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ABELIAN SUBGROUPS OF PRC)-P GALOIS GRC)UPS 

ANTONTO JOSE ENGLER AND JOCHEN KOENIGSMANN 

ABSTRACTS It is proved that non-trirrial normal abelian subgroups of the Ga- 
lois group of the maximal Galois p-extension of a field F (where p is an odd 
prime) arise from Fhenselian valuations with non->divisible value group pro- 
vided #(F/FP) > pz and F contains a ptimitive p-th root of unity. Also, a 
generalization to arbitrary prime-closed Galois-extensions is given. 

INTRODUCTION 

For a prime number p and a field F, let GF(P) denote the Galois group of the 
maximal Galois p-extension F(P) of F) and for a (Krull) valuation v on F we denote 
its value group and residue Zeld by rV (written additively) and (v). The valuation 
v is said to be phenselian if it extends uniquely to F(P). 

It is proved in [EN] and [Ef] that (disregarding one exceptional case) a field F 
with [F: F2] > 4 admits a 2-henselian valuation with char (v) 74 2 and rv 7& 2rt, 
iff GF(2) contains a non-trivial normal abelian subgroup. In this note we prove 
that the same holds (without exception) for any prime p > 2: 

Main Theorern. A field F with [F: FP] > p2 containing a primitive p-th root (p 
of unity admits a p-henselian valuation with char (v) + p and rV 7 prv if and 
only if GF(P) contains a non-trivial normal abelsan szubgroup. 

In the next section we recall from well-known facts about the Galois theory of 
valued fields how normal abelian subgroups arise from p-henselian valuations (the 
easy direction of the Main Theorem). Moreover, we explicitly describe the structure 
°f GF(P) when F admits a p-henselian valuation. 

In section 27 using the methods developed in [K2] for detecting phenselianity 
of a field F (the existence of some non-trivial Rhenselian valuation) via ;rigid' 
and 'strongly Frigid) elements in F (definitions below), we complete WareXs Galois- 
theoretic characterization of (hereditarily pwrigid) fields (cf. [W2]), obtaining a arery 
simple description of these fields (Prop. 2.2). 

From there the link between phenselian valuations and normal abelian subgroups 
°f GF(P) will be established, proving the harder direction of the Main Theorem in 
section 3. For fields of finite absolute transcendence degree, this link has (under 
further additional assumptions) already been discovered by Pop in his 'q-Lemma' 
([Po] 1.12), using local-global-principles for Brauer groups of number fields and 
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ANTONIO JOSE ENGLER AND JOCHEN KOENIGSMANN 2474 

function fields in one variable. So our Main Theorem may as well be regarded as a 
generalization of Pop's result. As a consequence, we deduce that) in general, GF (P) 
contains a unique maximal normal abelian subgroup) i.e.) one contaimng all normal 
abelian subgroups of GF(P) (CorX 3.3). 

In section 4 we shall generalize the A/Iain Theorem to arbitrary p-closed Galois 
extensions Q/F, instead of F(p)/F (Thm. 4.3). 

Finally) in an appendix) following a suggestion of Y. Ershov, we give an al- 
ternative ?roof of the Main Theorem under the additional hypothesis that every 
a C F \ FP is rigid. We deduce from this a new proof of the Galois characterizatior 
of p-adic fields ([K2], Thm. 4.1) which avoids t;he model theoretic reasoning used 
in [K2]. 

1. A DESCRIPTION OF GF(P) FOR p-HENSELIAN FIELDS 

Throughout this paper F will be a field containing a primitive p-th root of unity. 
Therefore, the characteristic of F is 78 p and F(p) contains all p-power roots of 
unity. For any valuation v of F we denote the valuation ring) the maximal ideal 
and the value group by Ov) Mv and rV respectively) writing rV additively. The 
residue field will be denoted by fs(V), or just fs if there is no ambiguity about the 
valuation v. If v is a valuation with charfs(v) + p) then the residue field of an 
extension w of v to F(P) iS the maximal Galois pextension of Es and the value 
group rW is the p-divisible hull of rv 

Assume now that W is phenselian and char.(v) 7& p. Then F contains all p- 
power roots of unity which lie in s. Denoting the inertia and the ramiScation 
subgroup of GF(P) (w.r.t v) by Tv and Ev respectirrely, we deduce from [E], 20.11, 

p. 161 that Vv is triarial: if char N-q7 then either q O and Ev is trivial, or q > O 

and Ev is the unique Sylow q-subgroup of Tq,; but by assumption q £ p and Tv is a 

pro-p-group as a subgroup of GF(P) 
In order to study Tu it is convenient to consider the canonical pairing 

Tv X rtulrv (w) 

(T) u7(x) + rv) f r(z)/z) 

where the bar means the image in ss(W). We know from valuation theory that 
rW/rv is a Rtorsion group and so r(x)lx is a ppower root of 1lnity. ln our case the 
ramification group is trivial and so the pairing is non-degenerate. Therefore, there 

exists a canonical isomorphism Tv Hom(Swlrnypoo)) where ,up is the group 

of allp-power roots of unity (see [E]) §20) for the details). Consequently: Tt, is an 
abelian group. On the other side, the canonical proJection Ov - S gives rise to a 
canonical split short exact sequence 

(t) 1 TV GF(P) G(p) l 

We may conclude from the above d;scussion thatS for fields admitting a p- 
henselian valuation as irl the Main Theorern) the existence of a tlontrivial nor- 
mal abelian subgroup of G(p) follows ftom general valuation theory. Our result 
provides the converse. 

