
STABLE PARAMAGNET

(4.2)

0.2—

0
0

1.0

0.75

0.5
UNSTABLE PARAMAGNET

where q& =1 in one sublattice and q& = —1 in the oth-
er. Since not all sites are equivalent, the methods of
Secs. II and III are no longer valid. %e find

Et+ (Ett —Et —gt) p,.t+2zt (8r + Dip t) I(4.-3)

~here i and i are sites in different sublattices, and

i4 t
~ r[A +8 v + D—(-v —a —r ) —2D r ] (4 4)

FIG. 5. Curves of divergent susceptibility for the rec-
tangular density-of-state model (a) the (t/F)-( V/E) plane,
with v as a parameter; (b) the (t/F)-v plane, with V/F. as a

parameter.

model (and the simple cubic structure as well) is
symmetric with respect to electron-hole symmetry,
the extra two- and three-particle terms in our Hamil-
tonian (the 8l, 8i, Dt, and Dl contributions) break
this syrrimetry, albeit only very slightly.

In these equations we have taken h =0, A
~

A ) A

and similarly for 8 and D, and made explicit the fact
that Eq. (2.8b) guarantees that there is only one real

v, labeled ~, and it is even in e.
We look now at.the rectangular density-of-state

case of Sec. III C, and look for the instability against
aritiferromagnetism. This implies that only small
values of a are relevant. We thus find [see Eq.
(3.10)]

r- —,v ——,v'+O(a')i 1 (4.5)

which yields

UI Ui(i 0) + [(Ett —Et —Et)+2zrDr]av);+0(ez)

IV. ANTIFRR, ROMAGNBTIC INSTASII. ITY and
(4.6)

It is known~ that a Hubbard-type Hamiltonian leads

to a large variety of broken symmetry states: antifer-
romagnetic, ferrimagnetic, and spin-spiral arrange-
ments in addition to the ferromagnetic states. It is

thus expected that our Hamiltonian (1.6), which in-

cludes several other terms, would produce also a
variety of magnetic structures. In this section we re-

&t - W't(a -0) + O(e') (4.7)

H„-XE,.r,'.r„.+ Xa.rt.r„,o.+IC,
(4.g)

In terms of the Bloch operators I ~ and I ~ given in
Eq. (2.1), the Hamiltonian is now
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where Ilk and F have the same meaning as before
]see Eqs. (2.2) and (2.3)] and

== + [(Ett —El —El) —2ztD7] e (4.9)

The diagonalization of Eq. (4.8) follows the standard
procedure of setting a 2 && 2 secular equation leading
to a new canonical transformation

LIJ

w 0.5—

I 1ka ~ko~ka + +kcrI k+Q, a.

~2k 0 +k(r~k a + ~ko ~k + Q, o

From these new one-particle eigenvalues are obtained
and a self-consistency equation follows:

$ (pit pit)'rti
I

= & ' X I tik.vk. l
((I'ta.I'i~.) —(I'2k.I ~k-))

ko

(4.11)

1.G
1

1 = —IoX)(eF) lnI1 —vI (4.14)

For this particular case and v =-1 the paramagnetic
state is always unstable, 4 which is the usual Peierls
instability of these simple models. In our case v =1
does not correspond to an always unstable paramag-
net. For v 1, we obtain instead of Eq. (4.12),

where uk and vk are functions of ~. Since ~ =0 is
always a solution (the paramagnetic one), the insta-
bility condition is obtained by requiring the coeffi-
cients of the linear term in e on the right-hand side
to equal 1, the left-hand side coefficient.

This procedure yields

2zIrI =
—(Ett —Et —Et) lnl I —vl

A +Bv+
4

Dv —3Dr —DrlnI1 —vI

(4.12)

Figure 6 shows the lines in the (t/E)-( V/E) plane
(with v as a parameter) and in the (t/E)-v plane
(with V/E as a parameter) where Eq. (4.12) is satis-
fied. Several points are worth remarking:

(i) If the right-hand side of Eq. (4.12) is smaller
than 2zItI, the paramagnetic state is stable. This
corresponds to the upper regions of both graphs in
Fig. 6.

