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Nonlinear dynamics of electromagnetic turbulence in a nonuniform
magnetized plasma

P. K. Shukla, Arshad M. Mirza,a) and R. T. Faria, Jr.b)

Institut für Theoretische Physik IV, Fakulta¨t für Physik und Astronomie, Ruhr-Universita¨t Bochum,
D-44780 Bochum, Germany

~Received 24 June 1997; accepted 17 November 1997!

By using the hydrodynamic electron response with fixed~kinetic! ions along with Poisson’s
equation as well as Ampe`re’s law, a system of nonlinear equations for low-frequency~in
comparison with the electron gyrofrequency! long-~short-! wavelength electromagnetic waves in a
nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density
gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are
obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfve´n-like
electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that
possible stationary solutions of the nonlinear equations without dissipation can be represented in the
form of various types of vortices. On the other hand, the temporal behavior of our nonlinear
dissipative systems without the equilibrium density inhomogeneity can be described by the
generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead
to even qualitative changes in the chaotic dynamics. The results of our investigation should be
useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in
space and laboratory plasmas. ©1998 American Institute of Physics.@S1070-664X~98!00403-0#
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I. INTRODUCTION

Recently, there has been a great deal of interest1–3 in
understanding the linear and nonlinear properties of fin
amplitude low-frequency Alfve´n-like waves in low-
temperature space and laboratory plasmas. The lin
theory4–6 focuses on the derivation of the dispersion relat
and identifying the unstable wave spectra, whereas the n
linear analyses1–3,6–8compute the saturation level of fluctua
tions as well as develop mode coupling equations which
needed for predicting the salient features of fully develop
electromagnetic turbulence in nonuniform magnetized p
mas.

Finite amplitude dispersive Alfve´n-like electromagnetic
waves accompany an electric field parallel to the exter
magnetic field lines. Intense electric fields may cause e
gization of electrons, which may produce interesting p
nomena. The dispersive kinetic Alfve´n waves9 cannot be ob-
tained within the framework of the idea
magnetohydrodynamic~MHD! equations and one has to in
voke either a kinetic theory or a two–fluid model in order
include the dispersion caused by finite Larmor radius or e
tron inertial effects.

Linear theory dictates that nonthermal fluctuations c
be generated provided that there exist free energy sourc
the form of equilibrium anisotropic particle distribution
pressure and velocity gradients, etc. Under appropriate
ditions, free energy of the system can be coupled to both

a!Permanent address: Department of Physics, Quaid-i-Azam Univer
Islamabad 45320, Pakistan.

b!Permanent address: Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade
Estadual de Campinas, 13083-970, Campinas, SP, Brazil.
6161070-664X/98/5(3)/616/9/$15.00
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electrostatic and electromagnetic modes in nonuniform m
netoplasmas. Several authors3–6 have investigated the insta
bility of low-frequency~in comparison with the ion gyrofre
quency!, long wavelength~in comparison with the ion
gyroradius! electrostatic convective cells and drift-acous
waves3 as well as of electromagnetic kinetic Alfve´n-drift
waves6 in the presence of magnetic field-aligned plasma fl
gradients. The nonlinear mode coupling equations exclud
dissipative effects have also been derived and analyze3,6

The results have been applied to understand the nonli
structures in the auroral region of the Earth’s ionosphere

However, the experimental data from space10 and
laboratory11 plasmas exhibit that the observed electroma
netic waves in nonuniform magnetoplasmas have a br
frequency and wavevector spectra. Specifically, the w
frequencies could be smaller or larger than the ion gyro
quency, whereas wavelengths could be in the range betw
the collisionless electron skin depth and the ion gyrorad
scale or even shorter. The waves accompany simultaneo
finite density and sheared magnetic field perturbations. Th
they can be categorized as sheared or kinetic Alfve´n-like
waves.9

In this paper, we focus on the linear and nonlinear pro
erties of low-frequency~in comparison with the electron gy
rofrequency! long as well as short wavelength electroma
netic Alfvén-like waves in a nonuniform magnetoplasm
containing an equilibrium electron density gradient a
sheared equilibrium plasma flows. For this purpose, we h
employed the electron MHD equations consisting of t
electron continuity and the parallel component of the el
tron momentum equations, supplemented by Ampe`re’s law,
in order to derive a set of nonlinear equations. For lo

y,
© 1998 American Institute of Physics
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 This a
wavelength disturbances in an electron plasma with fixed
background, we use Poisson’s equation to eliminate the e
tron number density perturbation. On the other hand,
short wavelength waves, we use the Boltzmann respons
the ion number density perturbation. In the linear limit, w
obtain dispersion relations in the local approximatio
whereas in the nonlinear case we discuss possible statio
and non-stationary solutions of the newly derived nonlin
equations.

The manuscript is organized as follows. In Sec. II, w
present a derivation of the three-dimensional nonlinear m
coupling equations for low-frequency~in comparison with
the electron gyrofrequency!, long and short wavelength
sheared electromagnetic waves in a nonuniform dissipa
magnetoplasma having an equilibrium density gradient
sheared equilibrium plasma flows. The linear dispersion
lations are derived and analyzed in Sec. III. Section IV c
tains stationary solutions of the nonlinear equations when
dissipation is ignored. In Sec. V we study the non-station
behavior of the nonlinear dynamical equations including d
sipation. Finally, the main results of our investigation a
summarized in Sec. VI.