Furthermore, going back to the pairing above) we know that it is compatible 
with the action of G,<(p) on Tt,. Hence, for every T C Tv, a C G,(p) and x C F(P), 

(T) w(.) + rv) = (7(T) w(.) + rv)) 
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where ff is the image of a in G,< (p). Consequently, the determinatlon of ra follows 
from the action of ff on the group upOO. We claim that (topological) generators ff 
for the Galois group Gal(N(ypOO)/N) may be chosen such that v(() = (r for some 
number r and every ( E upOO. Hence 

(Ta, w(x) + rv) (T) w(x) + rV)r = (Tr, w(x) + rv)) 

for every r E Tv and x E F(p). Fiom the non-degeneracy of the pairing it follows 
that ra = Tr, for every r E Tv. Finally, let us observe that the p-henselianity of v 
implies that F (and the extensions of F inside F(p)) contains all the.power roots 
of unity which lie in the residue field. Therefore, we may find out the action of ff 
on upOO without going down to G,<(p). To this end, let us fix inside F(p) a system 
of primitive pn-th roots of unity (pn) n > 1, such that (pPn+l = (pn for every n > 1. 

We shall now present generators for G,<(p) with a suitable acti.on on upOO ) and 
describe GFU(P) 

We first consider the case where F contains upOO. Then the acti.on is trivial and 
so GF (P) -Tv x G,< (p) v 

If (pm E F and (pm+l > F, where m > 1 for p 78 2 and m > 2 for p = 2, then 

Gal(F(ypOO)/F) Zp, and this group has a generator ff such that a(4pn) = (S+1 

for every n > m. Therefore, ff acts on Tv by ra .- rP +1 for each r X Tv. 
As charK 74 p, F(ypoo)/F is purely inert, i.e. unramified and defectless. Thus, 

by ([E]) Thm 22 7, P 182), TV C GF(/,OPOO)(P)) and by the first case above 
GF(,UPOO)(P) -TV x G(upoo)(p) (Tv is also the inertia group corresponding to the 
unique extension of v to F(Mpoo)) and GF(P) -GF(,UPOO)(P) >< EP 

If P = 2 and i := J=T , F, the above arguments apply to F(i), but not to F. 
We shall use the exact sequence 

1 ) GF(i)(2) GF(2) ) Gal(F(i)/F) 1 

which splits iff F is formally real ([Be], Thm. 3, p. 76). The description of G:F(2) 
now depends on whether or not F(i) contains all 2n-th roots of unity. 

Let us first discuss the case 82°° C F(i). In l;his case GF(i(2) -Tv x G,C(i)(2) 
and Tf = T-1 for each T E Tv and X E GF(2) \ GF(i)(2): note that such a X 

induces on 82°° the automorphism (pm HF (p-ml for every m > 1. In particular, if F 
is formally real, we have 

GF1(2) GFi)(2) >< (P)- (TV x G(i(2)) >< (P), 

where p is an involution with rP -- r-1 for each r E Tv. 
Now consider the case 82°° ' F(i), i.e. for some m > 2, 42m E F(i) and 

42m+l f F(i), so Gal(F(/u200)/F(i)) -22. In this case Gal(F(,u200)/F)-22 or 
-22 x 2/22 (cyclotomic extensions are abelian). 

If Gal(F(y200)/F) -22, F cannot be formally real: 22 does not contain i:rlvo- 
lutions, but if F is real, the subextension F({(:2n + (:2 1 | n E N}) of F(82Oo)/F 

which has index < 2 in F(,u200) is also real, hence of index = 2. .Also, m > 3, 
because 423 = (1 + i)/ E F(i): note that 22 E F(,u200) and thus X E F(i). 
Flurthermore, if J\F denotes the norm function for the extension F(i)/F, one has 
S(42m) =-1: otherwise S(42m) = 1 and thus, by Efilbert?s Theorem 90, 42m = 
zlz- = z2/z-z for some z E F(i), where the bar generates Gal(F(i)/F), but zz E 
F n F(,ll200)2 c F(i)2, so 42m E F(i)2) contradicting the assumption 42m+1 , F(i). 
So for ff E Gal(F(8200)/F) \ Gal(F(8200)/F(i)), a((2m) = -42-ml = 422m l. In 
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this case we can find a generator ff for Gal(F(,u)lF) such that C(G,n) = (>2n -1 

for every n > m. Arguing as above, we therl get GF(S,2 ) (2) Tq, x G(s,20o) (2) and GF(2) GF(j22OO)(2) X (ff) where (ff) acts on Tw by T¢ = TS -1 for each r E Tv. If Gal(F(,a2)/F) 22 x 2/22) the fixed field F! of the 2/22 factor comes 

under the first p = 2-case of our discussion) ;.e. y2 C F'(i) = F(,a200). So each 
0 e GF,(2) \ GF,(i)(2)> that is each X e GF(2) \ GF(i)(2) with +2 e GF(Y200)(2)) satisfies rQ-r- for any r C T7,. 

