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Electromagnetically induced blazed grating at low light levels
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We propose a scheme for inducing a blazed transmission grating in a four-level, N -type atomic medium under
electromagnetically induced transparency (EIT). The blazed grating relies on the giant Kerr nonlinearity that
the atomic medium exhibits under EIT. The grating is created using an intensity mask in one of the driving
optical fields and only weak fields with intensities below saturation level are involved. Diffraction efficiencies of
a resonant probe beam close to 100% are predicted.
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I. INTRODUCTION

A diffraction grating can be induced in an atomic vapor by
introducing a spatial modulation to the atomic susceptibility.
Several applications have been proposed and demonstrated
experimentally for such atomic gratings: all-optical switching
and routing [1], tunable photonic band gaps [2], light storage
[3,4], and beam splitting and fanning [5], among others.
Many of the different schemes that have been proposed for
creating an atomic grating use electromagnetically induced
transparency (EIT) [6]. Under EIT, a three-level �-type atomic
sample is made transparent to a resonant probe field by
means of a coupling field acting on the linked transition. By
spatially modulating the coupling field using, for example,
two coupling beams intersecting at an angle, regions of high
and low transmission are created that are equivalent to an
amplitude transmission grating on which the probe beam can
diffract [7,8]. As with any amplitude grating, the first-order
diffraction efficiency of such an atomic grating is low (<10%).

Phase gratings, however, are much more efficient [9].
An atomic phase grating can be created by modulating the
refractive component of the atomic susceptibility instead of
its absorptive component. One of the present authors recently
proposed that in a four-level N -type atom, an atomic phase
grating can be created by modulating not the coupling beam,
but a third weak-signal beam [10]. The signal beam disrupts
the EIT condition, generating a giant Kerr-type nonlinearity
in the atom while simultaneously keeping probe absorption
low [11]. Modulating the signal field introduces a modulation
to the cross-phase-modulation (XPM) phase shift between
probe and signal fields. Higher diffraction efficiencies into the
first order (≈30%), approaching those of an ideal sinusoidal
phase grating, were predicted [10]. A phase grating can also
be induced in an atomic medium by modulating a weak
microwave field applied to a double dark-state system [12].
These phase gratings, however, generate many diffraction
orders, limiting the diffraction efficiency obtainable at any
one of the orders. We showed recently that the first-order
diffraction efficiency of the N -type atomic grating can be
increased significantly (to over 70%) by having the probe beam
impinge on the grating at a Bragg angle [13]. Alternatively,
a blazed atomic grating, with near unity efficiency, can be
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created in a three-level atom by using intensity-modulated
images applied to a strong-coupling field [5].

Here we describe a blazed atomic grating that combines
the approaches of Refs. [5,10]. We derive an analytical
expression for the grating’s diffraction efficiency as a function
of the atomic excitation parameters (signal detuning and Rabi
frequency) as well as the probe’s angle of incidence and
the optical depth of the atomic sample. The proposed blazed
grating is capable of diffracting a resonant probe beam into the
first diffraction order with almost 100% efficiency. In contrast
to the blazed grating of Ref. [5], our grating is created with
only weak fields whose intensities are below the saturation
intensity of the relevant atomic transitions.

II. MODEL ATOMIC SYSTEM FOR GIANT XPM

Our model atomic system consists of an N -type four-level
atom interacting with three laser fields, as illustrated in Fig. 1.
The excited states decay spontaneously at rates γ3 = γ4 to
outside the atomic system. The ground states decay at a rate
γ0. The |1〉 → |3〉 transition is excited by a resonant probe
beam with Rabi frequency �p. The coupling beam, with Rabi
frequency �c, resonantly connects the ground state |2〉 to the
excited state |3〉; the |2〉 → |4〉 transition is driven by the
signal field, whose Rabi frequency is �s . The signal field
is far detuned from resonance by δ = ω24 − ω, where ω24 is
the atomic transition frequency and ω is the signal optical
frequency.

