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We address the issue of interaction between zero-point vacancies in solid 4He as described within the
shadow wave function model. Applying the reversible-work method and taking into account finite-size effects,
we obtain a zero-point monovacancy concentration of �2.03�0.02��10−3, which is slightly higher than the
result due to Reatto et al. for the same model. Utilizing the same methodology, we then consider the divacancy,
taking into account both the in-plane as well as out-of-plane configurations with respect to the basal plane. We
find no significant anisotropy between both conformations. Furthermore, although there is a small binding
tendency, the expected divacancy concentration is only �4–5 times larger than the value expected in the
absence of any clustering propensity, 2.5�10−5. This result suggests that, within the employed model descrip-
tion, no vacancy aggregation leading to phase separation is to be expected in the ground state.
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The experimental observation of a nonclassical rotational
inertia by Kim and Chan1,2 in solid 4He and its interpretation
as a possible manifestation of mass superflow in the solid
phase, has triggered intensive research efforts both at experi-
mental and theoretical levels.3–5 While there is still no con-
sensus as to the precise origin of the observed phenomenol-
ogy, it is a generally accepted notion that it is not an intrinsic
property of the pristine, defect-free crystalline phase, but
rather that it is somehow related to crystal disorder, in the
form of crystal defects such as vacancies and interstitials,
dislocations and grain boundaries,6–14 and/or the presence of
glassy regions.15–17

In this context, the role of vacancies has received a sig-
nificant amount of attention ever since the first theoretical
proposals of a supersolid ground state. Yet, their role remains
controversial to this day. On the one hand, finite-temperature
path-integral Monte Carlo calculations seem to suggest that
the ground state of solid 4He does not contain vacancies.18,19

On the other hand it has been argued that a number of tech-
nical issues, including the use of periodic boundary condi-
tions and small numbers of particles in the simulation box,
may in fact prevent such calculations from correctly assess-
ing the true nature of the zero-temperature ground state.10,20

Moreover, experimental data indicating that a vacancy con-
centration below 0.4% cannot be ruled out,21 as well as ar-
guments due to Anderson et al.,6,14 contend the possibility of
zero-point vacancies in solid 4He. In this light the question
whether or not solid 4He contains a finite zero-point vacancy
concentration remains open.

In case of the existence of a finite zero-point vacancy
concentration, an issue of concern involves the interaction
between vacancies10,22 and a possible propensity toward
clustering. Two recent studies10,22 have addressed this issue
from two different points of view. Mahan and Shin22 per-
formed a theoretical study of the interaction between two
fixed vacancies in solid 4He using elasticity theory of the hcp
crystal. Their results indicate that the interaction is attractive
and anisotropic: the divacancy interaction energy was found
to be more strongly attractive along the c axis compared to

directions within the basal plane. These calculations, how-
ever, do not explicitly include the effects associated with the
zero-point motion of the vacancies. Rossi et al.10 addressed
this issue by performing calculations based on the shadow
wave-function �SWF� description23,24 which has been able to
reproduce many of the properties of 4He in the solid
phases.24,25 Their approach is based on the well-known
equivalence between the calculation of the zero-point con-
centration of point defects in the ground state of a bosonic
quantum system and that of an associated classical
solid10,26,27 at a finite temperature. Employing this approach
and the thermodynamic integration technique,28 in which the
formation free energy of the vacancy is determined by sub-
tracting the free energies of the computational cells with and
without vacancy, they determine the zero-point monova-
cancy concentration within the SWF model. The influence of
periodic-image effects, however, due to the elastic interac-
tion between the periodic images of the vacancy, were not
taken into account. In addition to the monovacancy, vacancy-
vacancy interactions were studied by observing systems con-
taining two and three vacancies, and collecting statistics in
terms of a vacancy-vacancy correlation function. However,
the actual zero-point divacancy concentration was not deter-
mined.

In this Brief Report we refine the studies carried out by
Rossi et al.10 for the SWF model of solid 4He in three ways.
First, we provide a more accurate result for the zero-point
monovacancy concentration, taking into account elastic in-
teractions between periodic images. To this end we use the
reversible-work �RW� method,29 which allows a direct com-
putation of the work required to reversibly introduce a va-
cancy in an initially defect-free crystal without the need for
the subtraction of large numbers and a finite-size extrapola-
tion. This approach was recently applied in the context of
bosonic quantum crystals to determine the zero-point va-
cancy concentration of a system described by the Jastrow
wave function.27 Second, applying the same computational
scheme, we determine the zero-point concentration of the
divacancy for the SWF model. Finally, to detect a possible
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anisotropy as in Ref. 22 we distinguish between the in-plane
and out-of-plane divacancy configurations with respect to the
basal plane.

