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ABELIAN SUBGROUPS OF PRO-p GALOIS GROUPS

ANTONIO JOSE ENGLER AND JOCHEN KOENIGSMANN

ABSTRACT. It is proved that non-trivial normal abelian subgroups of the Ga-
lois group of the maximal Galois p-extension of a field F' (where p is an odd
prime) arise from p-henselian valuations with non-p-divisible value group, pro-
vided #(F/FP) > p? and F contains a primitive p-th root of unity. Also, a
generalization to arbitrary prime-closed Galois-extensions is given.

INTRODUCTION

For a prime number p and a field F', let Gr(p) denote the Galois group of the
maximal Galois p-extension F'(p) of F, and for a (Krull) valuation v on F' we denote
its value group and residue field by T, (written additively) and x(v). The valuation
v is said to be p-henselian if it extends uniquely to F(p).

It is proved in [EN] and [Ef] that (disregarding one exceptional case) a field F
with [F': 2] > 4 admits a 2-henselian valuation with char x(v) # 2 and T, # 2T,
iff Gp(2) contains a non-trivial normal abelian subgroup. In this note we prove
that the same holds (without exception) for any prime p > 2:

Main Theorem. A field F with [ : FP] > p® containing a primitive p-th root ¢,
of unity admits a p-henselian valuation with char k(v) # p and I, # pI'y if and
only if Gp(p) contains a non-trivial normal abelian subgroup.

In the next section we recall from well-known facts about the Galois theory of
valued fields how normal abelian subgroups arise from p-henselian valuations (the
easy direction of the Main Theorem). Moreover, we explicitly describe the structure
of Gr(p) when F admits a p-henselian valuation.

In section 2, using the methods developed in [K2] for detecting p-henselianity
of a field F' (the existence of some non-trivial p-henselian valuation) via ‘p-rigid’
and ‘strongly p-rigid’ elements in F' (definitions below), we complete Ware’s Galois-
theoretic characterization of ‘hereditarily p-rigid’ fields (cf. [W2]), obtaining a very
simple description of these fields (Prop. 2.2).

From there the link between p-henselian valuations and normal abelian subgroups
of Gr(p) will be established, proving the harder direction of the Main Theorem in
section 3. For fields of finite absolute transcendence degree, this link has (under
further additional assumptions) already been discovered by Pop in his ‘g-Lemma’
([Po], 1.12), using local-global-principles for Brauer groups of number fields and
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2474 ANTONIO JOSE ENGLER AND JOCHEN KOENIGSMANN

function fields in one variable. So our Main Theorem may as well be regarded as a
generalization of Pop’s result. As a consequence, we deduce that, in general, G ¢ (p)
contains a unique maximal normal abelian subgroup, i.e., one containing all normal
abelian subgroups of Gr(p) (Cor. 3.3).

In section 4 we shall generalize the Main Theorem to arbitrary p-closed Galois
extensions )/ F, instead of F(p)/F (Thm. 4.3).

Finally, in an appendix, following a suggestion of Y. Ershov, we give an al-
ternative proof of the Main Theorem under the additional hypothesis that every
acF \ F? is rigid. We deduce from this a new proof of the Galois characterization
of p-adic fields ([K2], Thm. 4.1) which avoids the model theoretic reasoning used
in [K2].

1. A DESCRIPTION OF Gp(p) FOR p-HENSELIAN FIELDS

Throughout this paper F' will be a field containing a primitive p-th root of unity.
Therefore, the characteristic of F' is # p and F(p) contains all p-power roots of
unity. For any valuation v of F' we denote the valuation ring, the maximal ideal
and the value group by O,, M, and I', respectively, writing I", additively. The
residue field will be denoted by x(v), or just « if there is no ambiguity about the
valuation v. If v is a valuation with char k(v) # p, then the residue field of an
extension w of v to F(p) is the maximal Galois p-extension of x and the value
group Iy, is the p-divisible hull of T',.

Assume now that v is p-henselian and char x(v) # p. Then F contains all p-
power roots of unity which lie in x. Denoting the inertia and the ramification
subgroup of Gp(p) (w.r.t. v) by T, and V,, respectively, we deduce from [E], 20.11,
p. 161 that V,, is trivial: if char k = g, then either ¢ = 0 and V,, is trivial, or ¢ > 0
and V,, is the unique Sylow g-subgroup of T5,; but by assumption q # p and T, is a
pro-p-group as a subgroup of Gr(p).

In order to study T, it is convenient to consider the canonical pairing

Ty X Ty /Ty = K(w),

(ryw(z) +I'y) — 7(2)/2,

where the bar means the image in x(w). We know from valuation theory that
I'w /T is a p-torsion group and so 7(z)/x is a p-power root of unity. In our case the
ramification group is trivial and so the pairing is non-degenerate. Therefore, there
exists a canonical isomorphism T, = Hom(I'y /I'y, pipe ), Where pp is the group
of all p-power roots of unity (see [E], §20, for the details). Consequently, T}, is an
abelian group. On the other side, the canonical projection O, — & gives rise to a
canonical split short exact sequence

(1) 1—T, — Gr(p) — Gx(p) — 1.