Puttirlg things together, we hare. thus proved: 
Propositlon 1*1* Let p be any prtme and 1et (Fv) be a p-henselian valued feld with char N y£ p. Then: 

(a) If Hp C F, then GS(P) Tv x GK(p). 

(b) If (Spm /E F and (Spm+l f F, where m > 1 for p + 2 and m > 2 for p-2, then 

GF(P) GF(/,POO)(P) X Gal(F(ppOO)/F) (Tv x G,<(poo(p)) >< gp, 

where 2P h>as a generator ff such that ra-trP +1 Jor every r E TZJ 

(c) If p 22 i f F and ,U2 C F(i) then GF (,) (2) -TV x G,<i)(2) and rX = T- 

for each T C T?J and Q e CF(2) \ F(i)(2) 
If, in addit;ion, F is formatly realn then 

GF(2) -(TV X GN(t)(2)) X (P)) 
where p is an invol1>t1>on with rrP = r-1 for each T E tVe 

(d) If p = 22 i X Fn and for some m > 27 ¢32m E F(i) and (2m+1 X F(i) then 
GF(i)(2) can be described as in (b) and etther 

(d 1 ) Gczl (F(H2 )/F)- 22 n m > 3, F iS not formally real and 

GF(2)- GF(,2)(2) >4 GAl(F(HSOO)/F) (Tv x GN(,2)(2)) X E2) 

where 22 has a generator ff such that ra-tr2 -1 for erery T E Tvn or (d2) Gal(F(y200)/F) _ 2S x 2/2Z, and for each f C GE(2) \ GFfi(2) with 
02 E GF(820C )(2) one has trQ = T-1 for any T G Tv. In particular, if F iS formally real, 

GF(2) - ((TU x CK(M2OO)(2)) >4 22) ><I (p)7 

where p is an involqbtzon with fP-f-l for each T G T,, and 22 has a generator ff sq>ch that r¢ = r2 +1 for each r E Tv. 

Observation l e2 (a) If F is a field with Gal (F(8200 )/F) 2/22 or rv 22 X 2/227 then char F 0. 

This is because the restriction map 
Res: Gal (F (82 ) /F) > Gal (Falg (1l/200 ) /FaS1lg ) , 

where Fzg : F n Q or F nFp is the algebraic part of F) is an isomorphism. But an algebraic extension of IFp containing 82 iS quadratically closed, so it has no subfields of index 27 as its Sylow-2-subgroup is the pro-2 cyclic group) which itself has no subgroups of finite order. 
(b) Nevertheless, there are non-fortnally real fields with Gal(F(,u2)/F) rV E/22 or 22 x E/22. 

Clearly) there are real fields with that property) e.g. K-R or K @. Now take 

F = K(T)(A/-1-T2), and use the fact that Res is an isomorphism as above. 
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For fields F with Gal(F(,a200)/F) fv 2/2g, there axe examples which are even 
'less formally real7, i.e. not showing any 'real heritage7: for each rz > 47 we fi:rld, 
by Dirichlet, a prime Pn -- -1(m,od2tl); hence 4 t Pn-1) but 2n } p2 _ 1 = 

(Pn-l)(Pn + 1)v sO i f EPn) but 42n E IFpn(i). Taking F to be a non-trivial 
ultraproduct of the ?Pn implies i f F, but 82 C F(i), i.e. Gal(F(,u200)/F) 
E/22. F is non-real, not because each of the FPn was (the ultra-product of a 
sequence of non-real fields of increasing level, e.g., is real!), but because the level of 
each §?Pn iS 2, i.e. -1 E IF2 + IF2n for each n. This, by the way, also shows that 

(c) the property Gal(F(p2)/F)-22 is - unlike the property GI (2) -22 - 

not elementary (in the langXuage of fields). 

2. p-RIGIDITY REVISITED 

Throughout this section we shall fix a prime p > 2. 
Let us recall from [W2] and [K2] that an element a E F \ FP is called p-rigid 

if the image of the norm F(X) > F is UiP=o atFP, and strongly prigid if 
FP + aiFP C FP U atFP for all i E {1, 2, . . . , p-1}. 

It was proved in [K2] that strongly p-rigid elements in a field F containing a 
primitive pth root (p of unity give rise to a phenselian valuation v with char s(v) 7& 
p and rV 7t prv- We still do not know whether on a field F with (p E F and 
[F: FP] > p2, p-rigid elements already lead to p-henselian valuations. 

Eowever) if F has enough Frigid elements, the existence of some strongly p-rigid 
element (and thus of a non-trivial p-henselian valuation) can be deduced. This was 
proved in [K2], Prop. 3.1, under the additional hypotheses that (p ( F and that 

*. . 