II. GOVERNING NONLINEAR EQUATIONS

Let us consider the nonlinear propagation of lo
frequency~in comparison with the electron gyrofrequen
vce5eB0 /mec, where e is the magnitude of the electro
charge,B0 is the strength of the external magnetic field,me

is the electron mass, andc is the speed of light! electromag-
netic waves in a nonuniform magnetized plasma contain
the equilibrium density gradient]n0 /]x and the equilibrium
velocity gradient ]vj 0 /]x, where n0 is the equilibrium
plasma number density,v j 0 is the magnetic field-aligned un
perturbed plasma flow velocity of the particle speciesj ( j
equalse for the electrons andi for the ions! in a direction
transverse to the equilibrium magnetic fieldB0ẑ; ẑ being the
unit vector along thez axis. We assume that the equilibriu
currents produced by the difference between the electron
ion drift velocities lead to a negligible shear component
the equilibrium magnetic field. This is justified, for examp
for local phenomena in the Earth’s ionosphere and in sev
laboratory devices, where the main component of the m
netic field is thousand times larger than the sheared equ
rium magnetic field component. Furthermore, it is suppo
that the equilibrium density gradient is maintained by ext
nal sources~e.g. external electric fields, gravitational force
etc.!, although no such sources are required for a non-z
gradient ofvj 0 to exist becausevj 0•“vj 0[0 and vj 03B0

[0 when vj 05 ẑv j 0(x). Thus, non-continuous injection o
charged particles along the external magnetic field lines
tablishes sheared plasma flows.

For low-frequency, long wavelength~in comparison
with the electron gyroradiusre) electromagnetic fields in an
isothermal plasma, the electron fluid velocity perturbation
given by

ve'vEB1vDe1vpe1~ve01vez!B1' /B01 ẑvez, ~1!
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where vEB5(c/B0) ẑ3“f, vDe52(cTe /eB0ne) ẑ3“ne ,
and vpe5(c/B0vce)@] t1ve0]z2me“'

2 1(vEB1vDe)•“

1vez]z#“'f are theE3B0, the diamagnetic, and the pola
ization drift velocities, respectively,E52“f2c21] tAzẑ is
the electric field vector,f is the electrostatic potential, an
Az is the component of the vector potential along thez axis.
Furthermore,ne is the electron number density,Te is the
constant electron temperature,me50.51nere

2 is the electron
gyro-viscosity,12 ne is the electron collision frequency, an
B1'5“Az3 ẑ is the two-dimensional magnetic field pertu
bation. By adopting the low-b approximation, the compres
sional magnetic field perturbation along theẑ direction has
been neglected.

Thez-component of the electron fluid velocity perturb
tion is obtained from the Ampe`re’s law

vez'~c/4pnee!“'
2 Az . ~2!

To derive the appropriate nonlinear mode coupling eq
tions for the electrons in the presence of the electromagn
fields, we substitute Eq.~1! into the electron continuity equa
tion and make use of Eq.~2!, and radially obtain in the limit
of re

2
“

2!1

L tS ne11
cn0

B0vce
“'

2 f D2Dc“'
2 ne12

cn0

B0vce
me“'

4 f

2
c

B0
ẑ3“n0•“f2

1

B0e
ẑ3“ j e0•“Az

1
c

4pe
Lz“'

2 Az50, ~3!

where L t[ ] t1ve0 ]z1vEB•“1vez ]z , Lz5 ]z

1B0
21

“Az3 ẑ•“, j e052n0eve0, Dc5nere
2 is the coeffi-

cient of the electron diffusion, andne1(5ne2n0!n0) is the
perturbed electron number density.

Similarly if we substitute thez-component of the electric
field Ez52]zf2c21 ] tAz into the z-component of the re-
sistive electron momentum equation and use Eqs.~1! and~2!,
then we have

~dt1vD0•“ !Az2le
2~L t1ne!“'

2 Az1c~ ]z1Sv0•“ !f

2~cTe /en0!Lzne150, ~4!

where dt5] t1vEB•“, vD052(cTe /eB0n0) ẑ3“n0 is the
equilibrium electron diamagnetic drift velocity,le5c/vpe is
the collisionless electron skin depth,vpe5(4pn0e2/me)

1/2

is the electron plasma frequency, andSv05 ẑ3“ve0 /vce .
We note that thele

2
L t“'

2 Az term in Eq.~4! is the contribu-
tion of the linear and nonlinear electron inertial forces.

In the following, we consider two types of plasma r
sponse. First, when the wave period is shorter than the
plasma and ion gyroperiods, the ions can be regarded
static charge neutralizing background and they do not h
time to respond to electromagnetic disturbances. Thus,
linear and nonlinear phenomena occurs on scales much
low the ion inertial lengthc/vpi , where the plasma dynam
ics is governed by electron flows and their self-consist
magnetic fields. The ion plasma frequency is denoted
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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vpi . Here, we can approximatene1 by (1/4pe)“2f and
write Eqs.~3! and ~4! for long wavelength perturbations as

L tS “

21
vpe

2

vce
2

“'
2 D f2DcS “

210.51
vpe

2

vce
2

“'
2 D “'

2 f

2
vpe

2

n0vce
ẑ3“n0•“f2

4p

B0
ẑ3“ j e0•“Az

1cLz“'
2 Az50 ~5!

and

~dt1vD0•“ !Az2le
2~L t1ne!“'

2 Az1c~]z1Sv0•“ !f

2clDe
2

Lz“
2f50. ~6!

