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A triangular aperture illuminated with a vortex beam creates a truncated lattice diffraction pattern that identifies the
charge of the vortex. In this Letter, we demonstrate the measurement of vortex charge via this approach for vortex
beams up to charge �7. We also demonstrate the use of this technique for measuring femtosecond vortices and
noninteger vortices, comparing these results with numerical modeling. It is shown that this technique is simple
and reliable, but care must be taken when interpreting the results for the noninteger case. © 2011 Optical Society
of America
OCIS codes: 050.4865, 050.1950.

Vortex beams have been an active area of research since
their introduction by Nye and Berry [1]. Their intrinsic
orbital angular momentum is of particular interest be-
cause it is quantized and can be either right-handed or
left-handed [2]. Vortex beams are readily generated from
diffractive plates [3] or programmable spatial light mod-
ulators (SLM) [4]. One can also generate femtosecond
vortices [5] and noninteger vortices [6,7]. It has been de-
monstrated that vortex beams may be used to rotate and
trap microparticles, create vortex states in Bose–Einstein
condensates, and entangle orthogonal quantum states,
among other applications [2,8].
Vortex beams can be characterized in terms of La-

guerre–Gauss modes (LGm
p ) described by the topological

chargem, the number of times the phase completes 2π on
a closed loop around the propagation axis, and p, the
number of radial nodes. For integer m ≠ 0, the phase sin-
gularity on the beam axis results in an annular beam
whose radius increases with m. The charge m of the
vortex may be measured, both magnitude and sign, in
several ways [2], including using a second SLM [9], Dam-
mann phase masks [10], or, most surprisingly, with a tri-
angular aperture [11].
Hickmann and colleagues [11] showed recently that

when a vortex beam illuminates an equilateral triangular
aperture, the far-field diffraction pattern consists of a
truncated optical lattice. The lattice results from interfer-
ence between waves diffracted from the aperture’s edges
shifted in reciprocal space by an amount proportional to
the charge m. The number of bright spots in the triangu-
lar diffraction pattern is directly related to the vortex’s
charge m.
In this Letter, we demonstrate the measurement of vor-

tex charge via the truncated lattice approach [11] for
vortex beams from charge 0 to 7. We compare cw and
femtosecond vortices, and demonstrate that the techni-
que is capable of measuring the charge in either case.
We also look at noninteger vortices both experimentally
and numerically, including a systematic increase in
charge from 0 to 3 in steps of 0.1.
We used a Ti:sapphire laser oscillator operating at

800 nmwith a repetition rate of 80MHz and an attenuated
power of 50mW. This laser was switched between cw
and femtosecond modes for the various experiments.
We generated our vortex beams with a programmable

SLM (Hamamatsu X8267). We coupled the laser beam
through a microstructured optical fiber (NKT, Femto-
white 800), which in our case merely acts as a spatial fil-
ter. The rapidly expanding beam that exited the fiber was
collimated with a 70 cm focal length lens of 2 in: diameter
(much of the power exiting the fiber was not collected by
this lens). This setup provided a near plane-wave beam
after the lens. This beam then impinged on our SLM. The
SLM is computer controlled via a VGA interface and is
easily programmed for a 0 to 2π phase modulation at
the desired wavelength. The phase pattern used is the
forked grating (spiral phase plus blazed grating) shown
in [6]. The return beam from the SLM propagated back
through the 70 cm lens and hit a pickoff mirror. This vor-
tex beam came to a tight focus, and was then magnified
with a 10 cm focal length lens, putting the beam waist at
the triangular aperture, with a vortex beam size roughly
matching the aperture.

It was a fairly simple matter to produce triangular aper-
tures under a microscope. Pieces of metallic Scotch tape
were aligned with the edges of equilateral triangles
printed on computer paper. These pieces of tape were
adhered to a Plexiglas housing with holes in it, so as to
provide an aperture in air. Measurements of the aperture
size were made under the microscope. The apertures are
shown in Fig. 1(a). This Plexiglas holder was then affixed
to a tip-tilt kinematic mount and attached to an xyz-trans-
lation stage. The xyz-translation stage proved critical for
fine tuning of the optical alignment. A 15 cm focal length
lens was placed immediately after the aperture, and at
one focal length from this lens was placed a CCD camera

Fig. 1. (Color online) (a) Triangular apertures formed with
metallic tape on a Plexiglas housing. The size of each triangle
(length of one side in mm) is 0.73, 1.21, 1.76, and 2.44. The inset
shows a close-up of the 1:76mm triangle, centered on a hole in
the Plexiglas. (b) Spatial profile of our charge 1 vortex beam at
the aperture’s position.
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(Dataray WinCamD). For a well-defined diffraction pat-
tern, the edges of the triangular aperture ideally should
be illuminated by the inner border of the incident annular
beam [11]. Our setup, with multiple apertures, allows us
to conveniently match the aperture size to the beam size
for different values of the vortex’s charge.
Results are shown in Fig. 2. As the charge of the vortex

is increased from 0 to 5, the number of bright spots in the
resultant triangle is seen to increase. As identified in [11],
the number of spots N along one edge of the triangle re-
presents a vortex charge ofm ¼ N − 1. Thus the charge 0
vortex makes one spot, a charge 1 vortex makes two
spots (along one edge), and so on. There is another re-
lationship one can derive between the charge of the vor-
tex m and the total number of spots NT in the triangle.
This relationship is simply an arithmetic series NT ¼Pmþ1

i¼0 i, which is equivalent to NT ¼ ðmþ 1Þðmþ 2Þ=2.
This equation gives a quadratic, which can be solved for
m in terms of NT , yielding m ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8Nt
p

