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The aim of this paper is to o study the evolution of positive HIV population for 
manifestation of AIDS, the Acquired Immunodeficiency Syndrome. 

For this purpose, we suggest a methodology to combine a macroscopic HIV positive 
population model with an individual microscopic model. The first describes the evolution 
of the population whereas the second the evolution of HIV in each individual of the 
population. This methodology is suggested by the way that experts use to conduct 
public policies, namely, to act at the individual level to observe and verify the manifest 
population. 

The population model we address is a differential equation system whose transference 
rate from asymptomatic to symptomatic population is found through a fuzzy rule-based 
system. The transference rate depends on the C D 4 + level, the main T lymphocyte at­
tacked by the HIV retrovirus when it reaches the bloodstream. The microscopic model 
for a characteristic individual in a population is used to obtain the CD4-\- level at each 
time instant. From the C D 4 + level, its fuzzy initial value, and the macroscopic popula­
tion model, we compute the fuzzy values of the proportion of asymptomatic population 
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40 R. Motta Jafelice et al. 

at each time instant t using the extension principle. Next, centroid defuzzification is used 
to obtain a solution that represents the number of infected individuals. This approach 
provides a method to find a solution of a non-autonomous differential equation from an 
autonomous equation, a fuzzy initial value, the extension principle, and center of grav­
ity defuzzification. Simulation experiments show that the solution given by the method 
suggested in this paper fits well to AIDS population data reported in the literature. 

Keywords: Epidemiological modeling; HIV population model; dynamic fuzzy modeling; 
fuzzy set theory. 

1. In t roduc t ion 

Traditionally, engineering and applied mathematics have endeavored to model and 
solve technological problems. Nowadays, they are becoming increasingly important 
to the non technological world as well, especially for bioengineering, medicine and 
epidemiology to mention a few. 

Despite considerable advances in its biological foundations, epidemiological 
modeling still needs appropriate mathematical and computational structures to 
deal with imprecision and uncertainty, apart from those treated by stochastic mod­
els. The theory of the fuzzy sets,1 and systems2-4 provide key notions to model 
epidemiological phenomena. 

The first application of fuzzy set theory in biomathematics dates medical di­
agnosis area,5,6 where most of its use were concentrated. More recently, fuzzy set 
theory has shown to be useful in a variety of other areas, epidemiology being one of 
the most fruitful.7_12 In epidemiology, the same disease can be displayed in differ­
ent ways and with different degrees of severity in different patients. Often, diseases 
characteristics and symptoms are qualified linguistically and are intrinsically im­
precise because they usually refer to biological variables. In medical sciences we 
frequently encounter difficulties when using conventional quantitative approaches 
and methods. There is also a close relationship between microscopic and macro­
scopic phenomenon, which means that the models are of difficult analysis to com­
prehend the phenomenon as a whole. A common approach in this case is to develop 
a broader model and use different scales. 

In this paper, we first generalize the classical Anderson population model13 as­
suming that the transference rate from asymptomatic to symptomatic population, 
A, is a parameter whose values depend on the CD4+ level. The values of the trans­
ference rate are found via a fuzzy rule base derived from expert medical knowledge. 
This brings the transference rate closer to its intended biological meaning. Second, 
from the solution of a non-linear system of differential equations,16 viewed as a 
microscopic model for HIV infection dynamics, we obtain CD4+ levels as function 
of time. Next, given a fuzzy initial condition, we find a fuzzy solution for the mi­
croscopic model. From the fuzzy values of CD4+ obtained from the microscopic 
model and from the extension principle, whose transformation function is the so­
lution of the generalized population model, we find a fuzzy solution that models 
the evolution of the proportion of the infected asymptomatic population. The fuzzy 
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Methodology to Determine the Evolution of Asymptomatic HIV Population 41 

population solution is defuzzified using the center of gravity. We show that the de-
fuzzified solution actually is a solution of a non-autonomous differential equation, 
the one that emerges if we consider the transference rate a function of the CDA-\-
and time. Finally, we verify that the result provided by the methodology addressed 
here fits well known population data reported in the literature. The paper concludes 
suggesting issues that need further developments. 

