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PHYSICS OF PLASMAS VOLUME 5, NUMBER 3 MARCH 1998

Nonlinear dynamics of electromagnetic turbulence in a nonuniform
magnetized plasma

P. K. Shukla, Arshad M. Mirza,? and R. T. Faria, Jr.?
Institut fir Theoretische Physik IV, Fakuttéir Physik und Astronomie, Ruhr-UnivergitBochum,
D-44780 Bochum, Germany

(Received 24 June 1997; accepted 17 November)1997

By using the hydrodynamic electron response with fixX&thetic) ions along with Poisson’s
equation as well as Ampe's law, a system of nonlinear equations for low-frequerity
comparison with the electron gyrofrequendgng-(shorty wavelength electromagnetic waves in a
nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density
gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are
obtained and analyzed. It is found that sheared equilibrium flows can cause instability af-fkee
electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that
possible stationary solutions of the nonlinear equations without dissipation can be represented in the
form of various types of vortices. On the other hand, the temporal behavior of our nonlinear
dissipative systems without the equilibrium density inhomogeneity can be described by the
generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead
to even qualitative changes in the chaotic dynamics. The results of our investigation should be
useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in
space and laboratory plasmas. 1®98 American Institute of Physid$§1070-664X98)00403-0

I. INTRODUCTION electrostatic and electromagnetic modes in nonuniform mag-
_ _ netoplasmas. Several authtishave investigated the insta-
Recently, there has been a great deal of intéf@éh  pjlity of low-frequency(in comparison with the ion gyrofre-
understanding the linear and nonlinear properties of finiteyuency, long wavelength(in comparison with the ion
amplitude low-frequency Alfve-like waves in low-  gyroradiu electrostatic convective cells and drift-acoustic
temperature space and laboratory plasmas. The linegjaves as well as of electromagnetic kinetic Alfwerift
and identifying grzsesunstable wave spectra, whereas the noRyadients. The nonlinear mode coupling equations excluding
linear analysels**"“compute the saturation level of fluctua- gissipative effects have also been derived and anafj2ed.
tions as well as develop mode coupling equations which argpe results have been applied to understand the nonlinear
needed for predicting the salient features of fully developedi ,ctures in the auroral region of the Earth’s ionosphere.
electromagnetic turbulence in nonuniform magnetized plas- g wvever. the experimental data from splcand

mas. ) i . ) _laboratory! plasmas exhibit that the observed electromag-

Finite amplitude dispersive Alfvelike electromagnetic ,etic waves in nonuniform magnetoplasmas have a broad
waves acc_ompgny an electric f'e"?' p_arallel to the eXtema{requency and wavevector spectra. Specifically, the wave
magnetic field lines. Intense electric fields may cause enerﬁequencies could be smaller or larger than the ion gyrofre-

gization czlfheltzc_:trons,. WT('.Ch t.maAy[ﬁsroducge lnteretsSng bphe'quency, whereas wavelengths could be in the range between
nomena. The diSpersive Kinetic avaves cannot be 0b- .0 coliisionless electron skin depth and the ion gyroradius

ﬁ:er?etohw(ljt:)lg nam%\AHg)ar;elﬁ?ircl;ns a(r)1f q or:gehas geiil scale or even shorter. The waves accompany simultaneously
gnetohydrodyne q . . finite density and sheared magnetic field perturbations. Thus,

voke either a kinetic theory or a two—fluid model in order to ) T

. ) : . : they can be categorized as sheared or kinetic AHiiee

include the dispersion caused by finite Larmor radius or elec-

9
. . waves’
tron inertial effects.

. . . In this paper, we focus on the linear and nonlinear prop-
Linear theory dictates that nonthermal fluctuations can_ .. A . .
) . erties of low-frequencyin comparison with the electron gy-
be generated provided that there exist free energy sources in

the form of equilibrium anisotropic particle distributions, rofrequency long as well as short wavelength electromag-

pressure and velocity gradients, etc. Under appropriate cometic Alfven-like waves in a nonuniform magnetoplasma

ditions, free energy of the system can be coupled to both th(éontaining an gquilibrium electron depsity gradient and
sheared equilibrium plasma flows. For this purpose, we have

_ . ~_employed the electron MHD equations consisting of the
dPermanent address: Department of Physics, Quaid-i-Azam Un|ver5|tye|ectr0n continuity and the parallel component of the elec-
Islamabad 45320, Pakistan. .