Second, for short wavelength~in comparison with the
ion gyroradiusr i), the ion number density is given byni

'n0 exp(2ef/Ti), whereTi is the constant ion temperatur
Hence, from Poisson’s equation we havene

5(1/4pe)[“2f1(TilDi
22/e)exp(2ef/Ti)] , where lDi

5(Ti /4pn0e2)1/2 is the ion Debye length. Accordingly, fo
this case Eqs.~3! and ~4! can be cast in the form

L t~12ra
2¹'

2 !f2Dc~120.51ra
2
“'

2 !“'
2 f

1ra
2 vce

n0
~ ẑ3“n0!•“f

1
4plDi

2

B0
~ ẑ3“ j e0!•“Az2clDi

2
Lz“'

2 Az50, ~7!

and

~dt1vD0•“ !Az2le
2~L t1ne!“'

2 Az1c~]z1Sv0•“ !f

1csLzf50, ~8!

wherera5ca /vce , ca5(Ti /me)
1/2 is the electron-acoustic

velocity, ands5Te /Ti . In Eq. ~7!, we have assumed tha
“

2lDi
2 !1 and] tf

2!vcera
4uẑ3“f•““'

2 fu.
Equations~5! and ~6! govern the nonlinear dynamics o

long wavelength electromagnetic waves, whereas Eqs.~7!
and ~8! are for nonlinearly interacting short wavelength d
turbances in a nonuniform resistive magnetized plasma w
sheared plasma flows. We note that Eqs.~5!–~8! govern the
mode coupling within the electromagnetic wave spectra.
thus have the possibility of energy cascading from sh
wavelength part of the spectrum to long wavelengths du
the nonlinear interactions of short wavelength oscillatio
Thus, the physics of the modulation interaction13 remains in
tact within our formalism. For example, in an electro
plasma with fixed ion background, magnetic electron d
modes could be nonlinearly excited by Alfve´n-like electron
convective cells. Thus, nonlinearly coupled magnetic el
tron drift modes and Alfve´n-like electron convective cells
can play a very important role in the electron magnetohyd
dynamics~EMHD!,14 where the nonlinear phenomena occ
on a short time~in comparison with the ion plasma and io
gyroperiods! scale over a typical scale size of the order of t
collisionless electron skin depthle .
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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III. LOCAL DISPERSION RELATIONS

In the following, we obtain the local linear dispersio
relations for both the long and short wavelength electrom
netic modes. Accordingly, we neglect the nonlinear terms
Eqs.~5!–~8! and assume that the wavelengths of the per
bations are much smaller than the scalelengths of the e
librium velocity and density gradients. The governing Eq
~5!–~8! are then Fourier transformed by supposing that
perturbed quantitiesf and Az are proportional to exp(ik•r
2 ivt), where k and v are the wavevector and the fre
quency, respectively. Thus, Eqs.~5! and ~6! give

~V2vc* 1 iGc!f5S 4p j e0

B0
kJ•k1ckzk'

2 D k0
22Az ~9!

and

S v2
kzve0be

11be
2vm* 1 iGmDAz

5~11be!
21c~kz1k•Sv0!f, ~10!

where V5 v2kzve0 , vc* 5avcekn•k/k0
2 , a5vpe

2 /vce
2 ,

k0
25k21ak'

2 , kn5 ẑ3“ ln n0, kJ5 ẑ3“ ln je0, Gc5(k2

10.51ak'
2 )Dck'

2 /k0
2 , vm* 5ve* /(11be), ve* 5k•vD0 ,

be5k'
2 le

2 , Gm5bene /(11be), andk2lDe
2 !1.

Combining Eqs.~9! and~10! we obtain the linear disper
sion relation for long wavelength electromagnetic waves

~V2vc* 1 iGc!@v1beV2ve* 1 ibene#

5
c

k0
2S 4p j e0

B0
kJ•k1ckzk'

2 D ~kz1k•Sv0!. ~11!

Equation~11! exhibits a linear coupling between the electr
drift-convective cells~the first term in the parenthesis on th
left-hand side! and the magnetostatic drift modes~the term in
the square bracket on the left-hand side! due to finitekz and
the equilibrium sheared flow. In the absence of the latter,
two modes degenerate, and we obtainv5vc* 2 iGc and v
5(ve* 2 ibene)/(11be), which are damped normal electro
magnetic modes of the magnetized electron plasma con
ing an equilibrium density gradient.

On the other hand, for short wavelength electromagn
modes, Eqs.~7! and ~8! yield

~V2v i* 1 iGs!f5
lDi

2

11ba
S 4p j e0

B0
kJ•k1kzck'

2 DAz ~12!

and

S v2
kzve0be

11be
2 vm* 1 iGmDAz

5~11be!
21c@~11s!kz1k•Sv0#f, ~13!

where v i* 5ra
2vcek•kn /(11ba), ba5k'

2 ra
2 , and Gs

5Dc(110.51ba)k'
2 /(11ba).

Combining Eqs.~12! and ~13!, we obtain the linear dis-
persion equation for short wavelength electromagnetic wa
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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~V2 v i* 1 iGs!~ v1beV2ve* 1 ibene!

5
clDi

2

11ba
S 4p j e0

B0
kJ•k1ckzk'

2 D @~11s!kz1k•Sv0#.

~14!