2. Classic AIDS Models 

The classical Anderson's model13 is a macroscopic model for AIDS given by: 

^ = -\{t)x x(0) = 1 
& (!) 
JL=X(t)x = \(t)(l-y) 2/(0) = 0 

where X(t) is the transference rate between infected individuals and infected indi­
viduals that develop AIDS, x is the proportion of infected population that does 
not have AIDS symptoms yet (asymptomatic), and y is the proportion of the pop­
ulation that has developed AIDS symptoms (symptomatic). Anderson assumes13 

X(t) = at, a > 0. Thus the solution of (1) is 

x(t) = e~s£ y(t) = l-e-s£ (2) 

Peterman and co-workers17 report data related to 194 cases of blood transfusion-
associated AIDS. From Peterman17 data, Murray13_15 shows that Anderson's 
model (1) can be adjusted through a best-fit procedure to find the value for the 

dv 
parameter a. The rate of increase — of AIDS patients as a function of time, pro-

dt 
vided by the Anderson's model (1), is shown by the continuous curve of Figure 1. 
Notice that this scheme provides a best fit to data solution, with no clear biological 
explanation for the transference rate origin. 

Novak and Bangham (1996) introduced a microscopic model for HIV infection 
dynamics in the individuals organism with no anti-retroviral therapy. In particular, 
it models HIV positive individuals during the asymptomatic phase. Therefore, we 
adopt Novak and Bangham model once it is closely related with the purpose of this 
paper. 

Four variables are considered: uninfected cells n, infected cells i, free virus par­
ticles v and z which denotes the magnitude of the CTL (cytotoxic T lymphocyte), 
that is, the abundance of virus-specific CTLs. Infected cells are produced from unin­
fected cells and free virus at rate (3nv and die at rate bi. Free virus is produced from 
infected cells at rate ki and declines at rate sv. Uninfected cells are produced at a 
constant rate, r, from a pool of precursor cells and die at rate an.The rate of CTL 
proliferation in response to antigen is given by ciz. In the absence of stimulation, 
CTLs decay at rate dz. Infected cells are killed by CTLs at rate piz (see Ref. 16 
for further details). These assumptions lead to the following system of differential 
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Figure 1. The rate of change in the proportion of the population who develop AIDS who were 
infected with HIV (through blood transfusion) at time t = 0. The data, from Ref. 17, provide a 
best-fit value of a = 0 .237yr - 1 for model solution (2). 

equations: 

dn 

di 
~dt 

dv 

dz 
~di 

= r — 

= j3nv 

= ki — 

= liz -

j3nv 

bi — piz 

(3) 

sv 

dz 

Figure 2 shows the solution of the microscopic HIV model for parameters and 
initial conditions given in Tables 1 and 2, respectively, obtained from Ref. 18. 

Table 1. Parameters of the micro­
scopic model used in simulations. 

r = 0.3 

6 = 0.01 

8 = 0.01 

a = 0.3 

p = 0.03 

I = 0.01 

0 = 0.6 

k = 0.b 

d = 0.01 

The uninfected cells of C.D4+ show a rapid decline in the first weeks with a 
slow recovery when the number of lymphocytes is close to the maximum (depicted 
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Table 2. Initial conditions 
used in simulations of the 
microscopic model. 

n(0) 

t(0) 

v(0) 

*(0) 

t initial 

t final 

0.99 

0.01 

0.1 

0.01 

0 time units 

500 time units 

in logarithmic scale in Figure 2(a)). The increase in the number of lymphocytes is 
related to the presence of infected cells and the virus replication mediated by them. 

10" 

(a) 

200 300 
time (t) 

(b) 

200 300 
time (t) 

(C) 

100 200 300 400 500 
time (t) 

<-> 6 
O 
u 
&, 4 

> 2 

0 
0 

(d) 

100 200 300 400 500 
time (t) 

Figure 2. Numerical solutions of system (3). 