The � EIT system is formed by levels |1〉, |2〉, and |3〉
together with the probe and coupling fields. The weak-signal
field causes an ac Stark shift of level |2〉 and modifies the
two-photon detuning between the probe and coupling fields.
Due to the increased steepness of the probe dispersion under
EIT [6], a small change in the two-photon detuning drastically
changes the index of refraction at the probe frequency. A giant
XPM nonlinearity arises between the signal and probe fields
[6,11].

The equations of motion for the probability amplitudes of
the atomic states are

ȧ1 = −�0a1 + 1
2 i�pa3,

ȧ2 = −�0a2 + 1
2 i�ca3 + 1

2 i�sa4,
(1)

ȧ3 = −�3a3 + 1
2 i�pa1 + 1

2 i�ca2,

ȧ4 = −�4a4 + 1
2 i�sa2,
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FIG. 1. (Color online) Energy-level diagram of the four-level
N -type atomic system driven by three weak optical fields: probe
�p , coupling �c, and signal �s .

where �p = 2d13Ep/h̄, �c = 2d23Ec/h̄, and �s = 2d24Es/h̄

are real Rabi frequencies; we also define �3 = γ3/2, �4 =
γ4/2 + iδ, and �0 = γ0/2. Although a wave-function model
does not allow the inclusion of pure dephasing mechanisms
between the ground states, it is known that such a model
can mimic dephasing satisfactorily through γ0 [6]. For large
signal detunings (δ � γ4) we can ignore any increase of the
ground-state decoherence rate �0 due to the signal field [14].
The probe field is assumed to be so weak (�p � γ3) that the
atomic population stays in the ground state |1〉, while levels
|2〉, |3〉, and |4〉 remain empty. We will consider the case of a
homogeneously broadened system. Accordingly, the theory to
be developed here is valid for cold atoms in a magneto-optical
trap or atoms in a vapor cell in which collisions with a
buffer gas provide a strong, homogeneous broadening of the
transitions.

We solve Eqs. (1) in the steady-state regime to find the
induced atomic polarization at the probe frequency P13 =
nd13a

∗
1a3, where n is the atomic density. Writing P13 =

ε0χEp, where χ is the atomic susceptibility and Ep is the
probe’s electric-field amplitude, we find to first order in the
probe field

Re(χ ) = (
2nd2

13

/
h̄ε0

) 2(�s/�c)2δ

4δ2 + [γ4 + γ3(�s/�c)2]2
,

(2)

Im(χ ) = (
2nd2

13

/
h̄ε0

)γ4(�s/�c)2 + γ3(�s/�c)4

4δ2 + [γ4 + γ3(�s/�c)2]2
.

No approximations were made in deriving Eqs. (2), except
for the EIT condition �2

c � γ0γ3. To present our results in
a unitless form, we define R = �s/�c, � = γ4/γ3, and 	 =
δ/γ3. In the limit that 	 � �,R, Eqs. (2) simplify to

Re(χ ) = K
R2

2	
, (3a)

Im(χ ) = K
�R2 + R4

4	2
, (3b)

where K = 2nd2
13/h̄ε0γ3. In the absence of the signal field

(R = 0), the atomic susceptibility χ is null since the coupling
field renders the atom transparent to the probe field. From
Eq. (3a) we see that Re(χ ) is linearly proportional to the inten-
sity of the signal field through R2. After traversing a medium
of length L, the probe beam will experience a phase shift
φ = πLRe(χ )/λ, where λ is the probe wavelength. Therefore,
φ is proportional to the signal intensity, characteristic of a XPM
nonlinearity. Large phase shifts are possible, even at low light

levels, and have been experimentally observed in a cold Rb
atomic sample [15].

III. ATOMIC BLAZED GRATING

In Refs. [10,13] the XPM phase shift between a signal
and probe beam was explored to induce a phase grating on
the atomic sample on which the probe beam could diffract.
This was accomplished by superposing two signal fields at
an angle to form a stationary-wave pattern in a direction
perpendicular to the probe propagation. This stationary wave
spatially modulated the index of refraction of the medium.