Equation ~14! shows that finitekz and the equilibrium
sheared plasma flow can cause a linear coupling betwee
ion-drift ~the first term on the left-hand side in the parenth
sis! and magnetostatic drift modes. In the absence of
equilibrium flow, the frequency of a flute-like damped io
drift wave isv5v i* 2 iGs .

For flute perturbations~viz. kz50), Eqs.~11! and ~14!
become, respectively,

~ v2 vc* 1 iGc!~ v2 vm* 1 iGm!

5
ky

2vpe
2

k'
2 ~11a!~11be!vce

2 n0e

]ve0

]x

] j e0

]x
~15!

and

~v2 v i* 1 iGs!~ v2 vm* 1 iGm!

5
ky

2lDi
2 vpe

2

~11ba!~11be!vce
2 n0e

]ve0

]x

] j e0

]x
. ~16!

In the absence of the equilibrium density gradient~viz.
vc* 50, v i* and vm* 50) and dissipation, Eqs.~15! and
~16! admit purely growing instabilities, provided that the v
locity and current gradients oppose each other. The gro
rates for long and short wavelength modes are, respectiv

gc'
vpe

vce
F 1

~11a!~11be!n0eG1/2U]ve0

]x

] j e0

]x U1/2

~17!

and

gs'kylDi

vpe

vce
F 1

~11ba!~11be!n0eG1/2U]ve0

]x

] j e0

]x U1/2

.

~18!

It is evident from Eqs.~17! and~18! that the growth rates ar
directly proportional to the square root of the product of t
equilibrium velocity and current gradients. Thus, the equil
rium sheared plasma flow is responsible for the instabilit

In order to understand the effect of finitekz and the
density inhomogeneity, we rewrite Eqs.~11! and ~14! by
assuming thatv@kzve0 ,Gc ,Gm . Thus, in a nonuniform col-
lisionless plasma, we have, respectively,

v22~vc* 1vm* !v1vc* vm* 2Sl50, ~19!

where Sl5@c/k0
2(11be)#@(4pky(] j e0 /]x)/B0)1ckzk'

2 #@kz

1ky(]ve0 /]x)/vce#, and

v22~v i* 1vm* !v1v i* vm* 2Ss50, ~20!

where Ss5@clDi
2 /(11ba)(11be)#@(4pky(] j e0 /]x)/B0)

1ckzk'
2 #@(11s)kz1ky(]ve0 /]x)/vce#.

It turns out that both the long and short scale electrom
netic waves are stable whenSl andSs are positive. However
for Sl ,Ss,0 and uSl u.(vc* 2vm* )2/4, and uSsu.(v i*
2vm* )2/4, Eqs. ~19! and ~20! predict oscillatory current
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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convective instabilities. Physically, the latter arise becaus
the presence of velocity gradient the parallel componen
the electron velocity perturbation and the wave potential
out of phase, as long as the parallel wavelengths are
tremely large.

Next, we note that there also exist resistive instabilit
whenvm* ,kzve0!v!bene . In this case, Eqs.~11! and~14!
would lead tov5vc* 2 iGc2 iSl /nebe and v5v i* 2 iGs

2 iSs /nebe , respectively. Thus, for Sl ,Ss,0 and
uSl u.nebeGc anduSsu.nebeGs , we have the excitation of lo
scale electron drift-convective cells and short scale ion d
waves in nonuniform collisional plasmas. Furthermore,
magnetic drift modes also become unstable ifuv2vc* u
!Gc , uv2v i* u!Gs , andSl ,Ss,0. The growth rates above
threshold areuSl u/Gc and uSsu/Gs , respectively.

IV. VORTEX SOLUTIONS

In the preceding section, we have seen that velocity g
dient can cause the instability of electromagnetic wa
which attain finite amplitude. The nonlinear interaction b
tween finite amplitude modes can be responsible for the
mation of either ordered structures or a chaotic state dep
ing upon various plasma parameters. Although the gen
stationary and non-stationary solutions of Eqs.~5!–~8! can-
not be found analytically, we discuss here some approxim
solutions. First, we present vortex solutions of a no
dissipative inhomogeneous magnetized system, by assum
that cvceu“'

2 Az]zu!vpe
2 uẑ3“f•“u and ]z

2!“'
2 . Specifi-

cally, we seek traveling localized solutions of our governi
equations by letting2,15,16j5y1az2ut, wherea andu are
constants, and assume thatf andAz are functions ofx andj
only. Conditions for the formation of different types of vo
tices as well as their structures are presented below.
introduction of the new reference framej with constanta
and u for an inhomogeneous medium is a well establish
fact for cases involving Rossby and gravity dipolar vortic
in fluids2,15 as well as drift-acoustic16 and drift-Alfvén2,7,8

vortices in nonuniform magnetized plasmas. Therefore
does not make sense to allowa andu to be a function ofx,
as j is an independent variable~characteristic line! which
depends only ony and z. The physical field variables ar
certainly functions ofx andj, as indicated above.

A. Long scale vortices

In the stationary frame, Eqs.~5! and ~6! may be written
as

Lf~“'
2 f1ucf!1uJ]jAz2

ca

ua~11a!
LA“'

2 Az50

~21!

and

Lf~Az2le
2
“'

2 Az!1
V* 1ave0

ua
]j Az2

ca0

ua
]jf50,

~22!

where Lf5]j2(c/uaB0)(]xf]j2]jf]x), LA5]j

2(1/aB0)(]xAz]j2]j Az]x), ¹'
2 5]2/]x21]2/]j2, uc

5avce /Ln(11a)ua , ua5u2ave0 , uJ54p j e0 /LJB0(1
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 This a
1a)ua , Ln5n0 /(]n0 /]x), LJ5 j e0 /(] j e0 /]x), V*
5cTe /eB0Ln , anda05a1(]ve0 /]x)/vce[a1ve08 /vce .