We may conclude from the above discussion that, for fields admitting a p-
henselian valuation as in the Main Theorem, the existence of a non-trivial nor-
mal abelian subgroup of G (p) follows from general valuation theory. Our result
provides the converse.

Furthermore, going back to the pairing above, we know that it is compatible
with the action of G (p) on T;,. Hence, for every 7 € T, o € G.(p) and z € F(p),

(%, w(z) + Ty) = a(r,w(x) + Ty),
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where 7 is the image of ¢ in G.(p). Consequently, the determination of 77 follows
from the action of & on the group ppe. We claim that (topological) generators &
for the Galois group Gal(k(up=)/x) may be chosen such that 7({) = ¢" for some
number r and every ¢ € pp. Hence

(7% w(z) + o) = (1, w(z) + Tw)" = (7", w(z) + ),

for every 7 € T, and z € F (p). From the non-degeneracy of the pairing it follows
that 79 = 77, for every 7 € T,,. Finally, let us observe that the p-henselianity of v
implies that F' (and the extensions of F inside F(p)) contains all the p-power roots
of unity which lie in the residue field. Therefore, we may find out the action of o
on fip without going down to G.(p). To this end, let us fix inside F'(p) a system
of primitive p™-th roots of unity {,», n > 1, such that Cf)’n“ = (pn for every n > 1.

We shall now present generators for G (p) with a suitable action on ppe, and
describe Gz (p).

We first consider the case where F' contains p,. Then the action is trivial and
50 Gpr(p) 2 T, x Gk(p).

If ¢,m € F and (ym+1 € F, where m > 1 for p # 2 and m > 2 for p = 2, then
Gal(F (ppe)/F) =2 Zyp, and this group has a generator o such that o({pm) = (ﬁ: +
for every n > m. Therefore, o acts on T, by 7° = 77" +1 for each 7 € T,.

As char k # p, F(up~)/F is purely inert, i.e. unramified and defectless. Thus,
by ([E], Thm. 22.7, p. 182), T, C Gp(u,)(p), and by the first case above
G F(pyo0) (P) = Ty X Gr(uye)(p) (Ty is also the inertia group corresponding to the
unique extension of v to F'(up=)) and Gr(p) = Gr(u,e)(p) X Zp.

If p=2and i := /—1 ¢ F, the above arguments apply to F(), but not to F.
We shall use the exact sequence

1 — Gp(p(2) — Grp(2) — Gal(F(i)/F) — 1

which splits iff F' is formally real ([Be], Thm. 3, p. 76). The description of G (2)
now depends on whether or not F(7) contains all 2"-th roots of unity.

Let us first discuss the case pgee C F(i). In this case Gp(;y(2) = T, x G(;)(2)
and 7® = 771 for each 7 € T, and ¢ € Gr(2) \ Gp(;)(2): note that such a ¢
induces on pe the automorphism (pm — Cp”n} for every m > 1. In particular, if F
is formally real, we have

Gr(2) = Gr(i)(2) @ (p) = (Tv X Gr()(2)) » (p),

where p is an involution with 77 = 7-1 for each 7 € T,.

Now consider the case poo € F(i), i.e. for some m > 2, (om € F(i) and
Com+r & F(3), so Gal(F(u2e)/F(i)) & Zo. In this case Gal(F (u2=)/F) & Zg or
& 7o X Z/2Z (cyclotomic extensions are abelian).

If Gal(F(pge)/F) & Zg, F cannot be formally real: Z, does not contain invo-
lutions, but if F is real, the subextension F({(on + (5 | n € N}) of F(ugw)/F
which has index < 2 in F(ug) is also real, hence of index = 2. Also, m > 3,
because (y3 = (1 +14)/v/2 € F(i): note that v/2 € F(uz) and thus v/2 € F(3).
Furthermore, if A/ denotes the norm function for the extension F(i)/F, one has
N({ym) = —1: otherwise M (¢om) = 1 and thus, by Hilbert’s Theorem 90, (omn =
z/Z = 2%/zz for some z € F(i), where the bar generates Gal(F(i)/F), but zz €
FN F(u2=)? C F(i)? so (am € F(i)?, contradicting the assumption (ym+1 & F(3).
So for 0 € Gal(F(pu2=)/F) \ Gal(F(ug=)/F(i)), o((am) = —Com = ¢l In
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this case we can find a generator o for Gal(F (u2e)/F) such that o({on) = 22:_1'1
for every n > m. Arguing as above, we then get Gp(,00)(2) = Ty X G(py00)(2) and
Gr(2) 2 Gr(uym)(2) % (o), where (o) acts on T, by 77 = 72"~ for each 7 € T,,.
If Gal(F(ug)/F) & Zy x Z/2Z, the fixed field F’ of the Z/2Z factor comes
under the first p = 2-case of our discussion, i.e. fig0 C F'(3) = F(uge). So each
o€ Gp(2)\ GF’(i)(2), that is each ¢ € Gp(2) \ Gp(i) (2) with ¢? € GF(M2OO)(2),
satisfies 7¢ = 77! for any 7 € T,.
Putting things together, we have thus proved:

Proposition 1.1. Let p be any prime and let (F,v) be a p-henselian valued field
with char k # p. Then:

(a) If ppee C F, then Gp(p) = T, X Gi(p).