To create a blazed grating here, we propose adding an
intensity mask to the signal field (as shown in Fig. 2) so
that R2 displays a sawtooth profile in the x direction. We
assume a uniform intensity profile for the coupling field.
Within one grating period D, the ratio of signal-to-coupling
Rabi frequencies R becomes

R(x) = R0

√
x

D
for 0 < x < D, (4)

where R0 is the peak signal-to-coupling Rabi frequency ratio.
With this choice of R(x), the probe XPM phase shift φ = φ(x)
increases linearly with x in the interval 0 < x < D.

To determine the effect of this atomic grating on the probe,
we consider the probe electric field to be a monochromatic
plane wave that enters the atomic sample at an angle θ0, as
shown in the inset of Fig. 2. Axes x and z are defined as shown
in Fig. 2; the y axis is perpendicular to the paper. We write the
complex amplitude of the y component of the probe electric
field inside the atomic medium as

Ep(x,z) = Fe−ik·x, (5)

where k = k sin θ ′x̂ + k cos θ ′ẑ is the probe wave vector with
k = 2π/λ and θ ′ is the angle at which the probe beam
propagates; F = F (x,z) is a slowly varying function of both
x and z. At the medium input, F (x,0) = F0, where F0

is a constant amplitude. The probe electric field Ep(x,z)
is independent of y and oscillates with angular frequency
ωp = kc.
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FIG. 2. (Color online) Proposed beam setup for inducing a blazed
grating in an atomic sample with a collinear probe, coupling, and
signal beams. Because of the grating, the probe beam diffracts at an
angle θ given by the grating equation, sin θ = λ/D, for first-order
diffraction. In the inset, the probe enters the medium at an angle θ0.
In this case, the diffraction angle is sin θ − sin θ0 = λ/D.
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Wave propagation inside an atomic sample of length L is
described by the scalar wave equation

∇2Ep + k2(1 + χ )Ep = 0. (6)

In Eq. (6), χ = χ (x). Substituting Eq. (5) into Eq. (6) yields
the paraxial wave equation

− i

2k cos θ ′
∂2F

∂x2
+ tan θ ′ ∂F

∂x
+ ∂F

∂z
= i

kχ

2 cos θ ′ F. (7)

We define

z0 = h̄ε0λγ3/4πnd2
13, (8)

the probe’s one-photon absorption length in the absence of
the coupling field, as the unit for z. With this choice of unit
for z, the propagation distance is expressed in terms of the
one-photon optical depth of the sample. We also chose D,
the grating period, as the unit for x. The wave equation then
becomes

−i
1

N cos θ ′
∂2F

∂x2
+ z0

D
tan θ ′ ∂F

∂x
+ ∂F

∂z

=
(

− α(x)

2 cos θ ′ + i
σ (x)

cos θ ′

)
F, (9)

where α(x) = α2x + α4x
2, with α2 = �R2

0/4	2 and α4 =
R4

0/4	2; σ (x) = (R2
0/4	)x; and N = 4πD2/λz0 is the Fres-

nel number of a slit of width 2
√

πD at a distance z0.
If N � 1, the transverse term ∂2F/∂x2 can be eliminated

from Eq. (9). We consider typical parameters for atomic Na:
γ3/2π = 9.8 MHz, d13 = 2.11 × 10−29 C m, and λ = 589 nm.
For an atomic density n = 1012 cm−3, we find z0 = 6 µm.
Choosing a grating period D = 200λ = 118 µm yields N ≈
5 × 104. For −90◦ < θ ′ < 90◦, we can neglect the term ∂F/∂x

because (z0/D) tan θ ′ � 1. Under these conditions, diffraction
of the probe beam inside the atomic sample can be neglected.
Although the atomic model predicts giant Kerr nonlinearities
[11], changes in the index of refraction due to XPM are much
less than 1 and the probe beam does not suffer any significant
refraction as it enters the atomic sample. Therefore, the probe
propagation angle inside the extended atomic sample remains
equal to the incidence angle (θ ′ = θ0) throughout the sample.
As a result, propagation of the probe beam is described by

∂F

∂z
=

(
− α(x)