It is somewhat difficult to find the general solutions
Eqs. ~21! and ~22!. Thus, we consider two limiting case
First, we considerle

2
“'

2 Az!Az so that the scale sizes of th
vortices are much smaller than the collisionless electron s
depth. Here, Eq.~22! gives

Lfu
*
FAz2

ca0

u*
fG50, ~23!

where Lfu
*
5]j2(c/u* B0)(]xf]j2]jf]x), and u* 5u

1V* .
Second, we takeu@V* and ave0 so that Eq.~22! sim-

plifies as

LfuF ~12le
2
“'

2 !Az2
ca0

u
f G50, ~24!

whereLfu[]j2(c/uB0)(]xf]j2]jf]x).
A typical localized solution of Eq.~23! is

Az5
ca0

u*
f, ~25!

whereas Eq.~24! is satisfied by the ansatz

“'
2 Az5

1

le
2S Az2

ca0

u
f D . ~26!

Inserting Eq.~25! into Eq. ~21!, we obtain

F12
aa0c2

uau* ~11a!G]j“'
2 f1

avce

ua~11a! S 1

Ln
2

a0ve0

u* LJ
D ]jf

2
c

uaB0
F12

a0
2c2

u
*
2 ~11a!

GJ~f,“'
2 f!50, ~27!

whereJ(f,“'
2 f)5]xf]j“'

2 f2]jf]x“'
2 f.

Equation~27! is satisfied by the ansatz

“'
2 f5F1f1F2x, ~28!

where the constantsF1 and F2 are related by dF1

1 (c/uaB0) @1 2 a0
2c2/u

*
2 (1 1 a)# F2 1 @avce /ua(1 1 a)#

3(Ln
212a0ve0 /u* LJ)50, and where d512aa0c2/

uau* (11a).
It can be readily shown15–18 that Eq.~28! admits a dipo-

lar vortex solution, the form of which is

fout5f0K1~k1r !cosu, ~29!

in the outer region defined byr 5(x21j2)1/2.R, whereR is
the vortex radius,f0 is a constant,K1 is the modified Besse
function, k1

25@avce /ua(11a)#@(a0ve0 /u* euJd) 21/Ln]
.0, and cosu5x/r. In the inner region (r ,R), the solution
reads

f in5S f iJ1~k2r !1
F2i

k2
2

r D cosu, ~30!

wheref i is a constant,J1 is the Bessel function of the firs
order, and@12a0

2c2/u* 2(11a)#F2i5d(k1
21k2

2)uaB0 /c.
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The constantsf0, f i and F2i are determined from the
equations that come from the matching conditions of
inner and outerf, ¹'

2 f and ¹'f at r 5R. One finds that
f05RF2i /(k1

21k2
2)K1(k1R), f i52k1

2RF2i /k2
2(k1

21k2
2)

J1(k2R), and

K2~k1R!/k1K1~k1R!52J2~k2R!/k2J1~k2R!, ~31!

whereJ2 and K2 are the Bessel function and the modifie
Bessel function of the second order, respectively. For a gi
value ofk1, Eq. ~31! determinesk2.

On the other hand, whenLn'LJu* /a0ve0, then Eq.
~27! takes the form of a stationary Navier-Stokes equati
namely,

]j“'
2 f2

m lc

uaB0
J~f,“'

2 f!50, ~32!

wherem l5@12a0
2c2/u

*
2 (11a)#/d.0. Equation~32! is sat-

isfied by

“'
2 f5

4f lKl
2

al
2

expF2
2

f l
S f2

uaB0

m lc
xD G , ~33!

wheref l , Kl andal are arbitrary constants. The solution
Eq. ~33! is given by3

f5
uaB0

m lc
x1f l lnF2 cosh~Klx!12S 12

1

al
2D cos~Klj!G .

~34!

For al
2.1 the vortex profile given by Eq.~34! resembles the

Kelvin-Stuart ‘‘cat’s eyes’’ that are chains of vortices.
Next, we substituting for“'

2 Az from Eq. ~26! into Eq.
~21!, we have

Lf~“'
2 f1b1f2b2Az!50, ~35!

provided thata5a01(4p j e0le
2/B0cLJ). Here, the vortex

size is of the order ofle . A possible solution of Eq.~35! is

“'
2 f1b1f2b2Az5F3S f2

uB0

m lc
xD , ~36!

where b15@c2aa0 /u2(11a)le
2#1avce /u(11a)Ln , b2

5a0c/u(11a)le
2 , and F3 is an arbitrary constant of inte

gration.
Combining Eqs.~26! and ~36!, we obtain a fourth order

differential equation

“'
4 f1C1“'

2 f1C2f2F3

uB0

le
2m lc

x50, ~37!

where C15b11F321/le
2 and C25@(F32b1)1cb2a0 /

u]/le
2 . Equation~37! admits spatially-bounded dipolar vor

tex solutions. In the outer region (r .R), we setF350 and
write the solution of Eq.~37! as

f5@Q1K1~s1r !1Q2K1~s2r !#cosu, ~38!
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 This a
where Q1 and Q2 are constants ands1,2
2 5@2a16(a1