Figure 3 is a schematic view of the currently accepted natural history of HIV 
infection in medical sciences. Comparing the solution of system (3) shown in Figure 
2 with Figure 3, we notice that the uninfected cells of C.D4+ identifies with the 
CD4+ level, the free virus with the HIV virus, and the virus-specific CTLs with the 
HIV antibodies. These correspondences will be important to derive a macroscopic, 
HIV asymptomatic population model using fuzzy set-based modeling. 
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•1800 

•1200 

Q 

o 
•600 

4-8 weeks 

Primary Infection 

10-12 years 

Asymptomatic Phase 

2-3 years 
Symptomatic Phase 

Figure 3. Schematic representation of the currently accepted natural history of HIV 
infection.19—21 

3. Modeling HIV Population Evolution 

When HIV reaches the bloodstream it attacks mainly the lymphocyte T of the 
C.D4+ type. The amount of cells C-D4+ in peripheral blood has prognostic im­
plications in infection evolution by HIV. Nowadays, the amount of immune com­
petence cells is the most clinically useful and acceptable measurement to follow 
the evolution of infected individuals by HIV, although it is not the only one. The 
identification of the disease's stages and its respective treatment is based on the re­
lationship between viral load and CD&+ level. The viral load and CD4+ cells level 
interfere in the transference rate A . Thus, the conversion from an asymptomatic 
individual to a symptomatic individual depends on the individual characteristics, 
as measured by the viral load v and level of CDA+ (c). Therefore, we assume the 
following, as a generalization of model (1): 

dx 
- = -A(t;,c)* 

— = \(v,c)x = \(v,c)(l y) 

x(0) 

y(o) 0 
(4) 

The difference between the model suggested in (4) and the classic model (1) is 
that in (4) the parameter A = A(u, c). This assumption comes from its biological 
meaning and is a more faithful characterization of the transference rate because it 
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Table 3. Fuzzy rules. 

^ ^ V 
CDp>^^ very low 

low 
medium 

high medium 
high 

low 

strong 
medium 
medium 

weak medium 
weak 

medium 

strong 
strong 

medium 
weak medium 

weak 

high 

strong 
strong 

medium 
medium 

weak 

depends of the viral load and the of the CDA+ level. 
To get the relationship A = X(v,c) we adopt expert knowledge encoded in the 

form of a fuzzy rule base. This approach seems to be appropriate since medical 
experts use viral load and C.D4+ level values to infer the infection phase and to 
decide the proper treatment. The rule base that encodes the relationship between 
c, v, and A, as suggested by expert medical knowledge, is summarized in Table 3. 
Viral load (v) and the level of C.D4+ (c), and the transference rate (A) are linguistic 
variables denoted by V, CI24+ and A , respectively. Viral load V has its values 
in {low, medium, high}, CI24+ in {very low, low, medium, high medium, high}, 
and transference rate in the term set {weak, medium weak, medium, strong}. The 
membership functions that specify the meaning of the linguistic variables are shown 
in Fig. 4, 5 and 6 for viral load, CI24+ level, and transference rate, respectively. 

o,a 

o,e 

0 , 4 

0 , 2 

l o w 

\ , 

V 
1 

1 

m e d i u m 

/ 

v i ra l 

h i gh 

l oad (V) V 

Figure 4. Membership functions for viral load (V). 

From the mathematical point of view (4) can be seen as a parametric family of 
systems. It seems reasonable that A, and consequently the population of infected 
individuals y, varies with v and c. From (4) we have 

x{t) = e - A ^ ' c ) t 

y{t) = l-e-x^v^t, t > 0 . ( } 
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very high 
, o w low medium m e d l u r r 

°*r o;2 o,4 — u^ uw 
Leve l of (CD4+) c 

Figure 5. Membership functions for C.D4+ level. 

medium 

0,2 0,A 0,6 0,8 

T r a n s f e r e n c e rate (A) \° 

Figure 6. Membership functions transference rate (A). 

See Refs. 8 and 9 for further details the fuzzy rule-based model developed to find 
the transference rate, given the viral load and the C.D4+ level. The rule base is pro­
cessed using the Mamdani inference method with center of gravity defuzzification.9 
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We note that, according to experts, there is an inverse relationship between viral 
load and CD&+ level during the asymptomatic phase, when the individuals are not 
HIV manifest. It is also interesting to note that the microscopic model reveals the 
following relationship between viral load and CD&+ level. 

c(v) = — ^ (6) 

This relationship between CD&+ level (c) and viral load (v) is justified when 
we compare the solution of system (3) of Figure 2 with the history of HIV infec­
tion of Figure 3, where the uninfected cells of C-D4+ identifies with the C-D4+ 
level, the free virus with the HIV virus, and the virus-specific CTLs with the HIV 
antibodies. This is because, during the asymptomatic phase, the variation of un-

infected cells of CDA+ is small. Therefore, we may assume — = 0 which means 
at 

T 
that n(v) = —. Since blood test does not differentiate uninfected cells n from w a + (5v 
infected cells i (current blood test identifies CD4+ level only) we may also assume 
CD4+ proportional to n. Thus, (6) provides an approximation of the relationship 
between CD4+ level (c) and viral load (v). 