YPermanent address: Instituto desiEa “Gleb Wataghin,” Universidade Fron momentum_ equations, suppl_emented bY_ Arajselaw,
Estadual de Campinas, 13083-970, Campinas, SP, Brazil. in order to derive a set of nonlinear equations. For long
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wavelength disturbances in an electron plasma with fixed ioRvhere vgg= (C/Bo)ix Vo, Vpe=—(cT./e Bone)iane,
background, we use Poisson’s equation to eliminate the elegnd Vpe= (C/Bowce)[ﬁﬁveoﬁz—ﬂevf +(Veg+Vpe) - V

tron number density perturbation. On the other hand, foryy .5,V ¢ are theEx B,, the diamagnetic, and the polar-
short wavelength waves, we use the Boltzmann response & +ion drift velocities respectivefE=—V ¢—c~ L3,A Zis
l Z

the ion number density perturbation. In the linear limit, wehe glectric field vector is the electrostatic potential, and

obtain dispersion relations in the local approximation,AZ is the component of the vector potential along zhexis.
whereas in the nonlinear case we discuss possible stationagy,ithermore.n. is the electron number density,
ile

. . . X e IS the
and r;pn—statlonary solutions of the newly derived nonlineaiqnsiant electron temperatu;ee:O.SJyepg is the electron
equations.

o ) gyro-viscosity'? v, is the electron collision frequency, and
The manuscript is organized as follows. In Sec. Il, we

S . : : B,, = VA,xz is the two-dimensional magnetic field pertur-

present a derivation of the three-dimensional nonlinear modg .. . o

. . . : . ation. By adopting the loys approximation, the compres-
coupling equations for low-frequendyn comparison with ) A , o
the electron gyrofrequengylong and short wavelengths sional magnetic field perturbation along thalirection has
sheared electromagnetic waves in a nonuniform dissipativBeen neglected. _ _
magnetoplasma having an equilibrium density gradient and 1 "€Z-component of the electron fluid velocity perturba-
sheared equilibrium plasma flows. The linear dispersion relion is obtained from the Ampe’s law
lations are derived and analyzed in Sec. lll. Section IV.con-  , ~(c/4mn.e)V2A,. 2
tains stationary solutions of the nonlinear equations when the _ . . _
dissipation is ignored. In Sec. V we study the non-stationary ~ To derive the appropriate nonlinear mode coupling equa-
behavior of the nonlinear dynamical equations including distions for the electrons in the presence of the electromagnetic
sipation. Finally, the main results of our investigation arefields, we substitute Eq1) into the electron continuity equa-
summarized in Sec. VI. tion and make use of E@2), and radially obtain in the limit

of p2v3<1

,\ Cho chy
il Nyt =——V2¢|—D.V?ngy— =— 4
Il. GOVERNING NONLINEAR EQUATIONS | Nert gy Vi | =DeVine = g peVi ¢
Let us consider the nonlinear propagation of low- c . 1 . _
frequency(in comparison with the electron gyrofrequency ~ ~ g 2% Vng- V- Boe ZXVjeo VA,
w.e=€Bg/m.c, wheree is the magnitude of the electron
charge By is the strength of the external magnetic fietdl, . c S VIA=0 3
is the electron mass, amdis the speed of lightelectromag- Qe 2 LT
netic waves in a nonuniform magnetized plasma containing o o
the equilibrium density gradierin,/ox and the equilibrium Where = di+veo 9,4 Veg V +0e2 9, 2= 0,

velocity gradient dv;o/dx, where n, is the equilibrium fBEIVAzXZ'V, Jeo=—No€Vco, D= vep is the coeffi-
plasma number density,, is the magnetic field-aligned un- cient of the electron diffusion, anti,,(=ne—no<no) is the
perturbed plasma flow velocity of the particle specje§ ~ Perturbed electron number density.

equalse for the electrons and for the iong in a direction Similarly if we substitute the-component of the electric

transverse to the equilibrium magnetic fi@gz; z being the  field Ez= —d,¢p—C " @A, into the z-component of the re-
unit vector along the axis. We assume that the equilibrium SiStive electron momentum equation and use Ejsand(2),
currents produced by the difference between the electron arfjen we have

ion drift. yel.ocities Iead' to.a negli_giplg sh.e.ar component Of(dt"—VDO'V)Az_)\g(t—%/t"_ Ve)VfAzJFC( 9,4+S,0- V)

the equilibrium magnetic field. This is justified, for example,

for local phenomena in the Earth’s ionosphere and in several —(cTg/€ng). %N =0, (4)
laboratory devices, where the main component of the mag- - .
netic field is thousand times larger than the sheared equilib?N€r€ di=Jdi+Ves: V, Vpo=—(CTe/€Bpng)zXVny is the
fium magnetic field component. Furthermore, it is supposegduilibrium electron diamagnetic drift Ve'°°'t¥e:‘;/‘"pel'/52
that the equilibrium density gradient is maintained by exter-n€ collisionless electron skin deptfaye=(4mnoe/me)

nal sourcede.g. external electric fields, gravitational forces, is the electron plasma frequency, aBth=2zXVuveo/wce.
etc), although no such sources are required for a non-zer§/e note that thé\i%}VfAz_ term in Eq.(4) is the contribu-
gradient ofvj, to exist because;o- Vvjo=0 andv;oXx By tion of the Imear_and nonlmea_Lr electron inertial forces.