2

24a2)1/2#/2 for a1,0 and a1
2.4a2.0. Here, a15b1

2le
22 anda252(b1 /le

2)1cb2a0 /ule
2 . Thus,u2@aa0 is

required for the localization of the outer solution. In the inn
region (r ,R), the solution reads

f5FQ3J1~s3r !1Q4I 1~s4r !2
F3

le
2

uB0

m lcC2
r Gcosu, ~39!

where Q3 and Q4 are constants.3 We have defineds3,4

5@(C1
224C2)1/26C1#/2 for C2,0. Evidently, the outer and

inner region profiles of inertial electromagnetic vortices a
different from those of non-inertial vortices. It is worthwhi
to mention here that the sheared equilibrium electron flow
responsible for complete localization of the dipolar vortex
the outer region. Without the sheared plasma flow, we h
a05a andC250 in the outer region and the solution of E
~37! has a long tail.19

The constantsQ1, Q2, Q3, Q4 andF3 can be determined
by matching the inner and outer solutions off and Az and
the higher derivatives¹f, ¹'

2 f, ¹'Az and ¹'
2 Az at the

vortex interfacer 5R. This exercise has been carried out
Mikhailovskii et al.7 and Liu and Horton,7 and explicit ex-
pressions for the various constants had been found.

B. Short scale vortices

Here, we discuss the vortex solutions of Eqs.~7! and~8!
by ignoring dissipation. Thus, in the stationary frame,
rewrite Eqs.~7! and ~8! as

LfF12ra
2
“'

2 2
ca

uaLn
Gf2

4p j e0lDi
2

B0LJua
]j Az

1
calDi

2

ua
LA“'

2 Az50 ~40!

and

Lf~12le
2
“'

2 !Az1
~V* 1ave0!

ua
]j Az2

ca0

ua
]jf

2
cas

ua
LAf50, ~41!

whereca5ra
2vce .

When the perpendicular scale size of the nonlinear st
ture is smaller thanle , Eq. ~41! is then approximated by

Lfu
*
FAz2

c~a01sa!

u*
fG50, ~42!

A possible localized solution of Eq.~42! is

Az5
c~a01sa!

u*
f[

ca0*

u*
f. ~43!

If we insert Eq.~43! into Eq. ~40!, we obtain
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r

e
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e

c-

S ra
22

aa0* c2lDi
2

uau*
D ]j“'

2 f2S 12
ca

uaLn
2

4pca0* lDi
2 j e0

B0uau* LJ
D

3]jf2
cra

2

uaB0
S 12

a0*
2c2lDi

2

u
*
2 ra

2 D J~f,“'
2 f!50. ~44!

Equation~44! is satisfied by the ansatz

“'
2 f5F1* f1F2* x. ~45!

Here the constantsF1* and F2* are related byd* F1*
2(cra

2/uaB0)(12a0*
2c2lDi

2 /u
*
2 ra

2)F2* 2@12(ca /uaLn)
24pca0* lDi

2 j e0 /B0uau* LJ#50, where d* 5ra
22aa0*

3c2lDi
2 /uau* . Clearly, for @12(ca /uaLn)24pca0*

3lDi
2 j e0 /B0uau* LJ]/d* [P/d* .0, the dipolar vortex so-

lution of Eq. ~45! is also similar to Eqs.~29! and ~30!.
On the other hand, whenP50 ~where the double vortex

solutions are forbidden!, Eq. ~45! takes the form

]j“'
2 f2

m* c

uaB0
J~f,“'

2 f!50, ~46!

where m* 5(ra
22a0*

2c2lDi
2 /u

*
2 )/(ra

22aa0* c2lDi
2 /uau* )

.0. Equation~46! is again satisfied by

“'
2 f5

4fs* K* 2

a* 2
exp F2

2

fs*
S f2

uB0

m* c
xD G , ~47!

wherefs* , K* anda* are arbitrary constants. The solutio
of Eq. ~47! is again similar to Eq.~34!, but the condition
under which the short scale vortex street arises is comple
different.

Finally, we present the vortex solutions of Eqs.~40! and
~41! by assuming thatu@V* , ave0 and s!1. Here, Eq.
~41! is also satisfied by Eq.~26!, so that Eq.~40! can be cast
in the form

Lf~“'
2 f1b1* f2b2* Az!50, ~48!

provided thatve0raca /c2LJ5(alDi
2 /le

2)2a0. A possible
solution of Eq.~48! is

“'
2 f1b1* f2b2* Az5F3* S f2

uB0

m* c
xD , ~49!

where b1* 5(c2aa0lDi
2 /u2ra

2le
2)1(ca /ura

2Ln)21/ra
2 , b2*

5a0clDi
2 /ura

2le
2 , m* 5(12c2a0*

2lDi
2 /ra

2u
*
2 )/(12c2aa0*

3lDi
2 /u* ua), andF3* is an arbitrary constant of integration
Combining Eqs.~26! and ~49!, we obtain a fourth order

differential equation
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“'
4 f1C1* “'

2 f1C2* f2
F3*

le
2

uB0

m* c
x50, ~50!

where C1* 5b1* 2F3* 21/le
2 and C2* 5@(F3* 2b1* )