F: FP < oo. but both hypotheses are unnecessary. The first one is not used 
at all in the course of the proof, and the second one can be avoided by omitting 
the 'subelaim' entirely, but otherwise carrying out the same '>rigid calculus' only 
under the assumption that for some u,v e F one has uP + avP E akFP. With 
these changes in the proof of [K2], 3.1, together with the remark following it which 
points out that only a consequence of p-rigidity is actually used, namely that for 
p-rigid elements c E F in particular FP + CFP C UiP=o CiFP) we obtain the following 
stronger result: 

Proposition 2.1. Let F be a field with char F 7& p. If F contains elements a, b 
which are p-independent (i.e. §?p-lineclrly independent mod1>lo FP) s?>ch that c X 

((z) b) \ FP => 1-c E UiP=O ciFP * then a or b is strongly p-rigid. 

In [W2], Ware calls a field F p-rigid if every a E F\FP is p-rigid, and heredit;ar- 
ily trigid if every subextension of F(p)/F is p--rigid. He gives a Galois-theoretic 
description of hereditarily p-rigid fields. Using the above proposition and the main 
theorem of [K2], it follows even that p-rigidity and hereditary prigidity are the 
same and that p-rigid fields have a very simple structure: 

Proposition 2.2. Let F be a field such that (p E F and F 7& F(p). Then the 
following conditions are equivalent: 

(i) F is hereditarily p-rigid. 
(ii) F is p-rigid. 
(iii) a f FP => 1-a E UiP_o aiFP for all a C F. 
(;v) F has a p-henselian val?<ation v with char (v) + p and G,<t) (p) _ 1 or rv zp. 

(v) There is an exact sequence 1 Ep GF(P) ZP 1 for some index set I. 
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(V;) GF(P) is solvable. Recall that a profinite group is called 'solsrable) if it has a 
iRrLite normal series with abelian factors (+ 'pro-solvable'). 

Proof. [W2], Theorems 1 and 3 give the equivalences (i) X (v) X (vi). With the 
trivial implications (i) X (ii) X (iii) and (iv) X (v), we only have to prove (iii) X 

(iv) . . . 
If [F: FP] = p then GF(P) - EP, and the trivial valuation on F satisfies (iv). 

So we may assume that [F: FP] > P2 Then there are two p-independent elemerlts 
in F satisfying, by (iii), the hypothesis of Prop. 2.1. fIence we find strongly p-rigid 
elements in F, and thus, by [K2], a p-henselian valuation w with char(w) 7& p 
and rW 7£ prwP 

We recall, from pK1J, that among the p-henselian valuations of a field there is a 
canorlLical valuation vp. If F has phenselian valuations where the residue Seld is p 
clos3d, i.e. it admits no Galois-p-extensions, then vp is the coarsest among those. 
Otherwise all p-henselian valuations are comparable and vp is the ISnest such. (A 

valuation v is finer than w or w is coarser than v-iS Ov C Owc) In case char (vp) 7& p) we let v vp. If char (vp) p, we must have char F = O 

and vp is finer than w Then we choose v such that C)v-(9vp[P l] This choice 
of v makes sure that v is the finest p-henselian valuation on F with char (v) 7& p. 
As v is finer than w, rEv 7& prvG But this also ensures that [fS(V): fC(V)P] < p, 
because otherwise, as condition (iii) passes down to fC(V), by the same reasoning 
as above, a p-henselian valuation v' on ^;(v) could be found with I7vX 7& prv/ and 
residue characteristic not p, inducing, by ([Br], Lemma 1.3), a proper p-henselian 
refinement of v, which would not be in accord with the choice of ve So v, indeed) 
satisfies condition (iv). n 

Corollary a.3. Let F be a field with (p C F. Then GF(P) is abelian iJjr either 
Gfi (p) is cyclic or F is p-rigid and Mp C zF. 

Proof. For p 2) this is [W109 Thm. 3.6; for p > 2) it follows from Prop. 2.2 and 

Prop. 1.1. [2 

Rernark 2.J. For further reference we shall giv-e a name {;o t;he valuation v com 
structed in the proof above: we call it the special p-henselian valuation on F and 
derlote it by vP. So vP is the ISnest phenselian valuation on F with residue charac 
teristic + p which is coarser tharl any p-henselian valuation with p-closed residue 
field. If some p-henselian valuation of residue characteristic + p has a p-closed 
residue field, then so does vP. 

It is convenient to point out that vP may be trivial, even if vp is not (e.g. o.r). 

QP) o 

3. PROOF OF THE MAIN THEOREM 

We prove a refined version of our main theorem g;+ring a valuationtheoret;ic, a 
Galoistheoretic and an 'arithmetic' characterization of p-henselianity: 

Theorem 301e For any prime p > 2 and any field F containing C,p with [F: FP] > 

pS the following conditions afre equivalent: 
(i) Ez admits a phenselian valuation v with char (v) 7& p arbd rv + prV 

(ii) F contains a strongly p-rigid element. 
(ii;) GF(P) contains a non-trivial norrnal abelian subgroupO 
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PrOOf. The equivalerlce (i) X (ii) follows immediately from the main theorem of 
[K2], and (i) X (iii) is obvious after the comments preceding l'ropositin 1.1. 