=0 Whenvj0=2vjo(x). Thus, non-continuous injection of In the following, we consider two types of plasma re-

charged particles along the external magnetic field lines esPONse. First, when the wave period is shorter than the ion
tablishes sheared plasma flows. plasma and ion gyroperiods, the ions can be regarded as a

For low-frequency, long wavelengtiin comparison static charge neutralizing background and they do not have

with the electron gyroradiug,) electromagnetic fields in an time to respond to electromagnetic disturbances. Thus, the

isothermal plasma, the electron fluid velocity perturbation isin€&r and nonlinear phenomena occurs on scales much be-
given by low the ion inertial lengtrc/ w,,;, where the plasma dynam-

A ics is governed by electron flows and their self-consistent
Ve~Vgp+tVpetVpet (Vegtve) B /BotZve,, (1)  magnetic fields. The ion plasma frequency is denoted by
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wpi. Here, we can approximatee; by (1/47e)V2¢ and 1. LOCAL DISPERSION RELATIONS

write Egs.(3) and(4) for long wavelength perturbations as . . ) . .
In the following, we obtain the local linear dispersion

wZE wZe relations for both the long and short wavelength electromag-
S| V2+ —ZVE ¢—Dq V2+0.51—2Vf quﬁ netic modes. Accordingly, we neglect the nonlinear terms in
Wee Wee Egs.(5)—(8) and assume that the wavelengths of the pertur-
w2 . bations are much smaller than the scalelengths of the equi-
— % 7XVng- V- B ZXVje- VA, librium velocity and density gradients. The governing Egs.
No®ce 0 (5)—(8) are then Fourier transformed by supposing that the
+C:%zvi A,=0 (5) perturbed quantitiegp and A, are proportional to expK-r
—iwt), wherek and o are the wavevector and the fre-
and guency, respectively. Thus, Eq®) and (6) give

(di+Vpo  VIA, =N L+ ve) VA, +C(0,+S)0- V) b A o

Bo

(Q—wC*+iFC)¢=( kJ-k+ckaf)k02Az 9)

—CA\3. %, V2¢=0. (6)

Second, for short wavelengttin comparison with the and
ion gyroradiusp;), the ion number density is given hy

~ny exp(—e¢/T;), whereT; is the constant ion temperature. | ,,— Kzb eoe —w FiT A

Hence, from Poisson’'s equation we haveng 1+be ™ mE
=(1/4me)[V2p+(TinpPle)exp(—ed/T)], where \p; = (1+bg)~e(k,+k-S,0) b (10)
=(Ti/4mnqe?)Y? is the ion Debye length. Accordingly, for ¢ ‘ o

this case Eqs(3) and(4) can be cast in the form where Q= w—K,vep, ®cy =aweekKp- k/kg, a:wge/wge,

ki=k?>+ak?®, k,=zxV Inny, k;=zXV Injeg, I'c=(k?

iq 202 _ 202\ g2
717 paV) ¢ Del170-5VI)Vid +0.518K)DkIKE, @y = woq /(1+Dg), gy =K-Vpo,

, Wce be=k?\3, T\i=bere/(1+bg), andk®\3.<1.
+Pan—0(2>< Vng)- V¢ Combining Egs(9) and(10) we obtain the linear disper-
) sion relation for long wavelength electromagnetic waves
TAD; . _
t g (2XVieo) VAN A VIA=0. (7)) (Q-wg, HTo)[w+b — e, +ibeve]
c(4mj
and =5 %kyk+ckzkf (k,+k-S,0). (12)
0

(di+Vpo- VIA,~NE(Zi+ v VEA+C(d,+S0- V) b
tCo Z,h=0 ) Equation(11) exhibits a linear coupling between the electron
E ' drift-convective cellqthe first term in the parenthesis on the

where p,=C,/wee, Ca=(T;/me)¥? is the electron-acoustic left-hand sidg¢and the magnetostatic drift modéhke term in

velocity, ando=T,/T;. In Eq. (7), we have assumed that the square bracket on the left-hand gidae to finitek, and

Vz)\%i<1 and&t¢2<wcep§|2>< Vo VVf ). the equilibrium sheared flow. In the absence of the latter, the
Equations(5) and (6) govern the nonlinear dynamics of WO modgs degenerate, a”fj we obtaif wc, —il'c and
long wavelength electromagnetic waves, whereas Efs. = (@ex ~iDeve)/(1+be), which are damped normal electro-

and(8) are for nonlinearly interacting short wavelength dis- Magnetic modes of the magnetized electron plasma contain-
turbances in a nonuniform resistive magnetized plasma witi'd @n equilibrium density gradient. .
sheared plasma flows. We note that E@—(8) govern the On the other hand, f'or short wavelength electromagnetic
mode coupling within the electromagnetic wave spectra. wénodes, Egs(7) and(8) yield

thus have the possibility of energy cascading from short \2
wavelength part of the spectrum to long wavelengths due tgﬂ_wi* +ily) p= _bi
the nonlinear interactions of short wavelength oscillations. 1+ba
Thus, the physics of the modulation interactibremains in

tact within our formalism. For example, in an electron and
plasma with fixed ion background, magnetic electron drift

-
%kym-kzckf)Az (12)
0

. . e k,v eob
modes could be nonlinearly excited by Alfwdike electron | w— f}ei) ®— oy +i1“m)AZ
convective cells. Thus, nonlinearly coupled magnetic elec- +be
tron drift modes and Alfve-like electron convective cells =(1+bg) "tc[(1+ o)k, +k-S,0]¢, (13

can play a very important role in the electron magnetohydro-

dynamics(EMHD),** where the nonlinear phenomena occurwhere i, =p3w.k-k,/(1+b,), b,=k?p2, and T,

on a short timgin comparison with the ion plasma and ion =D¢(1+0.51b,)k?/(1+b,).

gyroperiod$ scale over a typical scale size of the order of the ~ Combining Egs(12) and(13), we obtain the linear dis-
collisionless electron skin deptty,. persion equation for short wavelength electromagnetic waves
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(Q— 0, +iITY( 0+bQ—we, +ibgve) convective instabilities. Physically, the latter arise because in
the presence of velocity gradient the parallel component of
the electron velocity perturbation and the wave potential are
out of phase, as long as the parallel wavelengths are ex-

(14) tremely large.