(ii) If we go once again to the Hubbard limit
(3.14) and (3.1S), Eq. (4.12) reduces to

2zI TI = —I, lnII —vI,
or, equivalently

z
I
t

I

.= 2 (Et t
—Et —Et) /D (4.1S)

G.b
06—

0.4
LLI

N

G.2

0
G

0
0

I
I

g
I

g

I
I
|I

i

FIG-. 6. Curves of antiferromagnetic instability for the
rectangular density-of-state mod=i. (a) The {t/L') -( l /&)
plane, w'ith v as a parameter. (b) The ((/E)-v plane with
V/E as parameter.

FIG. '7. Schematic phase diagram in the t/E-v plane,
V/E =1. P: paramagnetic state; I: ferromagnetic state;
AF: antiferromagnetic state. The boundaries F-AF are esti-
rnations only, based on the equivalent Hubbard model.
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If, once again,

ztIt
~
)2(Ett Et Et)/D (4.16)

the paramagnetic state may be stable.
(iii) There is a notable lack of symmetry between

electrons and holes. The paramagnetic state is more
stable against antiferromagnetism for v ) 1 than for
v & 1. This is opposite to what is found for fer-
romagnetic instabilities.

(iv) In Fig. 7 we show a schematic phase diagram
for V = E, where the electron-hole asymmetry is evi-
dent.

V. SUMMARY AND CONCLUSIONS

The formalism developed in I to treat intermediate
valence solids has been applied to study a variety of
magnetic problems. In particular we find:

(i) The normal (paramagnetic ) state has a consid-
erably enhanced magnetic susceptibility. It can be
considered the addition of two terms: a ferromagneti
cally enhanced Pauli susceptibility similar to that found
in Hubbard's model, and a Van Vleck-type contribu-
tion caused by the admixture of the excited confi-
guration.

(ii) For values of the hybridization parameter of
the order of the energy separation between configura-
tions, the susceptibility tends to diverge, signaling the
onset of a ferromagnetic instability. That instability
is more apparent for cases in which the density of
states at the Fermi level is larger.

(iii) The Van Vleck-type susceptibility appears
only when the excited configuration is a multiplet,

'

and requires different magnetic moments for the
band electrons and the excited ion.

(iv) The ferromagnetic instability is independent
of the Van Vleck-type contribution to the susceptibil-
ity.

(v) Other types of instabilities are also possible.
Of these we have only examined a specific example
of the antiferromagnetic case, corresponding to bands
which yield perfect nesting of the Fermi surface in
the half-filled band situation. As expected, in this
particular situation the antiferromagnetic instability
tends to dominate, but it is not present in the limit-

ing case of vanishing hybridization, in contraposition
to the ordinary Hubbard Hamiltonian. 4

Two points should be emphasized: (a) The
enhanced susceptibility in paramagnetic configura-
tions is the most striking feature of the magnetic
properties of all mixed-valent solids', our theory
shows this effect. (b) Since we have used a Hartree-
Fock-type factorization, our results will show the
quantitative overestimation inherent in such approxi-
mation6; this should be kept in mind when comparing
numerical values to actual experimental data.

Study of other properties, e.g. , specific heat and
lattice dynamics would be of considerable interest to
compare our model with the experimentally well-
studied intermediate-valence solids.
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APPENDIX B

The coefficients for the energy expansion (3.3) are

ISQ —(Et +El) po + (Etl —Et —Et) po

+zt((At+At)ao+2(8t+8t)bo

+ (D t + D t) do)

8 I
= (Et —Et) + zt [(A I A t) a I + (8t -8t»t

+ (Dt —Dt) dt]

~2=-(Ett Et —Et)

+zr f(A i+A l) a2+2(8t+8t) b2

+ (D t + D l) d2~

(B2)

(B3)
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~here

ao+ a)S+ a25'+

p)gt ——bp+ bi5+ b25 +

(p2t —r2t) at
= do+ di8+d25 +

and the expansions (84)—(86) are obtained by
means of Eqs. (3.2) and (3.5).

(86)
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