2 cos θ0
+ i

σ (x)

cos θ0

)
F. (10)

Equation (10) is readily solved to find the probe amplitude at
the exit plane z = � = L/z0 of the atomic medium:

F (x,�) = F0 exp[−α(x)�/2 cos θ0] exp[iσ (x)�/ cos θ0]. (11)

We can use Eq. (11) to estimate the relative strength of
the transverse and longitudinal derivative terms in Eq. (9).
For excitation parameters similar to those to be considered
later in our discussion (R0 ≈ 5, 	 ≈ 150, and � = 1), we
find |∂F/∂z|/[(z0/D) tan θ ′|∂F/∂x|] ≈ |x|/[(z0/D) tan θ ′]z.
If we take |x| ≈ 1, corresponding to one grating period,
and z ≈ 1, corresponding to one absorption length, we
obtain |∂F/∂z|/[(z0/D) tan θ ′|∂F/∂x|] ≈ 20/| tan θ ′|, where
we used z0 = 6 µm and D = 118 µm. The two terms will have
comparable magnitudes when | tan θ ′| ≈ 20 or |θ ′| ≈ 87◦. For

angles smaller than this, the transverse term can be safely
neglected in comparison to the longitudinal term in Eq. (9).

From Eq. (11) we obtain the complex-amplitude transmis-
sion function of the atomic medium:

T (x) = e−α(x)�/2 cos θ0eiφ(x). (12)

After traversing the extended atomic sample, the probe beam
acquires a phase shift φ(x) = σ (x)�/ cos θ0 from the signal
beam through XPM. Its amplitude is reduced by a factor of
exp[−α(x)�/2 cos θ0] due to absorption.

In the region of Fraunhofer diffraction, the probe field
distribution E′

p can be found by taking the Fourier transform
of the field immediately after the atomic medium Ep(x,�) =
Ep(x,0)T (x):

E′
p(θ ) ∝

∫ ∞

−∞
Ep(x,0)T (x) exp(−2πiDx sin θ/λ)dx

∝
∫ ∞

−∞
T (x) exp(ik sin θ0x) exp(−2πiDx sin θ/λ)dx,

(13)

where θ is the diffraction angle. Substituting Eq. (12) into (13),
we find the diffraction intensity distribution Ip(θ ) = |E′

p(θ )|2:

Ip(θ ) = |J (θ0)|2 sin2[M(πD/λ)(sin θ − sin θ0)]

M2 sin2[(πD/λ)(sin θ − sin θ0)]
, (14)

where M is the number of spatial periods of the grating
illuminated by the probe beam. The Fraunhofer diffraction
amplitude of a single space period J (θ0), defined as

J (θ0) =
∫ 1

0
T (x) exp(ik sin θ0x) exp(−2πiDx sin θ/λ)dx,

(15)

is given by

J (θ0) =
√

π cos θ0

2α4�
exp

(
α4�

2 cos θ0
F2

)

×
[

erf

(√
α4�

2cosθ0
F

)
+ erf

(√
α4�

2cosθ0
(1 − F)

)]
,

(16)

where

F = 1

α4�

(
−α2�

2
+ iφ0 − 2πim cos θ0

)
, (17)

erf is the error function, and m is the diffraction order. Each
order diffracts at an angle θm that satisfies sin θm − sin θ0 =
mλ/D.

The probe diffraction intensity Ip(θ ) is normalized such
that if T (x) = 1, then Ip(θ ) = 1. Therefore, the diffraction
efficiency η of mth order is simply

η = |J (θ0)|2. (18)

If absorption can be neglected (α2 = α4 = 0), we find

η0 = 1

(2πξ )2
|e2πiξ − 1|2 = sinc2(πξ ), (19)

where ξ = φ/2π cos θ0 − m. Equation (19) has the expected
form for the diffraction efficiency of a lossless blazed grating
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SILVÂNIA A. CARVALHO AND LUÍS E. E. DE ARAUJO PHYSICAL REVIEW A 83, 053825 (2011)

0.0

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2

|T
(x)|

0.2

0.4

0.6

0.8

1.0

0.0

(x
)/

2

x

FIG. 3. (Color online) Amplitude |T (x)| (dashed red line) and
phase φ(x) (solid black line) of the transmission function T (x) as
a function of x (measured in units of the grating period D) when
� = 160, 	 = 140, and R0 = 4.6.