Next, we note that there also exist resistive instabilities

Equation (14) shows that finitek, and the equilibrium  whenwg, ,kpeo<w<beve. In this case, Eqg11) and(14)

sheared plasma flow can cause a linear coupling between thgould lead tow=w¢, —iT¢—iS//vebe and w=w;, —ilq

ion-drift (the first term on the left-hand side in the parenthe-—iS /v .b,, respectively. Thus, for S,S.<0 and

sis and magnetostatic drift modes. In the absence of th¢s|>y.b,I'. and|S{>v.b.I's, we have the excitation of long

equilibrium flow, the frequency of a flute-like damped ion- scale electron drift-convective cells and short scale ion drift

C)\2Di 47Tje0 2
= Trbo| B Kok ekk? |[(1+ o)k; koS0l

drift wave iSw:wi*—i_Fs. . waves in nonuniform collisional plasmas. Furthermore, the
For flute perturbationsviz. k,=0), Egs.(11) and(14)  magnetic drift modes also become unstable|df— w, |
become, respectively, <I¢, |o—w;,|<Ts, andS,,S;<0. The growth rates above

(0= g +il) (0= op +ily) threshold aréS)|/T'; and|S|/T', respectively.

2 2 H
kjwpe JVen J]eo IV. VORTEX SOLUTIONS

= (15

kf(1+a)(1+ be)wﬁenoe ox X In the preceding section, we have seen that velocity gra-
and dient can cause the instability of electromagnetic waves
which attain finite amplitude. The nonlinear interaction be-
tween finite amplitude modes can be responsible for the for-
mation of either ordered structures or a chaotic state depend-
= ) (16) ing upon various plasma parameters. Although the general

(1+by)(1+be) winee X X stationary and non-stationary solutions of E€®—(8) can-

not be found analytically, we discuss here some approximate
solutions. First, we present vortex solutions of a non-
dissipative inhomogeneous magnetized system, by assuming

(0= i, Tl (0= on, +1T)

2y 2 2 .
ky)\Diwpe IVep den

In the absence of the equilibrium density gradiérit.
wey =0, wj, and w,,, =0) and dissipation, Eqg15) and
(16) admit purely growing instabilities, provided that the ve- ) 5 > -
locity and current gradients oppose each other. The growtH'at Cocd VIA,d,|<wi|zXV ¢-V| and 7;<V? . Specifi-

rates for long and short wavelength modes are, respectivelgally, we seek trgvellénlgtjs localized solutions of our governing
equations by letting'®>!®£=y+ az—ut, wherea andu are

__ Wpe 1 Y40ve0 9] e0| vz 1 constants, and assume tlaandA, are functions ok and¢
Ye™ wee | (L+a)(1+bg)nge ax x| (17 only. Conditions for the formation of different types of vor-
tices as well as their structures are presented below. The
and introduction of the new reference frangewith constanta
®pe 1 Y2 90 0 i 90‘1/2 andu for an inhomogeneous medium is a well established
Vs~ ky)\Diw_ce (1+by)(1+bg)nge X ox | . fact for cases involving Rossby and gravity dipolar vortices

(19  in fluids**® as well as drift-acousti€ and drift-Alfven*"®

] ) vortices in nonuniform magnetized plasmas. Therefore, it
It is evident from Eqgs(17) and(18) that the growth rates are does not make sense to allawandu to be a function ok,

directly proportional to the square root of the product of theyg ¢ s an independent variableharacteristic ling which
equilibrium velocity and current gradients. Thus, the equ'l'b'depends only ory and z. The physical field variables are

rium sheared plasma flow is responsible for the instability. certainly functions ok and &, as indicated above.
In order to understand the effect of finitg and the

density inhomogeneity, we rewrite Eql1) and (14) by A Long scale vortices

assuming tha>Kkzveo,I'c,I'm - Thus, in a nonuniform col- In the stationary frame, Eq$5) and (6) may be written
lisionless plasma, we have, respectively, as

wz—(w0*+wm*)w+w0*wm*—S|=0, (19 o (V2¢+ )+ Uy9,A c % V2 A.=0

Z u u - =

where S =[c/K3(1+bg) ][ (47K, (dj o/ X)/Bo) + kK2 Ik, ST VET U (1ta) AT
+Ky (v oo/ X) w¢e], and (21)

wz_(wi*+wm*)w+wi*wm*_sszov (20) and

_ 2 : - 202 V, tave Cag

where S;=[CA3i/(1+b)(1+be) 1L (47K, (9] eo/3X)/Bo) LA NEV2A + 00 p 220 p=0,
+Ck kI 1L (1+ o) kyt Ky (30 o0/ IX) @l Ue Ue