So we assume (iii) and find a non-trivial normal abelian subgroup y of GF(P)* 
As p > 2, by Kummer Theory GF(P) contains no torsion. Therefore we may write 
N- EP for some index set I. Set L := FiX N. Xf #I > 2 (case 1), Proposition 2.2 
guarantees the existence of some p-henselian valuation w on L with char (w) + p 

and rw 74 Prw If #I 1 (case 2), we claim that there exists ff E GF(P) \ N such 

that the subgroup Ha °f GF(P) generated by a and N is non cyclic. Since the closed 
subgroups of a cyclic group are comparable and ff X N, EC is a cyclic group if and 
only if N C (ff). Therefore we have to show that N C: (a) for some a C GF(P) \ N 
To this end let K be a normal ext.ension of F such that GCll(K/F) rv Ep. ObserYe 

that if (p71 ¢ F for some n > 1, then K-F(/%POO) has this property. Otherwise, 

take K = UKn, n > 1, where Kn is the splitting field of the polynomial XP a, 

for a fixed a E F\FP. For such an extension K it follows that GF(P) -Gg(p3 X U, 

where U Ep, since the e}cact seQllence 1 GK(P) GF(P) -+ EP 1 

splits. Now, to finish the proof of the claim observe that if N C U Or U c N, for 
C E GK(P) \ N, N , (a). Xf N and U are not comparable and ff is a generator of 
U, then N C: (ff). Consequently in both cases we carl find ff # N for which G<r is 
non-cyclic, and the claim is proved. 

Let us now pick ff with ticr non-cyclic. As N - EP and 1:I/N is generated by 
the image of ff in the quotient, we conclude that H5 is solvable. Therefore, for 
the corresponding fixed field E we have that [E: EP] > p2, and so Proposition 2.2 
implies that E has a non-trivial p-henselian valuaXtion w with char (w) + p alld 
rW 78 pRw. But p-henselianity extends to algebraic extensions within F(p), so the 
unique prolongation of w to L is again p-henseliane 

We have then proved in both cases, 1 and 2, that L admits a non-trivial p- 
henselian valuation. 

We now have to observe that, like henselianity (cf. [En])7 p-hel3selianity goes 
down to normal subfields: 

Lemma 3*2. If L/F is a normal field extension with L C F(p) and if L admits a 
non-trivial p-henselian valuationa then so does F. In fact, any phenselian valuation 
on L which is coarser than the canonical p-henselian val?lation vp on L restricts to 
a p-henselian valqjation on F. 

Proof. By ([K1], Prop} 3.1), any coarsening v of the canorlical p-henseli<n valuation 
vp on L is comparable to any phenselian valuation on L. If v | F would allow ar 
extension v' + v to L, v and v' would have to be conjugate, since L/E is normal. 
Thus v' is also p-henselian, and so v and v' are comparable. On the other side, as 
different extensions of v | F they are not comparable, a contradiction. O 

Therefore, back in the proof of the theorem, F admits a non-trivial p-henselian 
valuation. Let v be the restriction of the special puhenselian valuation vP of L to F 
(see Remark 2.4). Then, by the lemma, v isp-henselian, as the specialphenselian 
valuation is coarser than the canonical. Also, char (v) 7& p. So we only have to 
show that rv 78 prv 

If rvP + pRvP, this follows since L/F iS an alGebrAiC extension. So assume that 
rvP-pRv. Then the inert;ia group TVP iS trivial, and so Propositiorl 1 1 implies 
that (vP) is not p-closed. By the choice of vP, no other p-henselian valuation of 
residual characteristic + p can have a pclosed residue field (Remark 2.4). tIence 
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all such valuations are coarsenings of vP and haare p-divisible value group. As this 
cannot happen in case 1, we are in case 2. The unique prolongation to L of the p- 
henselian araluation w on E with ChAr N(W) + p and rw + prW is then a coarsening 
of vP. Hence vP I E iS finer than w. In particular, the aralue group of vP I E iS not 
p-divisible. So the same holds for rv, since vP I E restricts to v and E/F iS an 
algebraic extension. Cl 
Corollary 3.3. For any prime p and any field F with (p C Fn GF(P) has a uniq?le 
maximal normal abelian subgroup (i.e., one containing all normal abelian subgroups 
OC GF (P)) 

Proof. The case p = 2 has been dealt with in [EN]. Also, if GF(P) is abelian, or if 
GF(P) has no non-trivial normal abelian subgroup, there is nothing to show. 