[16]. It shows that maximum efficiency is achieved when ξ = 0,
that is, when the peak XPM phase shift induced on the probe
beam is φ = 2π cos θ0 for m = 1.

IV. NUMERICAL RESULTS AND DISCUSSION

To obtain a high diffraction efficiency with any transmission
blazed grating, two factors must be observed: The phase
retardation within a grating period has to be 2π and the
transition between the different periods of the grating must
be sharp. In Fig. 3 we show the complex transmission function
T (x) for our blazed atomic grating at normal probe incidence
(θ0 = 0). We used an optical depth of � = 160 (reported for a
Na dark-spot magneto-optical trap [17]), a signal detuning
	 = 140, and R0 = 4.6. Although the one-photon optical
depth is large, the actual optical depth of the EIT medium
is only (α2 + α4)� ≈ 0.95. Under these conditions, for a saw-
tooth signal intensity pattern, a large linear phase modulation
of the transmission function is seen. The phase modulation
displays an approximate 2π periodic structure with an abrupt
transition between grating periods. An amplitude modulation
of T (x) is also seen, with the transmission decreasing from
100% at x = 0 to approximately 60% at x = 1. Thus this
grating is a mixture of an amplitude grating and a phase grating.
As we will show, however, the amplitude grating is ineffective
and plays no role in diffracting the probe beam.

We show in Fig. 4 the far-field diffraction pattern corre-
sponding to the diffraction grating of Fig. 3 and evaluated with
Eq. (14). The atomic blazed grating deflects the probe field
through an angle of 5 mrad with high efficiency (η >∼ 73%)
into the first-order diffraction. The deflection angle satisfies
the diffraction relation sin θ = λ/D; because D = 200λ, the
deflection angle is very small. If we artificially set the XPM
phase shift to zero, the probe beam is not deflected, proving that
although the atomic absorption is also modulated, diffraction
occurs due only to the phase modulation. The amplitude
grating is ineffective and the atomic grating is essentially a
phase grating; however, absorption cannot be ignored because
it limits the diffraction efficiency of the grating.

We calculated the diffraction efficiency of the grating from
Figs. 3 and 4 using Eq. (18), which includes the effect of
absorption, for incidence angles ranging from −45◦ to 45◦ and
m = 1. Figure 5 illustrates the dependence of the efficiency
η on the incidence angle θ0. It shows that the efficiency is
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FIG. 4. (Color online) Fraunhofer diffraction pattern for the
grating of Fig. 3 (a) with phase modulation and (b) without phase
modulation [φ(x) = 0]. The probe beam illuminates M = 5 grating
periods.

fairly insensitive to the incidence angle over the range between
−15◦ and 15◦. At the extreme angles, the theory predicts a
decrease of as much as 41% in the efficiency. We also show
the diffraction efficiency predicted from Eq. (19) for a similar
but lossless grating. (In both cases, � = 160, 	 = 140, and
R0 = 4.6.) Because the peak XPM phase shift is not exactly
2π , this lossless grating shows an angular dependence similar
to that observed in a blazed holographic grating with nonop-
timized groove depth [16]. We see that losses increase the
angular sensitivity of the atomic grating for |θ0| > 15◦.

The efficiency of this blazed atomic grating, near normal
incidence, is comparable to that reported for the thick atomic
grating of Ref. [13] at Bragg incidence. However, the grating
of Ref. [13] showed a large sensitivity to the incidence angle,
with the efficiency decreasing by 50% at an angular deviation
from Bragg incidence as small as 2 mrad.