When the surface of the transference rate produced by fuzzy inference and de-
fuzzification is intersected with the graph of (6), the result is the piecewise linear 
curve shown in Figure 7. When we 1) approximate the defuzzified transference rate 
curve by the smooth curve X(v,c), and 2) project the smooth \(v,c) curve in the 
transference rate versus CD4+ level plane, the projection becomes (7), illustrated 
in Figure 8. 

Figure 7. Approximation of the transference rate for values of c(v) and its projection in the 
C D 4 + plane. 
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A(c) 

n 
CM ~C 

CM C-min 

0 

if 0 < c < cmin 

it cmin < c < CM 

if C > CM 

(7) 

1 

rr,lrl A<f max 

Figure 8. Transference rate A as a function of c. 

In Figure 8, cm^n is the largest value of C.D4+ for which the chance of an 
individual to become symptomatic is maximum, CM is the smallest value for which 
the chance to become symptomatic is minimum, and cmax is the largest possible 
level of OD4+. 
From (4) and (7), we conclude: 

dx 
~db 

-\(c)x x(0) = 1 

dy_ 

dt ' 

Solving (8), we have: 

x(t) = 

y(t) = 

(8) 

X(c)x = X(c)(l-y) y(0) = 0 

e-A(c)t 

1 - e~x^\ t>0. (9) 

As discussed previously, the CI24+ level is the most useful information to follow 
HIV symptoms evolution. We assume that the microscopic model (3) describes the 
time behavior of the CD4+ level (c(t)) for the population as well. If we assume (9) 
and (7) we have x(t) = e_A^c^t^t. Moreover, if X(c(t)) is differentiable, then x(t) is 
the solution of the following differential equation 

- = - \x(c(t))+t-(c(t))-(t) (10) 
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In practice, the value of c(t) is uncertain because initially we have individuals 
with different CD4+ levels in the population. Therefore we assume that the initial 
value C(0) = Co is a fuzzy set. Hence, the population model suggested in this 
paper actually is a non-autonomous differential equation with fuzzy time-varying 
parameter. 

Hullermeier22 suggests that the solution of a fuzzy differential equation be a 
fuzzy function obtained from a family of differential inclusions. Mizukoshi et al.,24 

have shown that when parameters (coefficients and/or initial conditions) are fuzzy, 
the Hullermeier solution is the same as the one obtained from the extension princi­
ple. Therefore, we first obtain the solution of the classical differential equation and 
next we use the extension principle to get fuzzy solutions. To obtain a real-valued 
trajectory, we adopt the center of gravity to deffuzify the fuzzy solution. We note 
that, in principle, any defuzzification method could be chosen (see Ref. 9 for an 
alternative based on the Sugeno integral). 

In the next section we show how to find a solution of the non-autonomous differ­
ential equation from the extension principle, given the corresponding autonomous 
equation solution and the fuzzy time-varying parameter values. 

4. Method to Solve Asymptomatic HIV Population Model 

The asymptomatic HIV population model is an instance of non-autonomous fuzzy 
differential equation, once (10) depends on a time-varying parameter, the C.D4+ 
level, whose initial value is a fuzzy set. A method to obtain a solution for (10), 
given an initial fuzzy value for c(t), is summarized in Figure 9. 