So we may assume that p > 2, that GF(P) is non-abelian and that GF(P) has a 
non-trivial normal abelian subgroup. We claim that then the inertia subgroup TVP 
of the special p-henselian araluation vP on F contains all normal abelian subgroups 
of GF(P) 

AS GF(P) is non-abelian, ss(vP) is not p-closed (Prop- lol)- If GEM(VP)(P) rv Ep, 
then the split exact sequence (t) and Prop. 2.2 imply that F is p-rigid. Thus, by 
Corollary 2.3, ,upOO g F and consequently TVP -GF(,,POO)(P)- By Prop. 1.1 (b), 
GF(P)- TVP >< EP. We now prove that any normal abelian subgroup N of GF(P) 
satisfies N < TVP. If N iS non-cyclic, this is again Corollary 2.3¢ If N iS cyclic, it has 
a generator p = TCa, for some f E: TVP, Ol C EP, and ff the automorphism described 
in Prop. 1.1 (b). We have then to show that a = 0. The action of ff on TVP implies 
that pa = vpm+1ff Thus Tpm = p(psr)-1 C N. Hence there exists A C Ep such that 
TP = (TC)>. Observe now that N is a normal subgroup of (f ) >a ((J). Hence there 
exists r1 C (T) for which (Ta) = 715A. So vP 71 1-5Aa C (f) n (ff) = 11}, 
which implies Ol = 0, as desired. 

If F is not p-rigid, then G,%(VP)(P) contains no non-trivial normal abelian sub- 
group: any such subgroup would, by our Main Theorem, imply the existence of a 
p-henselian valuation on (vP) with residue characteristic 7& p and non-p-divisible 
value group, thus inducing a proper refinement of vP with these properties, but vP 
was already as fine as possible. Therefore, any abelian normal subgroup of GF(P) 
projects to the trivial group on G,(vp) (p), so from the exactness of the sequence (t) 
(with v = vP) it must be contained in Tvp g 

4 A GALOIS-THEORETIC CRITERION FOR Q-HENSELIANITY 
In [Br], Brocker introduces the notion of Q-henselianity (cE. also [Be]): Given a 

normal algebraic Seld extension Q/F, a valuation v on F is called Q-henselian if v 
has a unique prolongation to Q. Hensel's Lemma, Newton's Lemma and Krasner's 
Lemma, applied to polynomials splitting over Q, generalize to Q-henselian valua- 
tions ([Br], 1.2 and [K1], 1.2). Also, the collection of all Q-henselian valuations 
presents the same picture w.r.t. dependence and comparability as in the henselian 
setting, if only Q is p-closed for some prime p | #Gal(Q/F). 
Lemtna 4.1. Let Q/F be a normal field extension and assume that Q is p-closed 
for some prime p | #Gal(Q/F). Then: 
(a) Any two Q-henselian valeations are dependent. 
(b) Q-henselian valeations for which the residue field is not separably closed in 

the residue field of the unique proZongation to Q are comparable; all other 
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Q-henselian valuations fzf there are any) are finer than those and there is a 
coarsest valuation among them. 

Proof. (b) follows from (a) as in the henselian case (cf. [EE]). And (a) follows 
from the corresponding statement for p-henselian valuations ([K1], Prot). 3.1): two 
independent valuations on F extend to independent valuations on the fixed Seld of 
some Sylow psubgroup of Gal (Q/F). O 

Note that (a) generalizes [Br], 1.4, by assuming only p-closedness of Q, and this 
only for one primep. Some such assumption, however, must be made: one easily 
constructs finite Galois extensions Q/F with independent Q-hensellan valuatiolzs 
on F: e.g. if Q/F = ¢2(t)/¢2, all pvaluations with p _ 3 mod 4 are Q-henselian. 

With an identical proof, Lemma 3.2 has now its Q-henselian pendant: 

Corollary 4.2. lDet Q/F be a Galois extension wsth normal subextension L/F. 
Assume that Q is p-closed for some prime p i #Gal(Q/L). Then L admits a non- 
trivial Q-henselian valqbation if and only if F does. 

Before we state a result concerning abelian normal subgroups of an arbitrary 
Galois extension of fields, let us review the case p = 2, which was studied in [EN]. 
For a field F such that Gal(F(2)/F) t 22 >a E/2E, if there exists a non-trivial 
normal abelian subgroup N of Gal (F(2)/F), then F admits a 2-henselian valuation 
v satisfying char(v) 74 2 and rv 74 2rv. If rankN > 2, the statement follows 
from Cor. 4.2 and Cor. 2.16 of [ElS]. For rankN = 1 there are two cases to be 
considered. If N-C(N) (= the centralizer of N), the assertion follows from Thm. 
3.4 and Cor. 3.5 of [EN]. In the case N + C(N), Prop. 3 1, Cor. 4.2 and Cor. 2.-16 
imply the statement. 

The excluded case corresponds to fields which may or may not have a 2-henselian 
valuation. This case will be treated separately by subsequent propositions. 

Let us also denote by ranAcpG the rank of a Sylow pgroup of G. 

Theorem 4*3. Let Q/F be a Galois extension of fields for which G :=- Gal(Q/F) 
contains an abelian normal subgrolbp N. 

(a) If for some prime p the condition 

(*)p (p CQ, Q=Q(p), ran1zpG>2, p] #N 
and if p = 2, G has no Sylow 2-subgroup tv 22 >4 E/2E 

is satisfieda then F admits an Q-henselian valuation v with rW 7& prV and 
char (v) 74 p. 

(b) If P := {p prime f p satisfies (*)p} 7& f0) then F admits an fl-henselian 
valeation v such that rV 74 prV for each p C P. 

Proof. (a) The Sylow-p-subgroup Np of N is a non--trivial normal abelian subgroup 
of some Sylow-p-subgroup Gp of G. 

