
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://epubs.siam.org/doi/abs/10.1137/110856253

DOI: 10.1137/110856253

Direitos autorais / Publisher's copyright statement:

©2013 by Society for Industrial and Applied Mathematics. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 1189–1213

INEXACT RESTORATION METHOD FOR DERIVATIVE-FREE
OPTIMIZATION WITH SMOOTH CONSTRAINTS∗

L. F. BUENO† , A. FRIEDLANDER‡ , J. M. MARTÍNEZ‡ , AND F. N. C. SOBRAL§

Abstract. A new method is introduced for solving constrained optimization problems in which
the derivatives of the constraints are available but the derivatives of the objective function are not.
The method is based on the inexact restoration framework, by means of which each iteration is
divided in two phases. In the first phase one considers only the constraints, in order to improve
feasibility. In the second phase one minimizes a suitable objective function subject to a linear
approximation of the constraints. The second phase must be solved using derivative-free methods.
An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-
free optimization is employed for this purpose. Under usual assumptions, convergence to stationary
points is proved. A computer implementation is described and numerical experiments are presented.

Key words. inexact restoration, derivative-free optimization, global convergence, numerical
experiments

AMS subject classifications. 65K05, 65Y20, 90C56e

DOI. 10.1137/110856253

1. Introduction. In this paper we address nonlinear programming problems in
which the derivatives of the objective function are not available, whereas the deriva-
tives of the constraints are [37]. Several methods take advantage of the simplicity
of boxes and linear constraints [16, 27, 32, 33, 49] or need sufficient thickness of
the feasible set [10, 11]. Here, we have in mind more general, perhaps highly non-
linear, constraints. We believe that approaches in which one evaluates function and
constraints at the same points (for example, the augmented Lagrangian approaches
of [17, 25, 34, 35]) are not fully satisfactory because sometimes the presence of topo-
logically complex constraints causes the necessity of performing many evaluations.
In these cases, the intrinsically expensive objective function could be unnecessarily
computed, increasing the overall computational cost.

In this context, methods that separately evaluate constraints and objective func-
tion seem to be useful. The key point is that one should not evaluate the objective
function when the partial (possibly difficult) goal is to improve feasibility. Inexact
restoration (IR) methods are well suited for this purpose.

Restoration ideas have a long tradition in constrained optimization. Rosen [53, 54]
introduced gradient projection methods for linear and nonlinear constraints, Miele
and his coworkers [43, 44, 45] developed sequential gradient restoration ideas, whose
rigorous convergence theory was proved by Rom and Avriel [51, 52]. Generalized

∗Received by the editors November 22, 2011; accepted for publication (in revised form) January 29,
2013; published electronically June 20, 2013. This work was supported by PRONEX-CNPq/FAPERJ
grant E-26/171.164/2003–APQ1, CEPID–Industrial Mathematics (FAPESP 2011-51305-0), FAPESP
grants 03/09169-6, 06/53768-0, 07/06663-0, and 08/00468-4, and CNPq.

http://www.siam.org/journals/siopt/23-2/85625.html
†Department of Science and Technology, Federal University of São Paulo, São José dos Campos,

São Paulo, Brazil (lfelipebueno@gmail.com).
‡Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Com-

puting, State University of Campinas, Campinas, São Paulo, Brazil (friedlan@ime.unicamp.br,
martinez@ime.unicamp.br).

§Research and Development Division, Itaú-Unibanco, Praça Alfredo Egydio de Souza Aranha,
100, São Paulo, Brazil (chicosobral@gmail.com).

1189

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1190 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

reduced gradient methods [1, 30] are still frequently used in engineering applica-
tions. In all these cases restoration is performed along specifically given directions
(gradient-related in [53, 54, 43, 44, 45] and coordinate directions in [1, 30]). Methods
with free restoration procedures have been recently introduced in [13, 21, 20, 39, 40],
among others.

The main iteration of modern IR methods for smooth constrained optimization
[15, 19, 21, 23, 39, 40] proceeds in two phases. In the first (restoration) phase, feasi-
bility is improved without evaluations of the objective function at all. In the second
(optimization) phase, one improves the objective function (or a Lagrangian, or an
augmented Lagrangian with moderate penalty parameter) on a tangent approxima-
tion to the constraints. The resulting trial point is accepted, or not, according to trust
region [39, 40], line search [19], or filter criteria [21, 23]. If the trial point is rejected,
a new trial point is taken closer to the restored point obtained at the end of the first
phase. Convergence to KKT points under regularity assumptions is usually obtained
and superlinear convergence can be proved for local versions of the methods [15, 23].
A method that resembles IR ideas in the global optimization field was introduced in
[41]. IR has been successfully applied to control problems [24, 12].

The IR approach is useful for the problems that we have in mind for two rea-
sons. On one hand, difficulties associated with the fulfillment of the constraints
are transferred to the first phase of the iterations, in which the objective func-
tion (whose derivatives are not available) plays no role. Therefore, we can take
advantage of well established smooth optimization tools in the restoration phase.
On the other hand, the optimization phase needs derivative-free minimization with
linear constraints, a problem for which there exist adequate algorithms, in par-
ticular, the generating search set (GSS) method introduced by Kolda, Lewis, and
Torczon [26, 28].