It turns out that both the long and short scale electromag- (22)
netic waves are stable wh&andS; are positive. However, where  “,=3d,—(c/u,Bo)(dxpds— dedy), Lp=0¢
for §,5<0 and |S|>(wex — wmy)?/4, and [S{>(wi,  —(UaBg)(dxArd:— e Ady), Vi=d* x>+ 3%a€%, U

— wmy )%14, Egs. (19) and (20) predict oscillatory current =awge/Lp(1+a)u,, U,=U—avey, Us=47je/LBo(1
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+a)ua, Ln=n0/(o7no/8X), LJ=je0/(8je0/&X), V*
=cTe/eByLy, andag= a+ (v ep!/IX) wce=a+v ol wce.

Shukla, Mirza, and Faria, Jr.

The constantsb,, ¢; andF,; are determined from the

equations that come from the matching conditions of the
2

It is somewhat difficult to find the general solutions of inner and outerp, Vi ¢ andV, ¢ atr=R. One finds that

Egs. (21) and (22). Thus, we consider two limiting cases.

$o=RFy /(Ki+k3)Ki(kiR), = —kiRFy/k3(ki+k3)

First, we considen2V2 A, <A, so that the scale sizes of the J;(k,R), and
vortices are much smaller than the collisionless electron skin

depth. Here, Eq(22) gives

Cafo
A,— U

L g, ¢} -0, (23)

*
where Zd)u* =d¢—(Clu,Bo)(dxpds— depdy), and u, =u
+V, .

Second, we take>V, and avy S0 that Eq(22) sim-
plifies as

,, 2% 2 Cag
Lo L=NVDA~ —=¢|=0, (29
Where&(d,uzag_(C/UBo)(&X¢&§_&§¢aX)
A typical localized solution of Eq23) is
Cafo
A,= U b, (25
*
whereas Eq(24) is satisfied by the ansatz
2 1 CCYO
VLAZ=)\—§ A= ¢ (26)
Inserting Eq.(25) into Eq. (21), we obtain
aayC? 2 awge 1  ague
{ u,u, (1+a) IVt u,(l+a)\L, u,.lL, Ieb
‘ v =0 27
UBo| ™ wi(1+a)| T ’
whereJ(¢, V% ¢)= i3 V% ¢p— ;3,7 .
Equation(27) is satisfied by the ansatz
VZ2gp=Fid+Fx, (28)

where the constantd; and F, are related by éF;
+ (clu,Bo) [1 — a2c/u2 (1 + a)]F, + [awge/Uy(1 + a) ]
X(Ly = aguep/U,Ly)=0, and where §=1—aayc?
uuu, (1+a).

It can be readily showi8that Eq.(28) admits a dipo-
lar vortex solution, the form of which is

bour= PoK1(kyr)cos 6, (29

in the outer region defined by= (x?+ £2)¥2>R, whereR is
the vortex radiusg, is a constantK, is the modified Bessel
function, ki=[awce/Uy(1+8)][(agueo/U,eUyd) —1/L,]
>0, and co¥=x/r. In the inner region (<R), the solution
reads

¢m=( bidy(kar)+ %r)cos 0, (30

2

where ¢; is a constant], is the Bessel function of the first
order, and 1— a3c?/u*2(1+a) ]F 5 = 8(ki+k3)u,By/cC.

Ka(kiR)/k1K1(kiR) = = J5(kaR) k31 (KaR), (31
whereJ, and K, are the Bessel function and the modified
Bessel function of the second order, respectively. For a given
value ofky, Eq. (31) determine,.

On the other hand, wheh,~L;u, /agvey, then EQq.
(27) takes the form of a stationary Navier-Stokes equation,
namely,

C
32 p— %J(&Viqﬁho, (32)

whereuw,=[1— a3c?/uZ(1+a)]/6>0. Equation(32) is sat-
isfied by

2 :4¢'K'2 F{_i( _
Vi a,2 ex o o)

where ¢, , K, anda, are arbitrary constants. The solution of
Eq. (33) is given by

uaBO
Mmic

x|, (33

¢:

2 cosmK,x)+2( 1- ;) cos(K,g)l.

UaBo + ¢ |
X n
MiC ! |
(34
Fora,2>1 the vortex profile given by Eq34) resembles the
Kelvin-Stuart “cat’'s eyes” that are chains of vortices.
Next, we substituting foiV2A, from Eq. (26) into Eq.
(21), we have
L y(VEd+Bid—BA) =0, (35
provided thata= ay+ (47j.oA2/BoCL,). Here, the vortex
size is of the order ok.. A possible solution of Eq(35) is

s uB, )
__X s
MmiC

where B;=[c?aay/u?(1+a)\2]+awc/u(l+a)l,, B
=aoc/u(1+a))\§, andF3 is an arbitrary constant of inte-
gration.