(b) If {pm € F and (ym+1 € F, where m > 1 for p# 2 and m > 2 for p =2, then

GFr(P) = Gr(uye) (P) X Gal(F(pipe) [ F) 2 (Ty X Gy ) (D)) X Ly,

where Zy has a generator o such that 77 = P+ for every T € T,.
(c) Ifp=2,i € F and s C F(i), then Gp(;y(2) 2 Ty X Gy5)(2) and 74 =771
for each 7 € T, and ¢ € Gr(2) \ G (2).
If, in addition, F is formally real, then

Gr(2) = (Ty x Gy (2) % (p),

where p is an involution with 7 = 77! for each T € T,.

(d) If p=2,4 ¢ F, and for some m > 2, (om € F(i) and (ym+1 & F(i), then
Gr(i)(2) can be described as in (b) and either
(d1) Gal(F(uge)/F) 2 Zo, m >3, F is not formally real and

GF(Q) >~ GF(“QOO)(Q) X Gal(F(,ugoo)/F) = (Tv X Gn(ugoo)(Q)) X Zo,

where Zo has a generator o such that @ = 72" =1 for every T € T}, or

(d2) Gal(F(poee)/F) & Zy x /27, and for each ¢ € Gr(2) \ Gp)(2) with
#* € Gpuy00)(2) one has ¢ =771 for any T € T,,. In particular, if F is
formally real,

Gr(2) = (Ts X Gr(ue) (2)) X Z2) % (p),

where p is an involution with 7° = 71 for each T € T, and Zo has a
generator o such that 77 = 72" 1 for each T € T,.

Observation 1.2. (a) If F is a field with Gal(F(ua=)/F) 2 Z/27 or = Zy x Z/2Z,
then char F = 0.
This is because the restriction map

Res : Gal(F ()] F) —> Gal(Futg(ia=)/ Futy),

where Fyq := F N @ or F'n IF'p is the algebraic part of F', is an isomorphism. But
an algebraic extension of I, containing pse is quadratically closed, so it has no
subfields of index 2, as its Sylow-2-subgroup is the pro-2 cyclic group, which itself
has no subgroups of finite order.

(b) Nevertheless, there are non-formally real fields with Gal(F (pee)/F) & Z/2Z
or Zo X Z/27.

Clearly, there are real fields with that property, e.g. K = R or K = Q. Now take
F = K(T)(v/—1—1T7?), and use the fact that Res is an isomorphism, as above.
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For fields F with Gal(F(u2=)/F) & Z/27Z, there are examples which are even
‘less formally real’, i.e. not showing any ‘real heritage’: for each n > 4, we find,
by Dirichlet, a prime p, = —1(mod2"); hence 4 { p, — 1, but 2" | p2 — 1 =
(P — 1)(pn + 1), so i & Fp,, but {on € Fp (). Taking F to be a non-trivial
ultraproduct of the F, implies ¢ € F, but pse C F(i), i.e. Gal(F(p2-)/F) &
Z/2Z. F is non-real, not because each of the [, was (the ultra-product of a
sequence of non-real fields of increasing level, e.g., is reall), but because the level of
each Fp, is 2,i.e. —1 € F2 +F2 for each n. This, by the way, also shows that

(c) the property Gal(F(uze)/F) = Zy is — unlike the property Gp(2) = Zo —
not elementary (in the language of fields).

2. p-RIGIDITY REVISITED

Throughout this section we shall fix a prime p > 2.

Let us recall from [W2] and [K2] that an element a € F\ FP is called p-rigid
if the image of the norm F({/a) — F is |J'—, a’FP, and strongly p-rigid if
FP 4+ a'FP C FPUG'FP for alli € {1,2,... ,p—1}.

It was proved in [K2] that strongly p-rigid elements in a field F' containing a
primitive pth root (, of unity give rise to a p-henselian valuation v with char k(v) #
p and I'y # pI',. We still do not know whether on a field F with {, € F and
[F : Fp] > p?, p-rigid elements already lead to p-henselian valuations.