The efficiency of the grating shown in Fig. 3 is limited by
absorption. Increasing the signal detuning 	 and/or decreasing
the ratio of Rabi frequencies R0 decreases the ac Stark shift
of level |2〉 caused by the signal beam that disturbs the EIT
condition. Both the absorptive and dispersive components
of the susceptibility will decrease as a result. However, for
R0 ≈ 1, we have from Eqs. (3) that Re(χ )/Im(χ ) ≈ 	. So
the strength of the real part of the susceptibility will increase
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FIG. 5. (Color online) Calculated diffraction efficiency, normal-
ized by the efficiency at normal incidence (θ0 = 0), as a function of
the angle of incidence θ0 using Eq. (18) (solid blue line) and Eq. (19)
(dashed red line). The grating parameters are the same as those in
Figs. 3 and 4.
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FIG. 6. (Color online) (a) Complex-amplitude transmission func-
tion T (x) [amplitude |T (x)| and phase φ(x)] for when R0 = 1.1,
	 = 190, and � = 4000; x is in units of D. (b) Fraunhofer diffraction
pattern for the grating of (a). The probe beam illuminates M = 5
grating periods.

relative to the imaginary part with an increase in the signal
detuning. The smaller dispersion can be compensated for by
increasing the length of the atomic sample, resulting in a
large XPM phase shift accompanied by a small absorption.
Figure 6(a) shows the complex transmission function for a
grating created with R0 = 1.1, 	 = 190, and � = 4000. Such
a large value for optical depth � can be obtained in an atomic
vapor cell and is comparable to those found in EIT-based,
low light experiments [18]. However, the EIT optical depth
here is only 0.074. If we consider an effective homogeneous
linewidth of γ3/2π ≈ 650 MHz [14] and n = 3 × 1013 cm−3,
then z0 ≈ 13 µm; the required vapor cell length would be
5.2 cm. We see from Fig. 6(a) that, similarly to the grating
of Fig. 3, this grating displays a 2π periodic structure in its
phase component. However, now, absorption is kept at a very
low level, below <∼3%. In the far field, the diffraction pattern
[Fig. 6(b)] shows the probe beam diffracted into first order
with an efficiency of approximately 97%. With negligible

absorption, the efficiency of the phase grating is close to
unity.

The atomic blazed grating proposed here can be created
with weak fields only. The required lower limit for the coupling
field is determined by the EIT condition for a homogeneously
broadened medium: �2

c � γ0γ3. For colds atoms in a magneto-
optical trap, for example, γ0/2π ≈ 1 kHz [15] and γ3/2π =
9.8 MHz; one must have �c/2π � 100 kHz. For atoms in a
collisionally broadened vapor cell, the effective homogeneous
linewidth is of the order of γ3/2π ≈ 650 MHz and γ0/2π <∼
1 kHz [14]. Therefore, �c/2π � 800 kHz. In either case, the
coupling Rabi frequency, as well as the signal Rabi frequency,
can be set well below saturation level (�c < γ3).

V. CONCLUSION

We proposed a blazed atomic grating that uses the giant
Kerr nonlinearity that an atomic medium exhibits under elec-
tromagnetically induced transparency. The grating is created
by introducing a sawtooth intensity mask in the signal field re-
sponsible for inducing a cross-phase-modulation nonlinearity
in a resonant probe beam. Very high diffraction efficiencies of
the probe beam, approaching 100%, are predicted using only
weak fields.

In future work we intend to investigate the possibility
of using more sophisticated masks in the signal field to do
more elaborate beam manipulation such as beam splitting
and fanning, similarly to Ref. [5]. Our scheme may have the
advantage that it could allow beam manipulation at low light
levels. All optical switching with weak light fields is another
possible application, although at limited speeds [14].

The theoretical model used to describe our blazed grating
assumes three main approximations: plane-wave beams, a sin-
gle velocity class, and a four-level atom. An actual experiment
would use Gaussian-like beams, the atomic system would be a
collection of many systems with different velocity classes (in
the case of a vapor cell), and the atoms would have a much more
complex energy-level structure consisting of many hyperfine
levels and magnetic sublevels. Nevertheless, the simple model
we employed has been shown to agree well with EIT Kerr
experimental results [14].
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