Combining Eqs(26) and(36), we obtain a fourth order
differential equation

(36)

VZh+Brd—BoA,=Fs

4 ’ uBy
Vi$p+C Vip+Corodp—F3 > x=0, (37)
NemiC

where C,=8,+F;—1N\2 and C,=[(F3— B1)+cBrap/
u]/\2. Equation(37) admits spatially-bounded dipolar vor-
tex solutions. In the outer regiom ¥ R), we setF;=0 and
write the solution of Eq(37) as

d=[Q1K,(s:r)+ Q2K (s,r)]cos 6, (39
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_4C¥2)1/2]/2 fOI’ a'l<0 and a§>4a'2>0 Here, a'l=,31

where Q; and Q, are constants andf,=[—a;*(a} (
—Ng2anda,=— (B1/\2) +cBrag/uni. Thus,u?> aay is

_aaa‘cz)\%i (?Vzgz’)— 1 Ca _477Ca6’7\%ijeo
Pa UgUy s uaLn BOuau*LJ

required for the localization of the outer solution. In the inner 2 %29, 2
region ( <R), the solution reads X dpp— CPa |, %0 D3, V2h)=0. (44
3 u,Bo u p2 L
*xrra
F; uBg
b= Q3Ja(S3r)+Qyl1(s4r) — 2 cc," |08 8, (39  Equation(44) is satisfied by the ansatz
e

where Q; and Q, are constants.We have defineds; 4 ) N N
—[(C3-4C,)Y2+C,]/2 for C,<O0. Evidently, the outerand V1 #=F1¢+Fax. (45)
inner region profiles of inertial electromagnetic vortices are N . .
different from those of non-inertial vortices. It is worthwhile Here 2the CO”Sta”:Eflz E”szg are related by 6" Fy
to mention here that the sheared equilibrium electron flow is_(CPa/liaBzo)_(l_ g “CNpil Uy pa) Fz —[1—(caluyln) .
responsible for complete localization of the dipolar vortex in — 4277C2ao Apijeo/BoUsUy Ly]=0, where & =p;— aag
the outer region. Without the sheared plasma flow, we havé<cz)\pi/“au* . Clearly, for [1—(ca/usln)—4mCag
ao=a andC,=0 in the outer region and the solution of Eq. < Abijeo/BoUaUxLy]/ 6*=P/5*>0, the dipolar vortex so-
(37) has a long taif® lution of Eq. (45) is also similar to Eqs(29) and (30).

The constant®;, Q,, Qs, Q, andF can be determined Qn the other hand, whelr= 0 (where the double vortex
by matching the inner and outer solutionsgfandA, and ~ Solutions are forbiddenEqg. (45) takes the form
the higher derivatived/ ¢, V2, V, A, and V2A, at the
vortex interfacer =7R. This exercise hasﬂbeen carried out by ‘e
Mikhailovskii et al.” and Liu and Hortor, and explicit ex- 2, M 2 4\
pressions for the various constants had been found. A uaBOJ(¢’Vi¢) 0, (46)

where  u*=(pi— ag “c’\g;/u3)/(p3— aag c®\Gi/u,u,)

B. Short scale vortices >0. Equation(46) is again satisfied by

Here, we discuss the vortex solutions of E(f§.and(8)

by ignoring dissipation. Thus, in the stationary frame, we 4pEK*? 2 uB,
rewrite Egs.(7) and(8) as Vigp= 5 p|——| o— x|, (47)
a* bq mrc
. 2% 2 Ca 477] eo)\zDi . .
Lyl L=paVI— T BLG deA, where ¢} , K* anda* are arbitrary constants. The solution
a-n 0= e of Eq. (47) is again similar to Eq(34), but the condition
al?. under which the short scale vortex street arises is completely
Di 2
ZaViA,=0 (40 different.
“ Finally, we present the vortex solutions of E¢$0) and
and (41) by assuming that>V, , avy and o<1. Here, Eq.
(41) is also satisfied by Eq26), so that Eq(40) can be cast
V., + av Ca in the form
Ly (1-N2V2)A+ M%AZ— u—°a§¢
cao Zo(V2p+ B p—BEA,)=0, 48
_ " (///Aqs:O’ (41) = ¢( J_¢ B1¢ 132 Z) ( )
wherec, = p2w. provided thatvegpaCa/c?Ly=(ar3/\2)—ay. A possible
When the perpendicular scale size of the nonlinear strucSolution of Eq.(48) is
ture is smaller tham., Eq.(41) is then approximated by
o clapgtoa) 2 N " . uBg
P, | A= = 4|70, (42) Vietpie-BiASFI| @ L x), (49)

A possible localized solution of E¢42) is
. where zﬁ’l‘ =(zczzaao)\%i/ung)\%)tgc%IUngLG)— 1/p§2, ,82
A :C(ao-l—oa) . Cag s 43 Iagc)\Di/Upa)\e, ,u«’fZ(l—C_ao )\Di/PaU*)/(l__C aag
z Uy u, X\gilugu,), andF} is an arbitrary constant of integration.
Combining Eqs(26) and(49), we obtain a fourth order
If we insert Eq.(43) into Eqg. (40), we obtain differential equation
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150 =0, (50) (1+K2p2) 1= = 1K by 81K Ay = 5,(K? 4K