First, we note that from the fuzzy rule base and inference system we determine 
the transference rate \(v,c) of the macroscopic model, and using the relationship 
between the CDA-\- level c and viral load v (6) we obtain (7). Thus, the composition 
of (5) and (7), for t fixed, denoted by Xt(c) is 

{ 6 It C <. CjYiiji 

e-X(c)t if C m . n <C<CM (11) 
1 if c > CM 

where A(c) = CJ^~C . Next, assume that the population of HIV-positive studied 
has the CD4+ level initially characterized by a triangular membership function 
ucQ for Co, Figure 10: 

uc0(c) 

(0 if c < c - S 
| ( c - c + «J) c-5<c<c 
-j^(c — c — S)c<c<c-\-S 

[0 if c> c + 5 

The parameter c is the modal value and S the dispersion of the fuzzy set Co, 
whose universe contains cm^n, CM and cmax. 
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Microscopic Model 

n=kc 

k>0 

^ r 

c(t) 

t 
Fuzzy Initial 

Value 

Co 

Macroscopic Model 

Fuzzy Rule Base and 
Inference System 

(v, c,X) 1 

c, 

I 
Mc) 

i 
xt(c) 

V 

Extension 

Principle 
X 

Fuzzy Population 
Solution xt(Ct) 

i 
Center of Gravity 

Defuzzification 

+ 
Solution x(t) 

Figure 9. Method to find the evolution of the asymptomatic HIV population. 

Figure 10. Membership function for Co-

4.1. Solution of microscopic model with fuzzy initial value 

As suggested in Refs. 22, 23 and 24, we solve the non-linear differential equations 
system (3) for each value of CQ within the support of Co, that is, for each CQ £ 
supp(Co). We assume that the corresponding solution c(t) has the same membership 
degree as does Co- Therefore the solution of (3), given the fuzzy initial value Co, 
is a fuzzy set Ct whose membership function is uct- Figures 11 and 12 show the 
solution obtained for Co of Figure 10 with c = 0.89 and S = 0.1. 
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t=0 time (0 

Figure 11. Solutions c{t) for CQ G supp(Co). 

Figure 12. Fuzzy solution Ct at t = 3 and t = 5. 
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Figure 13. Computation of Wt at t = 3. 

Figure 14. Membership degree of the proportion of asymptomatic population at each time 
instant t. 

4.2. Extension principle 

In this subsection, the extension principle is used to obtain the image of the fuzzy 
set Ct through function (11). More specifically, from extension principle we have, 
for each time instant t: 

uwt(xt(c)) = sup uCt(c) (13) 
c 
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Figure 15. Fuzzy population solution xt(Ct). 

X 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o> 
0 

>̂ * 

*\ 

1 2 3 

A 

4 

^— Defuzzified solution 
• Anderson's model 
* Real data 

5 6 7 
time (0 

8 9 10 

Figure 16. Comparison between the defuzzified solution and real data. 

where Ct is the fuzzy CD4+ level at t whose membership function is uct} and 
Wt is the corresponding fuzzy set at t with membership function uwt- Figure 13 
illustrates Wt at t = 3 whereas Figures 13, 14 and 15 show the solution xt(Ct) 
assuming Ct evolving as in Figure 12. 
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4.3. Defuzzification 

The last step of the method, as indicated in Figure 9, aims a representative solution. 
A common defuzzification scheme is the center of gravity method. Let uwt be the 
membership function of Xt(Ct) and denote Xt(c) by Xt to simplify notation. Then 
a real-valued output x(t) is chosen, at each time instant t, as follows: 

/ xtuwt(xt)dxt 

x{t) = ^ i—j- (14) 

supp{Wt) 

For instance, given the fuzzy solution shown in Figure 14 we obtain, using the center 
of gravity, the defuzzified solution depicted in Figure 16. 

5. Justification of t he M e t h o d 

In what follows, we show that the center of gravity defuzzification of (14) is a 
solution of (10). Let 

/ xtuwt(xt)dxt 
,.\ supp{Wt) , . 

x(t) = - — - — (15) 
J uwAxt)dxt 

supp{Wt) 
As J uwt(xt)dxt is constant and J uw^(xt) ^ _ -̂  w e have 

SUpp(Wt) SUpp(Wt) suPP(Wt) 

x{t) = [ xt f
 UWt{Xj w dxt = E(xt) (16) 

J J uWt{xt)dxt 
supp{Wt) supp{Wt) 

where E{xt) may be viewed as the expected value of xt- Since xt = e _ A ^ we get 

x(t) = E{e-X^) = [ e-x^ uc^c\ dc (17) 
J J uCt{

c)dc 
supp(Ct) supp(Ct) 