− 3Þ=2. There-
fore, counting the total number of spots in the diffraction
pattern leads to a unique charge. This could be advanta-
geous in the cases of higher charge where the sides of the
triangle are not well defined; including information from
the entire pattern might yield more accurate results. It is
quite easy to resolve the number of spots along one side
of the triangle (6, for example) to deduce the charge (5),
or to use the total number of spots (21) to calculate the
charge (5).
There is a noticeable nonuniform distribution of en-

ergy among the spots. This is due to two factors. First,
the vortex beams did not have perfectly distributed en-
ergy; namely, the light intensity was not uniform around
the ring as illustrated in Fig. 1(b). Second, the alignment
of the vortex beam in the triangular aperture is critical.
For each figure presented here, there were small tweaks
to the alignment of the triangle, and it was found that
small misalignments can lead to large fluctuations in
the distribution of energy among the spots.
The patterns in Fig. 2 indicate this is a very robust mea-

surement technique for measuring charge up to m ¼ 5.
With care, we were able to measure up to charge 8,
but it became increasingly difficult to resolve the spots
any higher than this. In all of the results presented herein,
it should be noted that the orientation of the triangular
aperture was vertical (its base is parallel to the optical
table), as seen in the inset of Fig. 1(a). The diffracted

triangular pattern is horizontal, however, which is
characteristic of a vortex. It was shown theoretically
in [11] that the orientation of the triangle identifies the
sign of the vortex charge. A negatively charged vortex
will generate a triangular lattice that is flipped 180° from
its corresponding positively charged vortex. With a pro-
grammable SLM, it is straightforward to flip the sign of
the vortex, and the change in orientation of the diffrac-
tion pattern between charge �7 vortices is demonstrated
in Fig. 3.

We investigated, theoretically and experimentally, the
measurement of partial vortices, namely those vortex
beams with noninteger charge. These vortices were gen-
erated as described in [6]. The results are shown in Fig. 4,
which illustrates the diffraction patterns for charge
0, 0.2, 0.4, 0.6, 0.8, and 1.0. The theoretical diffraction pat-
terns were obtained by numerically calculating a two-
dimensional Fourier transform of the product of the aper-
ture’s transmission function and a linear superposition of
an LG0

0 mode and an LG1
0 mode as per [7]. The numerical

and experimental results are displayed and show good
agreement. It is seen that the individual spot from charge
0 slowly dissipates and generates two new spots for a to-
tal of three, which corresponds to a charge 1 vortex. This
result indicates that it is difficult to be certain about the
fractional vortex charge based only on counting the num-
ber of spots, either along the edge of the triangle or the
total number inside it. Indeed, one must take into ac-
count the distribution of energy within those spots and
their corresponding spacing on the lattice. In order to
visualize this transformation, we composed a movie
(Media 1) that consists of changing the vortex charge
from 0 to 3 in steps of 0.1. This movie is not real-time;
rather, it is a composite of still images obtained experi-
mentally, where each image was optimized. It gives a
good feel for how the energy redistributes itself as the
charge increases.

And finally, we also measured the diffraction pattern
for a cw beam versus a femtosecond beam (≈40 nm
bandwidth) for a charge 3 vortex, as shown in Fig. 5.
These results are encouraging for lower-order vortices,
indicating that this approach does work for femtosecond
vortices. But the pattern quickly becomes unrecogniz-
able at higher charges, where the smearing of the
individual spots near the edges of the pattern makes it
impossible to count the number of spots. We numerically
simulated diffraction of a femtosecond vortex beam by
following [12]. The simulation includes a spatial chirp in-
troduced by the diffraction grating used to extract the
vortex beam [5] and shows a smearing of the spots simi-
lar to that observed in the experiment. Because of the

Fig. 2. (Color online) Measured diffraction patterns for
vortices of integral charge. Images have been rescaled for
clarity.

Fig. 3. (Color online) Diffraction patterns for vortex of charge
−7 (left) and þ7 (right) with a vertically oriented triangular
aperture of size 1:21mm.
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spatial chirp, the different colors in the beam will be
slightly spatially misaligned from each other (but still
mostly overlapping) when they impinge on the triangular
aperture, smearing the spots. Without spatial chirp, a nu-
merical simulation of the femtosecond diffraction pattern
shows no significant difference from a simulated cw
pattern.
In conclusion, we investigated the diffraction of

vortex beams on a triangular aperture. We demonstrated
experimentally that the technique is useful to determine
integral vortex charges up to about �7 by simply count-
ing the number of diffraction spots along the triangular
lattice. However, the procedure is not so straightforward
for noninteger vortices. The technique can be used with
both cw and femtosecond lasers, at least for small-order
vortices.
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Fig. 5. (Color online) Measured diffraction patterns for a
charge 3 vortex in cw mode (left) and femtosecond mode (cen-
ter). Numerical simulation of femtosecond vortex diffraction
with spatial chirp (right).

Fig. 4. (Color online) Diffraction patterns of fractional-charge vortices with aperture 1:21mm. Movie online (Media 1) shows the
change from charge 0 to 3 in steps of 0.1.
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