F3
Vig+CiVig+Cio——
Ne XKy KyA1 Ay — 83K2 ¢y, (53
where C¥=pBF—F3—1A\2 and Ci=[(Fi-5%)
+cBs3 ao/u]/)\g. Equation (50) also admits spatially-
bounded dipolar vortex solutiori$ which are similar to the
long wavelength case, as discussed in Sec. IV B. An exami- )
nation of the vortex analyses reveals that the constaatsd KA IKKyAz b1+ 02K Ky 1Az,
« are related in terms of the density and velocity gradients as (54)
well as other plasma parameters. Thus, for given values of
constant density and velocity gradient scalelengths we findind
thatu is completely determined by a specific choicexadind
prescribed values for the unperturbed plasma number den- i c
sity, the plasma temperature and the external magnetic field (1+4K\2)A=— §(1+4K§K§)KxKy¢1A1
strength. The scale sizes of the vortices, as found here, are °
typically of the order ofn, andp,, which are smaller than —477K>2<A2—02KXKy¢>1A1/2, (55
the scale length of the equilibrium density and velocity gra-
dients. Such scenarios are common in sphaed laboratory  where ;= uep2, 81=4m\3;(djeo!/X)/By, 8,=C\3/Bq,
plasmas-! Finally, we note that the present methods of solu-63=wvep2, 7=ve\2, is the plasma resistivity, o;
tions do not allow to construct vortices whose scale sizes are c(dvgg/9X)/ wee and o,=co/By. The time derivative is
of the order of the inhomogeneity scale lengths. Howeverdefined by a dot orp,, A; andA,. We note that the terms
we anticipate that in such a situation, the governing Eqsproportional to sin(B,x) have been dropped in the derivation
(5)—(8) may admit global vortex patterhgrovided that the of Egs. (53)—(55). This approximation, which is often em-
profiles of the density and velocity inhomogeneities areployed by many authors for deriving the relevant Lorenz-like
known. A detailed investigation of this problem is beyondequations in many branches of physics, can easily be

2A2VA — _ l2A < 2y 2
(1+K )\e)Al 77K Al Ule¢l+ B [l"’K )\e
0

the scope of the present paper. generalize#f to describe more realistic space dependence so-
lutions. Furthermore, we note that in deriving E¢s3) and

V. CHAOTIC BEHAVIOR OF ELECTROMAGNETIC (54) we have assumed that>>V, ay PawceK dy, where

TURBULENCE —(cTe/eBy)K, and K,=ng*any/dx, WhICh justify

In the following, we follow Loren?’ and Stenflé"??>and the neglec_;non of the density gradient from E¢®. and (8).
derive a set of equations which are appropriate for studyin% Equations(53)—(55) can be appropriately normalized so
the temporal behavior of chaotic motion involving two- that they can be put in a form which is similar to that of
dimensional low-frequency nonlinearly interacting electro--0renz and Stenflo. We have
magnetic waves in a dissipative magnetoplasma without the
density gradient. Accordingly, we introduce the Ansatz

d. X -0 o+sZ 0 X
$= d1(DSINK,X)SIN(Kyy) (51 dY|=lr-z -1 o]|Y], (56)
d,z Y 0 -b/ \z

and

which describes the nonlinear coupling between various am-
A=A (1)sin(K,x)cog Kyy) — Ay(t)sin(2K,x), (52 plitudes. Here, o= (u K2+ 83) b;/n(1+ szg , T
=~ 8101K7 7K (u1K?+ 85), b=4K b*/(1+4K k2
whereK, andK, are constant parameters, asd, A; and and the new parametes'— — Srayaz(K? 4Kx)b*K Ky/
A, are amplitudes which are only functions of time. a;p(1+K?2 pa) with K2=K} +K2 and 7=t/ty; where to
As an illustration, we consider in detail the chaotic be-= nKzlb* andb} =1+ KZ)\2
havior of nonlinearly interacting flute-like short wavelength A comment is in order If we sei=0, which happens
electromagnetic waves. Thus, by substituting E§4) and  for K2 4K2 Eq. (56) then reduce to the Stenflo type equa-

(52) into Egs.(7) and(8), we readily obtain tlons However, the normalizations used here are
V27K?B,
¢1=a1X= X
KKy V% (b2 — 6K2\2+Boorp /C)[ 1+ By /c(1+4K2\2)]
V27K *Bo( 11K+ B5)
A1=a2Y=

c81K,K2\b% (b — 6K2\ 2+ Boarp /c)[ 1+ 0,Bo/c(1+4K2A\2) ]
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and librium density inhomogeneity may lead to even qualitative
changes in the chaotic dynamics of electromagnetic turbu-
— pK*Bo( 1 K2+ 83) - lence, as discussed here.