From the medium value theorem for integrals, and because f(c) = e _ A ^ is contin­

uous and p(c) = — r U<Jtu (c)dc 1S integrable and positive, we have x{t) = e_A(c( t^ t 

supp(Ct) 

for some c(t) G supp(Ct)- Note that 

/ xtuWt(xt)dxt 

e-A(c(t))t = suppm) ^ ^ 
J uwAxt)dxt 

supp{Wt) 

j xtuwt(xt)dxt 
I suw(W+) 

n 
Inn I SUPP(Wt) 

J uwt(xt)dxt 

A(c(t)) = \J^L L f / 0 (19) 
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From (19), X(c(t)) (see Figure 17) is differentiable in t. If A(c(t)) is differentiable 
in £, then x(t) (15) is a solution of the non-autonomous differential equation (10). 
That is, from an autonomous differential equation, the method generates a represen­
tative (defuzzified) solution x(t) that actually is a solution of the non-autonomous 
differential equation (equation (10)). 

0.9 

0.8 

0.7 

0.6 

§0.5 

0.4 

0.3 

0.2 

0.1 

0 ( 

r 

) 1 

1 

| 
2 

| 
3 

| 
4 

| 
5 

time(r) 

| 
6 

| 
7 

| 
8 9 10 

Figure 17. A(c(t)). 

We notice that in the method suggested in this paper, the idea is to obtain 
x(t) following the steps shown in Figure 9 instead of to solve an equation such as 
(10) since this equation is unknown apriori. The solution x(t) is obtained from a 
family of classic differential equations, but it does not coincide with any solution 
for a fixed c. However, for each t, x(t) is a value that belongs to the unique solution 
of the family of equations parameterized by c. Therefore, what differs the solution 
derived with the method suggested here from the deterministic solutions is that the 
deterministic solutions all uncertainties are excluded in the beginning (defuzzify at 
t = 0 and solve) whereas here the uncertainties evolves and defuzzification occurs 
at the time instant of interest (defuzzify when needed). 

6. Comparing the Fuzzy Set-Based Solution with Real Data 

As discussed in Section 2, Ref. 13 presents the Anderson's model (1) adjusted with 
a best-fit procedure to find a to the data of Ref. 17. We use the same data of 

du 
Ref. 13, as shown in Figure 1. Since it gives the values of —-, we integrate the 

at 
original data to get y(t). Next we compute x(t) from x(t) + y(t) = 1. To find 
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the solution of the infected population given by the fuzzy model (8), we assume 
Cmin = 0.01 and CM = 0.95. As we note in Figure 16, the defuzzified solution closely 
matches the original data, as does Anderson's model. However, differently from 
the Anderson's model, the solution obtained via the fuzzy set-based methodology 
comes from expert knowledge and biological principles and does not depend on the 
availability of population data. 

7. Conclusion 

This paper has suggested a methodology to determine the evolution of positive HIV 
population and manifestation of AIDS, focusing on the nature of the transference 
rate of asymptomatic to symptomatic, and on the fuzzy character of the C-D4+ 
level values. The main difference between the classic model (1) and the fuzzy model 
(8) introduced in the paper is that the fuzzy model exploits expert knowledge 
and the inherently imprecise values of biological parameters, whereas the classic 
model does not. In a sense, the classic model is a particular instance of the fuzzy 
model. In addition, Anderson's model parameter is derived from a best fit to data 
procedure while the fuzzy methodology is constructed from biological principles 
and biological information. The fuzzy set-based methodology provides a clear and 
meaningful characterization of the asymptomatic population behavior once it is 
compatible with medical knowledge and perception of its dynamics. The solution 
has shown to be close to data reported in literature. 

The contributions of the paper are manifold. It suggests a scheme to combine 
microscopic (individual) and macroscopic (population) models to study the dy­
namics of populations and act in individuals as it is actually done in practice; it 
provides a mechanism in which uncertainty is considered as a part of the solution 
and representative values of the time trajectories are computed whenever necessary 
to evaluate population state and to decide on the proper health policies; it pro­
poses a simpler method to obtain non autonomous differential equations with fuzzy 
initial conditions than more sophisticated and general methods such as differential 
inclusions, and fuzzy differential equations such as those of the Hullermeier class. 

Future work will evaluate the effect of viral load and C-D4+ levels in the trans­
ference rate of symptomatic to asymptomatic individuals considering populations 
with regular adhesion to treatment, and to model HIV positive populations with 
irregular adhesion to anti-retroviral therapy. 
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