However, if F' has enough p-rigid elements, the existence of some strongly p-rigid
element (and thus of a non-trivial p-henselian valuation) can be deduced. This was
proved in [K2|, Prop. 3.1, under the additional hypotheses that ¢, € F and that
[F FP] < 0. But both hypotheses are unnecessary. The first one is not used
at all in the course of the proof, and the second one can be avoided by omitting
the ‘subclaim’ entirely, but otherwise carrying out the same ‘p-rigid calculus’ only
under the assumption that for some u,v € F one has u? + av? € a*FP. With
these changes in the proof of [K2], 3.1, together with the remark following it which
points out that only a consequence of p-rigidity is actually used, namely that for
p-rigid elements ¢ € F' in particular FP +cFP C Uf;gl ¢'FP, we obtain the following
stronger result:

Proposition 2.1. Let F be a field with char F # p. If F contains elements a,b
which are p-independent (i.e. F,-linearly independent modulo FP) such that ¢ €
(a,b) \ F? = 1 —ce |J/Z, ¢ FP, then a or b is strongly p-rigid.

In [W2], Ware calls a field F' p-rigid if every a € F\ F? is p-rigid, and hereditar-
ily p-rigid if every subextension of F(p)/F is p-rigid. He gives a Galois-theoretic
description of hereditarily p-rigid fields. Using the above proposition and the main
theorem of [K2], it follows even that p-rigidity and hereditary p-rigidity are the
same and that p-rigid fields have a very simple structure:

Proposition 2.2. Let F' be a field such that {, € F and F # F(p). Then the
following conditions are equivalent:
(i) F is hereditarily p-rigid.
(if) F is p-rigid.
(i) a ¢ FP = 1 —ae|J'Zy a'F? forallac F.
(iv) F has a p-henselian valuation v with char k(v) # p and G () (p) = 1 or X Z,.
(v) There is an ezact sequence 1 — ZL — Gp(p) — Zp, — 1 for some index set I.
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(vi) Gp(p) is solvable. Recall that a profinite group is called ‘solvable’ if it has a
finite normal series with abelian factors (# ‘pro-solvable’).

Proof. [W2], Theorems 1 and 3 give the equivalences (i) & (v) < (vi). With the
trivial implications (i) = (ii) = (iii) and (iv) = (v), we only have to prove (iii) =
(iv).

If [[": FP] = p then Gp(p) & Z,, and the trivial valuation on F' satisfies (iv).
So we may assume that [F : Fp] > p2. Then there are two p-independent elements
in F satisfying, by (iii), the hypothesis of Prop. 2.1. Hence we find strongly p-rigid
elements in F, and thus, by [K2], a p-henselian valuation w with char k(w) # p
and Ty, # pT'y.

We recall, from [K1], that among the p-henselian valuations of a field there is a
canonical valuation v,. If F' has p-henselian valuations where the residue field is p -
closed, i.e. it admits no Galois-p-extensions, then v, is the coarsest among those.
Otherwise all p-henselian valuations are comparable and v, is the finest such. (A
valuation v is finer than w -— or w is coarser than v — iff O, C O,,.)

In case char k(vp) # p, we let v = vy,. If char k(vp) = p, we must have char F' =0
and v, is finer than w. Then we choose v such that O, = O, [p~']. This choice
of v makes sure that v is the finest p-henselian valuation on F' with char k(v) # p.
As v is finer than w, I', # pI',. But this also ensures that [£(v) : £(v)P] < p,
because otherwise, as condition (iii) passes down to x(v), by the same reasoning
as above, a p-henselian valuation v’ on x(v) could be found with I',, # pI',s and
residue characteristic not p, inducing, by ([Br|, Lemma 1.3), a proper p-henselian
refinement of v, which would not be in accord with the choice of v. So v, indeed,
satisfies condition (iv). O

Corollary 2.3. Let F be a field with ¢, € F. Then Gp(p) ts abelian iff either
Gr(p) is cyclic or F is p-rigid and pye C F.

Proof. For p = 2, this is [W1], Thm. 3.6; for p > 2, it follows from Prop. 2.2 and
Prop. 1.1. [

Remark 2.4. For further reference we shall give a name to the valuation v con-
structed in the proof above: we call it the special p-henselian valuation on F' and
denote it by vP. So v? is the finest p-henselian valuation on F' with residue charac-
teristic # p which is coarser than any p-henselian valuation with p-closed residue
field. If some p-henselian valuation of residue characteristic # p has a p-closed
residue field, then so does vP.

It is convenient to point out that v” may be trivial, even if v, is not (e.g. on

Qp)-

3. PROOF OF THE MAIN THEOREM

We prove a refined version of our main theorem giving a valuation-theoretic, a
Galois-theoretic and an ‘arithmetic’ characterization of p-henselianity:

Theorem 3.1. For any prime p > 2 and any field F containing p with [I7 : FP] >
p? the following conditions are equivalent:
(i) F admits a p-henselian valuation v with char k(v) % p and Ty, # pl'y.
(ii) F contains a strongly p-rigid element.
(ii) Gp(p) contains a non-trivial normal abelian subgroup.
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Proof. The equivalence (i) < (ii) follows immediately from the main theorem of
[K2], and (i) = (iii) is obvious after the comments preceding Proposition 1.1.