For p = 2, Fix G2 admits some 2-henselian valuation w with residue character- 
istic 7& 2, and rW 7t 2rW by the above discussion. 

For p 7& 2, our main theorem yields a valuation w on Fix Gp wit:h the required 
properties (note that (p C Q implies (p C Fix Gp). 

In any case Fix Gp admits some phenselian (-- Q-henselian) valuation w with 
the desired properties. The unique prolongation of w to FixNp is then again 
Q-henselian. 
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But as a Sylow-p-subgroup of a normal abelian subgroup of G7 Np is normal in 
G, so7 by the aborre corollartr7 F admits an Q-henselian valuatioll v. Choosing v as 
the restriction of the special p-hensellan valuation of Fix Np to F, we can7 as in 
the proof of the main theoretn7 deduce thal; char (v) + p and rV 74 prV- 

(b) By the hypothesis of (b), the assumptiorl of Lemma 4.1 is satisfied for Q/F. 
On the other hand, if we choose for each p C IP an Q-henselian valuation v(p) as in 
the proof of (a), i.e. v(p) is the restriction of the special p-henselian valuation of 
Fix Np to F7 then either (v(p)) is not p-closed, or if it is7 no proper coarsening has 
p-closed residue field. Thus, by 4.17 V(p) is comparable to any other Qhenselian 
valuation on F. But now the intersection of all Ov(p) (p C IR) corresponds to an 
Q-henselian valuation v of F with rV 7& prV for each p C :P: note that rv(p) 7A 
Prv(p) C1 

Remark 4.4. It may be worth mentioning that there are Selds adrnitting for each 
prilne p a henselian valuation v with rV 7t prV and char (v) 7S , but no henselian 
rraluation satisfying these conditions for all primes simultaneously: e.g. the gener- 

alized power series field F a;p((z(p))). 

Corcsllary 4054 Let Q/F be a Galois extension which is p-closed and contains (, 
for each prime p dividing the order of G:-Gal(Q/F). Assume that F does not 
admit non-trivial Q-henselian valuations. Then every normal abelian subgroup of 
G is cyclic. 

Proof. The assumption on F and Thm. 4.3 imply that rcl,nkpG-1 for any odd 
prime p dividing the order of some normal abelian subgroup N of G. If 2 [ XN, G 

has a Sylow-2-subgroup 22 X 2/22. Since N is abelian, the corresponding fixed 

field could not be formally real7 and so lXr does not contain involutions. Therefore 
rankpN < 1 for all primes p, as desiredu C1 

Remar1c 4.6. There exist formally real fields whose order structure does not allow 
non-trivial 2-henselian valuations7 as in the case of fields with an archimedean 
ordering or fields admitting two independent orderings ([E], Prop. 6 or [Pr]7 Thm. 
8.3: note that the proofs only depend on 2-henselianity). fIRecall that two orderings 
of a field F are called independent if the corresponding topologies defined on F are 
different. 

For a Seld F as above we can conclude that if Q/F is a Galois extension which 
is 2-closed and 2 divides the order of Gal(Q/F), then there do not exist non-trivial 
Q^henselian valuations on F. 

Let us finally describe those prime-closed Galois extensions which are excluded 
from Theorem 4.3 by the assumptions about p -- 2. We recall that a 2-closed Galois 
extension Q over a real field F is called hereditarily pythagorean w.r.t. Q if every 
real extension of F in Q is pythagorean (i.e. sums of squares are squares). The class 
of hereditarily pythagorean fields is of particular interest for us because Theorem 
1 of Becker ([Be], p. 86) states that F is hereditarily pythagorean werst. 52 if and 

only if Gal(Q/:F(i)) is an abelian group. Hence Gal(Q/F) Gal(Q/F(i)) >< (ff), where ff has order 2 and ra r-1 for every r E Gal(Q/F(i))O 

Proposition 4.7 I,et Q/F be a Galois extension of fields which is p-closed and 
¢p G S1 for each prime p dividing the order of G:-Gal(Q/F)e Then the following 
conditions are equivalent: 

(i) G has Sylow-2-subgroups - 22 X 2/22 or E/22. 
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(ii) 2 1 #G-and F is hetseditarily pythagorean w.r.t. Q admitting at most two 
orderings. 

If, in addition, F has an archimedean ordering or two independent orderings, 
then Gal(Q/F(i)) is cyclic, i.e. G ' H >a 212EJ for some H < 2. In this case 
F = R n R', where R and R' are real closures of F in Q. 

Proof. (i) (ii) follows immediately from the f<acts that the order structure of F 

is the same as that of the fixed field of a Sylow 2-subgroup of G and that a subEield 
L of Q over F is real maximal in Q w.r.t. two orderings ifF Gal (Q/F) ' 22 >< 2/22 
(cf. [BEK]). 

The converse is a consequence of ([Be], Thm. 15, p. 118 and Thm. 16, p. 120) 
since for a field F hereditarily pythagorean w.r.t. Q admitting at most t.wo orderings 
we have that (F: F2) < 4. 