Formally, the true wave function of a system of N bosons
in its ground state can be written as26

��R� = exp�−
1

2
��R��/QN

1/2, �1�

where R��r1 ,r2 , . . . ,rN� stands for the particle coordinates,
� is an effective potential, and QN is a normalization con-
stant. Since ��R� is positive everywhere, 	��R�	2 can, with-
out loss of generality, be interpreted as a Boltzmann factor of
a classical system described by the potential function ��R� at
a temperature kBT=1. In the SWF variational theory of
4He,24 the ground-state wave function is given as

��R� =
1

QN
1/2�J�R�
 dS�

i

��ri − si��S�S� , �2�

where �J and �S are the Jastrow factors

�J�R� = exp�−
1
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N  b

rij
�5� �3�

with rij = 	ri−r j	 and

�S�S� = exp�− �
i�j

N

	V�
sij�� . �4�

The latter depends on a rescaled atomic potential V, here
taken to be the Aziz potential,30 and on the distance sij = 	si
−s j	 between auxiliary variables i and j of the set S
��s1 ,s2 , . . . ,sN�. This set of variables is coupled to the par-
ticles coordinates R through a Gaussian factor, ��ri−si�
=exp�−C	ri−si	2�. The volume integration in dS
=ds1ds2 . . .dsN is over the whole space. The variational pa-
rameters b, C, 	, and 
 are those that minimize the expecta-
tion value of the energy.24

Within this formulation, the quantum-mechanical
probability-density function 	��R�	2 can be associated with
the Boltzmann factor of the classical system described by the
effective potential

��R,S,S�� = �
i�j

N  b

rij
�5

+ C�
i

N

�	ri − si	2 + 	ri − si�	
2�

+ 	�
i�j

N

�V�
sij� + V�
sij� �� . �5�

This fictitious system can be thought as composed of N in-
teracting trimers, each one composed of one actual atom and

a pair of coupled shadow degrees of freedom. Given the
aforementioned equivalence between the quantum system
and this classical system, the zero-point vacancy and diva-
cancy concentrations in the quantum system described by
Eq. �2� is then equal to the thermal equilibrium vacancy and
divacancy concentrations in the system defined by Eq. �5� at
a temperature kBT=1.

In order to determine these concentrations we now follow
the RW method,27,29 which allows the computation of the
formation-free energies of the respective defect configura-
tions in the fictitious classical system. The RW approach is
based on the construction of continuous thermodynamic
paths that connect a system of interest to a certain reference.
In practice this is achieved by introducing one or more cou-
pling parameters that measure the progress along the given
path. By measuring the reversible work along this path one
can obtain the free-energy difference between the system of
interest and the reference. In the particular cases of the
thermal-equilibrium vacancy and divacancy concentrations,
we are interested in the formation-free energies

�Fm � F�N − 1� −
N − 1

N
F�N� =

1

N
F�N� + �F�N − 1� − F�N��

�6�

and

�Fd � F�N − 2� −
N − 2

N
F�N� =

2

N
F�N� + �F�N − 2� − F�N�� ,

�7�

respectively. Here F�N� represents the free energy of a
defect-free crystal containing N atoms, F�N−1� is the free
energy of a crystal containing N−1 atoms and a monova-
cancy and F�N−2� is the free energy of a crystal containing
N−2 atoms and two vacancies adjacent to each other. Ac-
cording to the second lines of Eqs. �6� and �7� they can be
written in terms of the free energy per atom of the defect-free
system and the free-energy differences between a monova-
cancy, �divacancy�, cell containing N−1, �N−2�, atoms and
the defect-free cell with N atoms. Using this partition, we
construct separate thermodynamic paths that allow us to
compute both contributions. As detailed in Refs. 29 and 27
the reversible-work values along these paths are measured
along finite-time nonequilibrium simulations during which
the coupling parameters are varied dynamically. In order to
eliminate the systematic errors associated with the nonequi-
librium nature of these simulations, the switching processes
are carried out in both directions.

To determine the free-energy differences in Eqs. �6� and
�7� we employ thermodynamic paths that involves a continu-
ous transformation of the defect-free interacting fictitious
classical system such that one or more of its atoms are de-
coupled from the remainder of the system. At the same time
these atoms are transformed into a collection of noninteract-
ing classical harmonic oscillators. Given the specific func-
tional form of the effective classical potential in case of the
SWF model, we define the thermodynamic path
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in which each trimer i in the system is coupled to a switching
parameter �i that is allowed to vary between 0 and 1. When
�i=1 for all N particles i, the system corresponds to the
fictitious system described by the effective potential Eq. �5�.
Similarly, when �i=0 for all i the system corresponds to a
collection of 3N noninteracting harmonic oscillators. In this
case, in addition to the degrees of freedom of the atom ri, the
coordinates si and si� describing the auxiliary degrees of free-
dom are also transformed into harmonic oscillators, centered
about the lattice sites ri

�0�. The spring constants 1 and 2 are
chosen such that the mean-square displacement of the har-
monic oscillators is approximately equal to that of the atoms
and auxiliary degrees of freedom in the fully interacting
system.27,28