So we assume (iii) and find a non-trivial normal abelian subgroup N of Gg(p).
As p > 2, by Kummer Theory Gr(p) contains no torsion. Therefore we may write
N = Z{, for some index set I. Set L := Fiz N. If #I > 2 (case 1), Proposition 2.2
guarantees the existence of some p-henselian valuation w on L with char k(w) # p
and Ty, # ply,. If #I =1 (case 2), we claim that there exists ¢ € Gp(p) \ N such
that the subgroup H, of Gr(p) generated by ¢ and N is non-cyclic. Since the closed
subgroups of a cyclic group are comparable and o ¢ N, H, is a cyclic group if and
only if N C (o). Therefore we have to show that N ¢ (o) for some ¢ € Gp(p) \ N.
To this end let K be a normal extension of F' such that Gal(K/F) & Z,. Observe
that if (;n & F for some n > 1, then K = F'(up) has this property. Otherwise,
take K = |J K,, n > 1, where K, is the splitting field of the polynomial X*" — a,
for a fixed a € F'\ FP. For such an extension K it follows that Gr(p) 2 Gk (p) x U,
where U 22 Z,, since the exact sequence 1 — Gk (p) — Gp(p) — Z, — 1
splits. Now, to finish the proof of the claim observe that if N C U or U C N, for
o € Gg(p)\ N, N ¢ (o). If N and U are not comparable and o is a generator of
U, then N ¢ (o). Consequently in both cases we can find ¢ ¢ N for which H, is
non-cyclic, and the claim is proved.

Let us now pick o with H, non-cyclic. As N 22 Z, and H,/N is generated by
the image of ¢ in the quotient, we conclude that H, is solvable. Therefore, for
the corresponding fixed field £ we have that [E : Ep] > p?, and so Proposition 2.2
implies that E has a non-trivial p-henselian valuation w with char k(w) # p and
Ty, # pI'y. But p-henselianity extends to algebraic extensions within F(p), so the
unique prolongation of w to L is again p-henselian.

‘We have then proved in both cases, 1 and 2, that L admits a non-trivial p-
henselian valuation.

We now have to observe that, like henselianity (cf. [En]), p-henselianity goes
down to normal subfields:

Lemma 3.2. If L/F is a normal field extension with L G F(p) and if L admits a
non-trivial p-henselian valuation, then so does F'. In fact, any p-henselian valuation
on L which is coarser than the canonical p-henselian valuation v, on L restricts to
a p-henselian valuation on F.

Proof. By ([K1], Prop. 3.1), any coarsening v of the canonical p-henselian valuation
vp on L is comparable to any p-henselian valuation on L. If v | F' would allow an
extension v/ # v to L, v and v’ would have to be conjugate, since L/F is normal.
Thus v’ is also p-henselian, and so v and v’ are comparable. On the other side, as
different extensions of v | F' they are not comparable, a contradiction. O

Therefore, back in the proof of the theorem, F' admits a non-trivial p-henselian
valuation. Let v be the restriction of the special p-henselian valuation v? of L to F
(see Remark 2.4). Then, by the lemma, v is p-henselian, as the special p-henselian
valuation is coarser than the canonical. Also, char k(v) # p. So we only have to
show that I",, # pL',,.

If Tye # plye, this follows since L/F is an algebraic extension. So assume that
Ty = pI'yp. Then the inertia group T,» is trivial, and so Proposition 1.1 implies
that x(vP) is not p-closed. By the choice of v?, no other p-henselian valuation of
residual characteristic # p can have a p-closed residue field (Remark 2.4). Hence
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all such valuations are coarsenings of v? and have p-divisible value group. As this
cannot happen in case 1, we are in case 2. The unique prolongation to L of the p-
henselian valuation w on E with char x(w) # p and T',, 5 pI'y, is then a coarsening
of vP. Hence vP | E is finer than w. In particular, the value group of v? | E is not
p-divisible. So the same holds for T, since vP | E restricts to v and E/F is an
algebraic extension. O

Corollary 3.3. For any prime p and any field F with ¢, € F, Gp(p) has a unique
mazimal normal abelian subgroup (i.e., one containing all normal abelian subgroups

of Gr(p))-

Proof. The case p = 2 has been dealt with in [EN]. Also, if Gp(p) is abelian, or if
Gr(p) has no non-trivial normal abelian subgroup, there is nothing to show.

So we may assume that p > 2, that Gg(p) is non-abelian and that G(p) has a
non-trivial normal abelian subgroup. We claim that then the inertia subgroup 7)»
of the special p-henselian valuation vP on F' contains all normal abelian subgroups
of Gr(p).