The first part of the last statement is a direct consequence o£ G4or. 4.5 and 
Remark 4.6. Finally, let R be a real closure of F in Q, ff a generator of Gal(Q/R) 
and h a generator of H. The action of ff on H implies that h¢ is also an involution. 
Let R' be the fixed field of hv. Then F = R n R'. Cl 

The next proposition completes Theorem 4.3 and also answers the question pro- 
posed by Brocker [Br] after his Proposition 3.5. 

Proposition 4.8. ([Br]7 Proposition 3.5) Let F be aformally realfield and let Q/F 
be a Galois extension as in Corollary 4.5 such that 2 divides the order (f Gal(Q/F). 
The following conditions are equisalent: 

(i) F is hereditarily pythagorean w. r. t. Q. 
(ii) F admits an Q-henselian valuation v such that (v) is the intersection of at 

most two real closures of (v) in (w), where w is the unique extension of v 
to Q. 

Proof: (i) - > (ii) By ([Br], Prop. 3.5) F admits Q-henselian valuations with for- 
mally real residue field. Take v as the finest among those and let w be the extension 
of v to Q. As a quotient of Gal(Q/F(z)), the Galois group Gal(N(w)/N(v)(i)) is 
abelian. Thus s(v) is hereditarily pythagorean w.r.t. s(w), as remarked above. 
On the other side, the choice of v makes sure that (v) does not admit (w)- 
henselian valuations. Indeed, in a formally real field a 2-henselian zzaluation has 
formally real residue field. Therefore any (w)-henselian valuation of (v) would 
induce, by ([Br], Lemma 1.3), a proper refinement of v. Thus, Cor. 4.5 implies that 
Gal(N(w)/N(v)(i)) is cyclic. Hence, as in the proof of the previous proposition, we 
can deduce that sc(v) is the intersection of two real closures. 

The other direction follows from ([Br], Prop. 3.5) (or Thm. 4.3). O 

APPENDIX 

As Y. Ershov pointed out to us, there is an alternative approach £or deducing the 
existence of a p-henselian valuation with non-p-divisible value group from condition 
(iii) in 2.2. 

Proposition A.1. Let F be a field such that (p E F and (F: FP) > p (p £ 2). 
Then (iii) of Proposition 2.S implies that F admits a p-henselian valzlation v such 
that char (v) 78 p and rv 7£ prV. 

This content downloaded from 143.106.108.94 on Fri, 7 Nov 2014 12:51:04 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ANTONIO JOSE ENGLER AND JOCHEN KOENIGSMANN 
2484 

Proof. By 2.1) condition (iii) of 2.2 implies that for the subgroup H < F generated 

by the not strongly p-rigid elements one has FP < H and [H: FP] < p. 

We shall now make use of the results of [AEJ] with T = FP. Clearly every 

strongly p-rigid element is T-birigid (see Definition 1.8 of [AEJ]). Therefore the 

set BF(T) of the T-basic elements is contained in H. It then follows immediately 

from [AEJ]) Thm. 2.16, that F admits a valuation v such that 1 + J\dv C FP 

and C)vX FP C g (observe that as p 7& 2, g = g ([AEJ]: Thm. 2.16)). But 

1 + Mv C FP implies that v is p-henselian (since (p C F), and C)vX FP C H 7& F 
implies that rV 74 prV. It remains to be checked that char(v) 7& p Going for 

a contradiction, let us assume that charfs(v)-p. By Lemma 3.1 of [AEJ], v(ff) 

contains no non-trivial divisible convex subgroup. Therefore the same is true for 

v(FP) c v(g), i.e. rV contains no non-trivial p-divisible conarex subgroup. Hence 

it would be possible to find some a C Mv with v(a) < v(p) and v(a) , prV. Indeed, 

if v(p) f prU we take a = p. If v(p) C prV) let /\ be the convex hull of the subgroup 

generated by v(p) As /\ , pRv, there exists 6 C /\ such that 6 , prV. Clearly we 

may assume 6 > O. Now, for n > 1, the smallest; number satisfying 6 < nv(p), we 

take a C F such that v(a) = 6 if n = 1, and v(a) = 6-(n-l)v(p) otherwise. 

Now, 1 + a C 1 + J\3v C FP. Say 1 + a-(1 + b)P-1 + p b + . . . + bP for 

some b C Mv. So v(a) < v(p) < v(p- b) < ... < v(p bP-l) implies v(a)-v(bP), 

contradicting v (a) , prv * ° 

For a similar analysis see Theorem 2.11 of [HJ]. 

The above approach at the same time gives arl alternative proof of the Galois 

characterization of p-adic fields (Thm. 4.1 in [K2]) which does not depend on model 

theoretic arguments. To be precise, the crucial point in the proof of Thm. 4.1 of 

[K2] is the following proposition. 

Proposition A.2 [[K2] n Proposition 4.4] . Let K be a field whose totcll Gcllois grounp 
is p-cldic. Then, for every nprime number q difgferent from 2 clnd p7 K cldmits a vcll- 
ucltion w wtth Sw + qRw. 
Proof. Just replace in the proof of the Proposition 4.4 of [K2] the occurrerlce of the 

Main Theorem of [K2] by the above result. O 
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