1cb2* a0 /u]/le
2 . Equation ~50! also admits spatially-

bounded dipolar vortex solutions,7,8 which are similar to the
long wavelength case, as discussed in Sec. IV B. An exa
nation of the vortex analyses reveals that the constantsu and
a are related in terms of the density and velocity gradients
well as other plasma parameters. Thus, for given value
constant density and velocity gradient scalelengths we
thatu is completely determined by a specific choice ofa and
prescribed values for the unperturbed plasma number
sity, the plasma temperature and the external magnetic
strength. The scale sizes of the vortices, as found here
typically of the order ofle andra , which are smaller than
the scale length of the equilibrium density and velocity g
dients. Such scenarios are common in space10 and laboratory
plasmas.11 Finally, we note that the present methods of so
tions do not allow to construct vortices whose scale sizes
of the order of the inhomogeneity scale lengths. Howev
we anticipate that in such a situation, the governing E
~5!–~8! may admit global vortex patterns8 provided that the
profiles of the density and velocity inhomogeneities a
known. A detailed investigation of this problem is beyo
the scope of the present paper.

V. CHAOTIC BEHAVIOR OF ELECTROMAGNETIC
TURBULENCE

In the following, we follow Lorenz20 and Stenflo21,22and
derive a set of equations which are appropriate for study
the temporal behavior of chaotic motion involving tw
dimensional low-frequency nonlinearly interacting elect
magnetic waves in a dissipative magnetoplasma without
density gradient. Accordingly, we introduce the Ansatz

f5f1~ t !sin~Kxx!sin~Kyy! ~51!

and

Az5A1~ t !sin~Kxx!cos~Kyy!2A2~ t !sin~2Kxx!, ~52!

whereKx and Ky are constant parameters, andf1 , A1 and
A2 are amplitudes which are only functions of time.

As an illustration, we consider in detail the chaotic b
havior of nonlinearly interacting flute-like short waveleng
electromagnetic waves. Thus, by substituting Eqs.~51! and
~52! into Eqs.~7! and ~8!, we readily obtain
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~11K2ra
2!ḟ152m1K4f11d1KyA12d2~K224Kx

2!

3KxKyA1A22d3K2f1 , ~53!

~11K2le
2!Ȧ152hK2A12s1Kyf11

c

B0
@11K2le

2

26Kx
2le

2#KxKyA2f11s2KxKyf1A2 ,

~54!

and

~114Kx
2le

2!Ȧ252
c

2B0
~114Kx

2le
2!KxKyf1A1

24hKx
2A22s2KxKyf1A1/2, ~55!

wherem15mera
2 , d154plDi

2 (] j e0 /]x)/B0 , d25clDi
2 /B0 ,

d35nere
2 , h5nele

2 , is the plasma resistivity, s1

5c(]ve0 /]x)/vce and s25cs/B0. The time derivative is
defined by a dot onf1 , A1 andA2. We note that the terms
proportional to sin(3Kxx) have been dropped in the derivatio
of Eqs. ~53!–~55!. This approximation, which is often em
ployed by many authors for deriving the relevant Lorenz-li
equations in many branches of physics, can easily
generalized21 to describe more realistic space dependence
lutions. Furthermore, we note that in deriving Eqs.~53! and
~54! we have assumed that] t..V* ]y , ra

2vceKn]y , where
V* 52(cTe /eB0)Kn and Kn5n0

21]n0 /]x, which justify
the neglection of the density gradient from Eqs.~7! and ~8!.

Equations~53!–~55! can be appropriately normalized s
that they can be put in a form which is similar to that
Lorenz and Stenflo. We have

S dt X

dt Y

dt Z
D 5S 2s s1sZ 0

r 2Z 21 0

Y 0 2b
D S X

Y

Z
D , ~56!

which describes the nonlinear coupling between various
plitudes. Here, s5(m1K21d3) be* /h(11K2ra

2), r
52d1s1Ky

2/hK4(m1K21d3), b54Kx
2be* /(114Kx

2le
2)K2

and the new parameters52d2a2a3(K224Kx
2)be* KxKy/

a1h(11K2ra
2), with K25Kx

21Ky
2 and t5t/t0; where t0

5hK2/be* andbe* 511K2le
2 .

A comment is in order. If we sets50, which happens
for Ky

254Kx
2 , Eq. ~56! then reduce to the Stenflo type equ

tions. However, the normalizations used here are
f15a1X5
A2hK2B0

KxKyAbe* ~be* 26Kx
2le

21B0s2 /c!@11s2B0 /c~114Kx
2le

2!#
X,

A15a2Y5
A2hK4B0~m1K21d3!

cd1KxKy
2Abe* ~be* 26Kx

2le
21B0s2 /c!@11s2B0 /c~114Kx

2le
2!#

Y,
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 This a
and

A25a3Z5
2hK4B0~m1K21d3!

@cd1KxKy
2~be* 26Kx

2le
21B0s2 /c!#

Z.

Equations~56! are the generalized Lorenz equation
whose properties can be studied both analytically as we
numerically by means of standard techniques.23 We observe
that the equilibrium points of Eq.~56! are

X056@b„~r 221sr2/s!

1A~r 221sr2/s!214~r 21!…/2#1/2, ~57!

Y05
rbX0

~b1X0
2!

, ~58!

and

Z05
X0Y0

b
. ~59!

In the absence of thes-term, we note that forur u.1, the
equilibrium fixed points@X05Y056Ab(ur u21)1/2, andZ0

5ur u21# are unstable resulting in convective cell motion
Thus, the linear instability should saturate by attracting
one of these new fixed states. Furthermore, it is worth m
tioning that a detailed behavior of chaotic motion forKy

ÞA3Kx can be studied by numerically solving Eqs.~53!–
~55!. However, this investigation is beyond the scope of t
paper.