As Gp(p) is non-abelian, x(v?) is not p-closed (Prop. 1.1). If Gy ey (p) = Zy,
then the split exact sequence (1) and Prop. 2.2 imply that F' is p-rigid. Thus, by
Corollary 2.3, pp ¢ F and consequently Top = Gp(y o) (p). By Prop. 1.1 (b),
Gr(p) = Ty % Z,. We now prove that any normal abelian subgroup N of Gp(p)
satisfies N < T,». If N is non-cyclic, this is again Corollary 2.3. If N is cyclic, it has
a generator p = 70, for some 7 € Ty», a0 € Zp, and o the automorphism described
in Prop. 1.1 (b). We have then to show that a = 0. The action of o on T,» implies
that p” = 77" T1g*. Thus 77" = p(p°)~' € N. Hence there exists \ € Z,, such that
7" = (10%)*. Observe now that N is a normal subgroup of (7) x (o). Hence there
exists 71 € (1) for which (70®)* = 70**. So 77" 7! = o* € (1) N {o) = {1},
which implies a = 0, as desired.

If F'is not p-rigid, then G (»)(p) contains no non-trivial normal abelian sub-
group: any such subgroup would, by our Main Theorem, imply the existence of a
p-henselian valuation on k(vP) with residue characteristic # p and non-p-divisible
value group, thus inducing a proper refinement of vP with these properties, but v?
was already as fine as possible. Therefore, any abelian normal subgroup of Gg(p)
projects to the trivial group on G (,r)(p), so from the exactness of the sequence (f)
(with v = vP) it must be contained in Tp». O

4 A GALOIS-THEORETIC CRITERION FOR {)-HENSELIANITY

In [Br], Brécker introduces the notion of Q-henselianity (cf. also [Be]): Given a
normal algebraic field extension 2/ F, a valuation v on F' is called §2-henselian if v
has a unique prolongation to §2. Hensel’s Lemma, Newton’s Lemma and Krasner’s
Lemma, applied to polynomials splitting over €2, generalize to 2-henselian valua-
tions ([Br], 1.2 and [K1], 1.2). Also, the collection of all 2-henselian valuations
presents the same picture w.r.t. dependence and comparability as in the henselian
setting, if only € is p-closed for some prime p | #Gal(Q/F).

Lemma 4.1. Let Q/F be a normal field extension and assume that 2 is p-closed
for some prime p | #Gal(Q/F). Then:
(a) Any two Q-henselian valuations are dependent.
(b) Q-henselian valuations for which the residue field is not separably closed in
the residue field of the unique prolongation to Q are comparable; all other
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Q-henselian valuations (if there are any) are finer than those and there is a
coarsest valuation among them.

Proof. (b) follows from (a) as in the henselian case (cf. [EE]). And (a) follows
from the corresponding statement for p-henselian valuations ([K1], Prop. 3.1): two
independent valuations on F' extend to independent valuations on the fixed field of
some Sylow p-subgroup of Gal(Q/F). |

Note that (a) generalizes [Br], 1.4, by assuming only p-closedness of 2, and this
only for one prime p. Some such assumption, however, must be made: one easily
constructs finite Galois extensions Q/F with independent Q2-henselian valuations
on F: eg. if Q/F = Q(i)/Q, all p-valuations with p = 3 mod 4 are Q-henselian.

With an identical proof, Lemma 3.2 has now its {-henselian pendant:

Corollary 4.2. Let Q/F be a Galois extension with normal subextension L/F.
Assume that Q is p-closed for some prime p | #Gal(Q/L). Then L admits a non-
trivial Q-henselian valuation if and only if F' does.

Before we state a result concerning abelian normal subgroups of an arbitrary
Galois extension of fields, let us review the case p = 2, which was studied in [EN].
For a field F' such that Gal(F(2)/F) % Za x Z/2Z, if there exists a non-trivial
normal abelian subgroup N of Gal(F(2)/F), then F' admits a 2-henselian valuation
v satisfying char k(v) # 2 and ', # 2T,. If rank N > 2, the statement follows
from Cor. 4.2 and Cor. 2.16 of [EN]. For rank N = 1 there are two cases to be
considered. If N = C'(N) (= the centralizer of N), the assertion follows from Thm.
3.4 and Cor. 3.5 of [EN]. In the case N # C(N), Prop. 3.1, Cor. 4.2 and Cor. 2.16
imply the statement.

The excluded case corresponds to fields which may or may not have a 2-henselian
valuation. This case will be treated separately by subsequent propositions.

Let us also denote by rank,G the rank of a Sylow p-group of G.

Theorem 4.3. Let Q/F be a Galois extension of fields for which G := Gal(Q/F)
contains an abelian normal subgroup N.

(a) If for some prime p the condition

(*)p &€, Q=Q(p), rank,G > 2, p| #N
and if p =2, G has no Sylow 2-subgroup = 7o x Z/27

is satisfied, then F admits an Q-henselian valuation v with Ty, # pl'y and
char k(v) # p.