Using the general path defined by Eq. �8� we can deter-
mine both contributions in Eqs. �6� and �7�. To compute
F�N�, we set �i=� for all i, with � varying between 0 and 1.
The corresponding thermodynamic path describes a transfor-
mation from the defect-free interacting system into a collec-
tion of 3N noninteracting classical harmonic oscillators, for
which the free energy is known analytically. To compute
F�N−1�−F�N�, we fix �i=1 for i�k, and switch �k between
0 and 1. In this manner, the trimer associated with particle k
is decoupled from the remainder of the system, turning the
defect-free interacting system into a system containing a
monovacancy at lattice site k plus three independent har-
monic oscillators. In a similar fashion, by fixing �i=1 for i
�k , l and varying �k and �l between 0 and 1, one inserts two
vacancies into the defect-free interacting system, plus six
independent harmonic oscillators. When the lattice sites as-
sociated with atoms k and l are nearest neighbors in the
lattice, this corresponds to the creation of a divacancy. As
usual, to avoid singularities in the calculation of the revers-
ible work, the vacancies are not allowed to diffuse during the
reversible creation process, restricting the motion of their
nearest-neighbor particles to their respective Wigner-Seitz
primitive cells.27,29 For convenience the center of mass of the
system is held fixed during the switching simulations. The
volume during the switching simulations is held fixed. In
order for the results to become independent of this imposed
boundary condition, a finite-size extrapolation is required.

In our calculations we apply the Metropolis algorithm to
sample configurations from 	�	2. We use orthorhombic simu-
lation cells with a hcp structure and numbers of atoms vary-
ing between 180 and 700 at the melting density �
=0.0294 Å−3 subject to periodic boundary conditions. The
values of the variational parameters are those reported in
Table VII of Ref. 24. Before starting each switching process
the system is equilibrated for at least 2�104 Monte Carlo

�MC� sweeps where 3N random attempts are made to move
an atom or shadow variable. All switching processes are per-
formed using 1.5�104 MC sweeps per process, which is
sufficiently slow to guarantee the regime of linear response.
The estimates of reversible work are obtained as averages
over 120 independent forward- and backward-switching pro-
cesses.

The results of the calculations are shown in Fig. 1, which
shows the monovacancy and divacancy formation-free ener-
gies as a function of the inverse particle number in the com-
putational cell. The monovacancy formation-free energy is
seen to slightly decrease with increasing system size, which
is a consequence of the elastic image interactions due to the
periodic boundary conditions. The same occurs for the diva-
cancy formation free energies as depicted in panel �b�. By
plotting the results as a function of 1 /N and extrapolating to
N→� by means of linear regressions, we find estimates for
the isolated monovacancy and divacancy formation-free en-
ergies. For the monovacancy we obtain �Fv=6.20�0.01, in

a)

b)

FIG. 1. �Color online� Vacancy formation-free energies as a
function of inverse particle number in the computational cell. Free
energies are measured in units of kBT=1. �a� Monovacancy. Sym-
bols with error bars represent RW data. Line denotes linear regres-
sion. �b� Divacancy. Triangles represent RW data obtained for diva-
cancy perpendicular to basal plane. Square denote RW data for
divacancy in the basal plane. Dashed and full lines denote the re-
spective linear regressions.
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units of kBT=1, which gives rise to an equilibrium concen-
tration of cv=exp�−�Fv�= �2.03�0.02��10−3. This result is
slightly higher than the value cv= �1.4�0.1��10−3 reported
by Rossi et al.10 The results for the divacancy suggest that, in
contrast to the findings in Ref. 22, there is no significant
anisotropy with respect to the basal plane. The extrapolated
formation-free energies are �F2v=10.87�0.06 and
10.84�0.06 for the in-plane and out-of-plane divacancy
configurations, respectively. Furthermore, comparison with
the extrapolated monovacancy formation-free energy �Fv
shows a positive binding-free energy F2v

B �2�Fv−�F2v
=1.51 for the divacancy, indicating a driving force toward
clustering. However, despite the positive value of the
binding-free energy, the corresponding clustering tendency is
found to be rather modest. The divacancy concentration,
given by c2v= �z /2�cv

2 exp�F2v
b � where z is the number of

nearest-neighbor sites in the lattice, is only four to five times
larger than the divacancy concentration in the case of a zero
binding energy, 2.5�10−5.

To investigate the binding tendency for larger clusters we
also computed the binding-free energy of the nearest-
neighbor trivacancy with respect to the divacancy. Using the
384 atom cell, it is found to be F3v

b ��F2v+�Fv−�F3v
=1.21, where �F3v is the trivacancy formation-free energy.
This result conveys that the binding tendency for vacancies
decreases with cluster size since the value for the divacancy

is 1.51. Indeed, the trivacancy concentration is found to be
very small: c3v=3c2vcv exp�F3v

B �=5.2�10−7. These results
suggest that, although vacancies do form bound states, the
binding tendency within the present model is not sufficiently
large to provoke vacancy aggregation leading to large-scale
phase separation. This is in agreement with the observation
of Rossi et al.10

In summary, we address the issue of interaction between
zero-point vacancies in solid 4He as described within the
shadow wave-function model. Using the reversible-work
method taking into account finite-size effects, we consider
for both the in-plane and out-of-plane configurations with
respect to the basal plane. In addition to finding no signifi-
cant anisotropy between both conformations, the expected
divacancy concentration is only �4–5 times larger than the
value expected in the absence of any clustering propensity.
These results suggest that, within the employed model de-
scription, no vacancy aggregation leading to phase separa-
tion is to be expected in the ground state.
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