Ar,=azZ=
S 81K, K2 (0% — 6K2N2+ By, /c)]

. . . VI. DISCUSSION AND CONCLUSIONS
Equations(56) are the generalized Lorenz equations,

whose properties can be studied both analytically as well as In this paper, we have investigated the linear as well as
numerically by means of standard technigie#/e observe nonlinear properties of low-frequency electromagnetic waves

that the equilibrium points of Eq56) are in a nonuniform dissipative magnetized plasmas. For this
purpose, we have employed the electron MHD equations
Xo=*[b((r—2+sr?/0) supplemented by Ampere’s law as well as the election)
response given by Poisson’s equatitimee Boltzmann distri-
(T =2+sr¥0)*+4(r—-1)/2]'" (57 buti%n) ang have )ijerived a setqof nonlinear mode coupling
equations. In the linear regime, our analyses show that elec-
Yo= rbXo , (59) tromagnetic disturbances of various scale sizes can be driven
(b+XS) on account of the free energy stored in the sheared equilib-
rium plasma flows. The physical mechanism of the present
and instabilities is similar to the current convective electrostatic
Y instability *~ Furthermore, we have shown that the nonlinear
Zo= 0’0 (59 mode coupling of finite amplitude electromagnetic waves in

b~ nonuniform magnetoplasmas with sheared plasma flows can
lead to self-organization in the form of various types of vor-
equilibrium fixed pointg X,= Y= + \/5(|r|—1)1/2 andz tex patterns. Explicit conditions for the existence of different
o— o™ — ) 0 . .
=|r|—1] are unstable resulting in convective cell motions.%gfsthzf \ellzré't?gf] ?1:2 %tggaclﬂeg}ozorng)rf@g]wplfb)ws E:;’ignfgund
Thus, the linear instability should saturate by attracting to gnetohydrody . q .
one of these new fixed states. Furthermore, it is worth men"' " electron plasma with statlonary fons admit vortices
tioning that a detailed behavior of chaotic motion ¢ whose characteristic transveréte z) scale length\, satis-
+ /3K, can be studied by numerically solving Eqs3)—~  f1€s the inequalith <\, <\;, whereA;=c/w,, is the col-
(55). However, this investigation is beyond the scope of thisisionless ion skin depth. Inclusion of the Boltzmann ion dis-
paper. tribution allows shorter scaléin comparison with the ion
The stability of the stationary states can be studied by Qyroradiug dipolar vortices. Since the vortex solutions exist
simple linear analysis. Letting=X.+X;, Y=Y+Y; and locally, our theory requires that the vortex sizes are much
. S 1 S

In the absence of theterm, we note that fojr|>1, the

Z=7Z.+2,, the linearized system is smallgr than _the scalelengths of the quilibrium density _and
velocity gradients. Furthermore, weakly interacting flute-like

d, X; -0 o 0 Xy electromagnetic waves in a dissipative system without the

a.yY, | =|r-z. -1 —x, Y, |, (60) density gradient are shown to obey the generalized Lorenz-

Stenflo equations, which admit a chaotic state. The param-
d,Z, Yo  Xs —b Z, eter regimes for the onset of chaos have been identified. We
whereX,<X., Y,<Y, andZ,<Z, and (X, Ys, Z.) repre- have_ thusf pomt_ed out the possibility of different classes_of
i ; ._solutions including ordered structures as well as a chaos in a
sents a stationary state. The corresponding charactens(*c . : .
L ully developed electromagnetic turbulence in nonuniform
equation is thus .
magnetoplasmas. Unfortunately, we are unsuccessful writing
(A +D)[(\?+(1+ o)\ +(1-T1)0)]=0, (61)  our complete set of Eq$5)—(8) in terms of the generalized
Lorenz-Stenflo equations in the presence of the density gra-
which governs the linear stability of the stationary state. Fodient and the magnetic field-aligned variation terms. There-
example, if we take <1, the origin is a hyperbolic sink and fore, the role of the latter on the chaotic motion could not be
is thus stable. On the other hand, for 1, the eigenvalues rigorously identified. It may well turn out that inclusion of
areA=—Db andA=—(1+0), which are always negative. the equilibrium density inhomogeneity may lead to even
Finally, for r>1, the nontrivial stationary points ané; qualitative changes in the chaotic dynamics of electromag-
=Y, ==b(r—1) andZs=r—1. The eigenvalues of Eq. netic turbulence, in contrast to what has been described here.

(61) are \=—(o+b+1) and *i\20(o+1)/(c—b—1), The present paper neither includes the sheared magnetic
so that the stationary stateX{,Ys ,Zs) are sinks forr fields nor addresses the issue of the vortex stability. In the
e(1,ry), wherery=o0(o+b+3)/(c—b—1). A Hopf bi- presence of equilibrium magnetic shear, the parallel

furcation occurs at,,. For o>1+b, imaginary roots are wavevector is a function of position and one encounters an
possible and that for>ry the nontrivial fixed points are eigenvalue problem for the linear electromagnetic waves,
saddles with two-dimensional unstable manifolds. Thus, fowhich may also have a discrete spectrum. Furthermore, a
r>ry all the three fixed points are unstable but the attractocritical evaluation of the literatuf& reveals that long-lived

set still exists? Further bifurcations at largervalues even-  vortices can indeed exist around the mode rational surfaces
tually lead to chaotic behavidP. The inclusion of the equi- when the magnetic shear is incorporated. On the other hand,
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