(b) If P := {p prime | p satisfies (%)p} # 0, then F admits an Q-henselian
valuation v such that I'y, # pI', for each p € P.

Proof. (a) The Sylow-p-subgroup N, of N is a non-trivial normal abelian subgroup
of some Sylow-p-subgroup G, of G.

For p = 2, Fix Go admits some 2-henselian valuation w with residue character-
istic # 2, and Ty, # 2T, by the above discussion.

For p # 2, our main theorem yields a valuation w on Fiz G, with the required
properties (note that ¢, € Q implies ¢, € Fiiz Gp).

In any case Fiz G, admits some p-henselian (= Q-henselian) valuation w with
the desired properties. The unique prolongation of w to Fix N, is then again
Q-henselian.
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But as a Sylow-p-subgroup of a normal abelian subgroup of G, IV, is normal in
@, so, by the above corollary, F' admits an {)-henselian valuation v. Choosing v as
the restriction of the special p-henselian valuation of Fiz N, to F, we can, as in
the proof of the main theorem, deduce that char x(v) # p and T', # p[',,.

(b) By the hypothesis of (b), the assumption of Lemma 4.1 is satisfied for Q/F.
On the other hand, if we choose for each p € P an Q-henselian valuation v(p) as in
the proof of (a), i.e. v(p) is the restriction of the special p-henselian valuation of
Fiz N, to F, then either x(v(p)) is not p-closed, or if it is, no proper coarsening has
p-closed residue field. Thus, by 4.1, v(p) is comparable to any other Q-henselian
valuation on F'. But now the intersection of all O,y (p € P) corresponds to an
-henselian valuation v of F' with I", # pI', for each p € P: note that I';(,) #

|

PLy(p) -

Remark 4.4. Tt may be worth mentioning that there are fields admitting for each
prime p a henselian valuation v with T, # pI',, and char k(v) 3 p, but no henselian
valuation satisfying these conditions for all primes simultaneously: e.g. the gener-
alized power series field F' = Q,((Z,))).

Corollary 4.5. Let Q/F be a Galois extension which is p-closed and contains ¢,
for each prime p dividing the order of G := Gal(Q/F). Assume that F does not
admit non-trivial Q-henselian valuations. Then every normal abelian subgroup of
G is cyclic.

Proof. The assumption on F' and Thm. 4.3 imply that rank,G = 1 for any odd
prime p dividing the order of some normal abelian subgroup N of G. If 2 | #N, G
has a Sylow-2-subgroup & Zs x Z/27. Since N is abelian, the corresponding fixed
field could not be formally real, and so N does not contain involutions. Therefore
rank,N <1 for all primes p, as desired. O

Remark 4.6. There exist formally real fields whose order structure does not allow
non-trivial 2-henselian valuations, as in the case of fields with an archimedean
ordering or fields admitting two independent orderings ([E], Prop. 6 or [Pr], Thm.
8.3: note that the proofs only depend on 2-henselianity). Recall that two orderings
of a field F' are called independent if the corresponding topologies defined on F' are
different.

For a field F as above we can conclude that if /F is a Galois extension which
is 2-closed and 2 divides the order of Gal($}/F'), then there do not exist non-trivial
Q-henselian valuations on F.

Let us finally describe those prime-closed Galois extensions which are excluded
from Theorem 4.3 by the assumptions about p = 2. We recall that a 2-closed Galois
extension ) over a real field F' is called hereditarily pythagorean w.r.t.  if every
real extension of F'in (2 is pythagorean (i.e. sums of squares are squares). The class
of hereditarily pythagorean fields is of particular interest for us because Theorem
1 of Becker ([Be], p. 86) states that F' is hereditarily pythagorean w.r.t. € if and
only if Gal(2/F () is an abelian group. Hence Gal(Q2/F) = Gal(Q2/F(i)) x (o),
where o has order 2 and 77 = 7! for every T € Gal(Q/F(3)).

Proposition 4.7. Let Q/F be a Galois extension of fields which is p-closed and
Cp € Q for each prime p dividing the order of G := Gal(U/F'). Then the following
conditions are equivalent:

(i) G has Sylow-2-subgroups = Zg X Z/2Z or 2 Z/2Z.
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(ii) 2 | #G and F is hereditarily pythagorean w.r.t. 0 admitting at most two
orderings.

If, in addition, F' has an archimedean ordering or two z'ndepenAdent orderings,
then Gal(Q/F(3)) is cyclic, i.e. G = H x7Z/2Z for some H < Z. In this case
F=RNR, where R and R’ are real closures of F in ().

Proof. (i) = (ii) follows immediately from the facts that the order structure of F
is the same as that of the fixed field of a Sylow 2-subgroup of G and that a subfield
L of Q over F is real maximal in Q w.r.t. two orderings iff Gal(Q/F) = Zg X Z/27Z
(cf. [BEK]).