The stability of the stationary states can be studied b
simple linear analysis. LettingX5Xs1X1, Y5Ys1Y1 and
Z5Zs1Z1, the linearized system is

S dt X1

dtY1

dt Z1

D 5S 2s s 0

r 2Zs 21 2Xs

Ys Xs 2b
D S X1

Y1

Z1

D , ~60!

whereX1!Xs , Y1!Ys andZ1!Zs and (Xs , Ys , Zs) repre-
sents a stationary state. The corresponding characte
equation is thus

~l1b!@„l21~11s!l1~12r !s…#50, ~61!

which governs the linear stability of the stationary state. F
example, if we taker ,1, the origin is a hyperbolic sink an
is thus stable. On the other hand, forr 51, the eigenvalues
are l52b and l52(11s), which are always negative
Finally, for r .1, the nontrivial stationary points areXs

6

5Ys
656Ab(r 21) andZs5r 21. The eigenvalues of Eq

~61! are l52(s1b11) and 6 iA2s(s11)/(s2b21),
so that the stationary states (Xs

6 ,Ys
6 ,Zs) are sinks forr

P(1,r H), where r H[s(s1b13)/(s2b21). A Hopf bi-
furcation occurs atr H . For s.11b, imaginary roots are
possible and that forr .r H the nontrivial fixed points are
saddles with two-dimensional unstable manifolds. Thus,
r .r H all the three fixed points are unstable but the attrac
set still exists.20 Further bifurcations at largerr values even-
tually lead to chaotic behavior.20 The inclusion of the equi-
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librium density inhomogeneity may lead to even qualitati
changes in the chaotic dynamics of electromagnetic tur
lence, as discussed here.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the linear as well
nonlinear properties of low-frequency electromagnetic wa
in a nonuniform dissipative magnetized plasmas. For t
purpose, we have employed the electron MHD equati
supplemented by Ampere’s law as well as the electron~ion!
response given by Poisson’s equation~the Boltzmann distri-
bution! and have derived a set of nonlinear mode coupl
equations. In the linear regime, our analyses show that e
tromagnetic disturbances of various scale sizes can be dr
on account of the free energy stored in the sheared equ
rium plasma flows. The physical mechanism of the pres
instabilities is similar to the current convective electrosta
instability.4–6 Furthermore, we have shown that the nonline
mode coupling of finite amplitude electromagnetic waves
nonuniform magnetoplasmas with sheared plasma flows
lead to self-organization in the form of various types of vo
tex patterns. Explicit conditions for the existence of differe
types of vortices are obtained. For example, we have fo
that the electron magnetohydrodynamic~EMHD! equations
in an electron plasma with stationary ions admit vortic
whose characteristic transverse~to ẑ) scale lengthl' satis-
fies the inequalityle<l'!l i , wherel i5c/vpi is the col-
lisionless ion skin depth. Inclusion of the Boltzmann ion d
tribution allows shorter scale~in comparison with the ion
gyroradius! dipolar vortices. Since the vortex solutions ex
locally, our theory requires that the vortex sizes are mu
smaller than the scalelengths of the equilibrium density a
velocity gradients. Furthermore, weakly interacting flute-li
electromagnetic waves in a dissipative system without
density gradient are shown to obey the generalized Lore
Stenflo equations, which admit a chaotic state. The par
eter regimes for the onset of chaos have been identified.
have thus pointed out the possibility of different classes
solutions including ordered structures as well as a chaos
fully developed electromagnetic turbulence in nonunifo
magnetoplasmas. Unfortunately, we are unsuccessful wri
our complete set of Eqs.~5!–~8! in terms of the generalized
Lorenz-Stenflo equations in the presence of the density
dient and the magnetic field-aligned variation terms. The
fore, the role of the latter on the chaotic motion could not
rigorously identified. It may well turn out that inclusion o
the equilibrium density inhomogeneity may lead to ev
qualitative changes in the chaotic dynamics of electrom
netic turbulence, in contrast to what has been described h

The present paper neither includes the sheared mag
fields nor addresses the issue of the vortex stability. In
presence of equilibrium magnetic shear, the para
wavevector is a function of position and one encounters
eigenvalue problem for the linear electromagnetic wav
which may also have a discrete spectrum. Furthermore
critical evaluation of the literature24 reveals that long-lived
vortices can indeed exist around the mode rational surfa
when the magnetic shear is incorporated. On the other h
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 This a
a number of investigations25–27has been carried out in orde
to answer the question of the stability of dipolar vortices a
the vortex chain, which are stationary solutions of the n
linear partial differential equations. The latter are somew
different from ours. Clearly, the procedure of those inve
gations can be utilized to examine the stability of long a
short scale electromagnetic vortices. We anticipate that th
nonlinear structures should remain stable, because the s
tures of our nonlinear equations are similar in form to tho
of earlier investigations.25–27A complete stability analysis o
the vortices would lead us far beyond the scope of this pa

In closing, we stress that the results of the present inv
tigation, which is complementary to Ref. 3, shall provide
complete and better view of the linear and nonlinear featu
of long and short wavelength electromagnetic turbulence
magnetized plasmas with equilibrium density and veloc
gradients, which are common in space and laboratory p
mas. Specifically, the measurements of broadband ele
and magnetic fluctuations peaked in the current layer10 do
support the current as the source of the fluctuations.
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