The converse is a consequence of ([Be], Thm. 15, p. 118 and Thm. 16, p. 120)
since for a field F' hereditarily pythagorean w.r.t. £ admitting at most two orderings
we have that (F': F?) < 4.

The first part of the last statement is a direct consequence of Cor. 4.5 and
Remark 4.6. Finally, let R be a real closure of F' in Q, o a generator of Gal(Q/R)
and h a generator of H. The action of o on H implies that ho is also an involution.
Let R’ be the fixed field of ho. Then F = RN R'. |

The next proposition completes Theorem 4.3 and also answers the question pro-
posed by Brécker [Br] after his Proposition 3.5.

Proposition 4.8. ([Br], Proposition 3.5) Let F' be a formally real field and let Q/F
be a Galois extension as in Corollary 4.5 such that 2 divides the order of Gal(Q/F).
The following conditions are equivalent:

(i) F is hereditarily pythagorean w.r.t. .
(i) F admits an Q-henselian valuation v such that k(v) is the intersection of at

most two real closures of k(v) in k(w), where w is the unique extension of v
to Q.

Proof: (i) = (ii) By ([Br], Prop. 3.5) F' admits -henselian valuations with for-
mally real residue field. Take v as the finest among those and let w be the extension
of v to Q. As a quotient of Gal(Q2/F(i)), the Galois group Gal(k(w)/k(v)(7)) is
abelian. Thus x(v) is hereditarily pythagorean w.r.t. k(w), as remarked above.
On the other side, the choice of v makes sure that k(v) does not admit x(w)-
henselian valuations. Indeed, in a formally real field a 2-henselian valuation has
formally real residue field. Therefore any x(w)-henselian valuation of k(v) would
induce, by ([Br], Lemma 1.3), a proper refinement of v. Thus, Cor. 4.5 implies that
Gal(k(w)/k(v)(7)) is cyclic. Hence, as in the proof of the previous proposition, we
can deduce that x(v) is the intersection of two real closures.

The other direction follows from ([Br], Prop. 3.5) (or Thm. 4.3). |

APPENDIX

As Y. Ershov pointed out to us, there is an alternative approach for deducing the
existence of a p-henselian valuation with non-p-divisible value group from condition
(iii) in 2.2.

Proposition A.1. Let F be a field such that (, € F and (F : FP) > p (p # 2).
Then (iii) of Proposition 2.2 implies that F' admits a p-henselian valuation v such
that char k(v) # p and T, # pT,,.
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Proof. By 2.1, condition (iii) of 2.2 implies that for the subgroup H < F generated
by the not strongly p-rigid elements one has F? < H and [H : FP] < p.

We shall now make use of the results of [AEJ] with T = FP. Clearly every
strongly p-rigid element is 7-birigid (see Definition 1.8 of [AEJ]). Therefore the
set Bp(T) of the T-basic elements is contained in H. It then follows immediately
from [AEJ], Thm. 2.16, that F admits a valuation v such that 1 + M, C F?
and OF - F? C H (observe that as p # 2, H = H (JAEJ], Thm. 2.16)). But
1+ M, C FP implies that v is p-henselian (since ¢, € F)), and O - F? C H # F°
implies that T, # pI'y. It remains to be checked that char x(v) # p. Going for
a contradiction, let us assume that char k(v) = p. By Lemma 3.1 of [AEJ], v(H)
contains no non-trivial divisible convex subgroup. Therefore the same is true for
v(F?) C v(H), i.e. T, contains no non-trivial p-divisible convex subgroup. Hence
it would be possible to find some a € M, with v(a) < v(p) and v(a) & pI',. Indeed,
if v(p) & pI'y, we take a = p. If v(p) € pI', let A be the convex hull of the subgroup
generated by v(p). As A ¢ pI',,, there exists § € A such that § ¢ pI',. Clearly we
may assume 6 > 0. Now, for n > 1, the smallest number satisfying 6 < nv(p), we
take ¢ € F such that v(a) =6 if n =1, and v(a) = § — (n — 1)v(p) otherwise.

Now, l1+a€ 1+ M, C FP. Say 1 +a = (14+b6P=14p-b+...+ b for
some b € M,. Sov(a) <v(p) <v(p-b) <...<v(p-bP~1) implies v(a) = v(bP),
contradicting v(a) & pT'y. O

For a similar analysis see Theorem 2.11 of [HJ].

The above approach at the same time gives an alternative proof of the Galois
characterization of p-adic fields (Thm. 4.1 in [K2]) which does not depend on model
theoretic arguments. To be precise, the crucial point in the proof of Thm. 4.1 of
[K2] is the following proposition.

Proposition A.2 [[K2], Proposition 4.4]. Let K be a field whose total Galois group
is p-adic. Then, for every prime number q different from 2 and p, K admits a val-
uation w with T'y, # qly,.

Proof. Just replace in the proof of the Proposition 4.4 of [K2] the occurrence of the
Main Theorem of [K2] by the above result. O
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