Although this paper deals with optimization problems in which constraint deriva-
tives are available but function derivatives are not, it is worthwhile to mention that
the IR philosophy applies to more general situations. For instance, consider the case
in which function derivatives are available too, but evaluation is very expensive. In
this case it is better to deal with infeasibility in a way that is independent of evalu-
ating the objective function. Moreover, if some constraint evaluations are expensive
and others are not, it is sensible to include the expensive constraints in the objec-
tive function in an augmented Lagrangian context with constrained subproblems [3].
In this way, the IR method turns out to be appropriate for solving the constrained
augmented Lagrangian subproblems.

This paper is organized as follows. In section 2 we discuss some preliminaries. In
section 3 we describe the derivative-free IR algorithm. In section 4 we analyze the
algorithm’s convergence. In section 5 we discuss implementation details. Numerical
experiments are shown in section 6. Finally, section 7 is devoted to conclusions and
lines for future research.

Notation. The symbol ‖ · ‖ will denote the Euclidean norm on R
n.

We denote N = {0, 1, 2, . . .}.
The set of the nonnegative real numbers is denoted by R+.
PD(x) will be the Euclidean projection of x on the closed convex set D.
The Euclidean ball with center x and radius δ will be denoted B(x, δ).

2. Preliminary background. In this section we discuss sequential optimality
conditions, constraint qualifications, and the GSS method. Our IR method will em-
ploy the GSS algorithm for solving optimization subproblems. Each GSS execution

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1191

finishes when local variations of small size Δ are unsuccessful. The theory of GSS
guarantees a small gradient projection when this happens [28]. This property will
help us to prove that limit points of sequences generated by the IR method satisfy the
approximate gradient projection (AGP) property, which is a sequential necessary op-
timality condition. The AGP property, together with a weak constraint qualification,
implies that the IR algorithm finds KKT points.

We consider the nonlinear programming problem in the form

(2.1) Minimize f(x) subject to h(x) = 0, g(x) ≤ 0,

where f : Rn → R, h : Rn → R
m, g : Rn → R

p are smooth.
Sequential optimality conditions [4, 8, 42] are motivated by the stopping conver-

gence criteria usually employed in algorithms for solving (2.1). The execution of an
algorithm generally stops, declaring “success” or “convergence,” when some property
P(ε) is fulfilled by the kth iterate, where ε > 0 is a small tolerance given by the user.
For example, if P(0) represents the KKT conditions, the fulfillment of P(ε) indicates
the satisfaction of KKT up to the tolerance ε. We say that the sequential optimality
condition associated with the property P is fulfilled at a feasible point x∗ if there
exists sequences xk → x∗ and εk → 0 such that P(εk) holds at xk for all k. Usually,
sequential optimality conditions are fulfilled at local minimizers of (2.1) independently
of the satisfaction of regularity assumptions (constraint qualifications). For example,
consider the problem of minimizing x1 subject to x2

1 = 0, whose unique minimizer
is x∗

1 = 0. The KKT conditions do not hold at the solution, but the associated
approximate KKT (AKKT) sequential optimality condition does.

We are concerned with the AGP sequential optimality condition introduced in
[42]. Given η ∈ (0,∞], a feasible point x∗ is said to satisfy AGP (η) if there exist
sequences {xk} ⊂ R

n and {εk} ⊂ R+ such that xk → x∗, εk → 0, and

(2.2) ‖PDk
(xk −∇f(xk))− xk‖ ≤ εk,

where Dk is the set of points x ∈ R
n defined by

∇hi(x
k)T (x− xk) = 0 for all i = 1, . . . ,m,

∇gj(xk)T (x− xk) ≤ 0 for all j such that gj(x
k) ≥ 0,

and

gj(x
k) +∇gj(xk)T (x− xk) ≤ 0 for all j such that − η < gj(x

k) < 0.

It can be proved that AGP(η) is equivalent to AGP(η′) for all η, η′ ∈ (0,∞] [42]. For
this reason we always write AGP instead of AGP(η).

It is interesting to observe that although the exact forms of AKKT and AGP are
equivalent, the corresponding sequential conditions are not. (AGP is strictly stronger
than AKKT [4].)

Constraint qualifications are properties of the constraints of nonlinear program-
ming problems that when satisfied at a local minimizer x∗, independently of the
objective function, imply that x∗ fulfills the KKT conditions. In other words, if CQ is
a constraint qualification, a necessary optimality condition is that the KKT conditions
are fulfilled or the CQ condition does not hold. As a consequence, weak constraint
qualifications produce strong optimality conditions. The best known constraint qual-
ifications are LICQ (linear independence of the gradients of active constraints) and

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1192 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Mangasarian–Fromovitz (MFCQ). The constant positive linear dependence condition
(CPLD) is a weaker constraint qualification than LICQ and MFCQ, introduced in
[50]. In [7] the status of CPLD with respect to other constraint qualifications was
elucidated.

Assume that D is the feasible set of (2.1). We say that the CPLD condition
holds at x∗ ∈ D if, whenever there exist I1 ⊆ {1, . . . ,m}, I2 ⊆ {1, . . . , p}, λ∗ ∈ R

m,
such that λ∗

i = 0 if i /∈ I1, and μ∗ ∈ R
p
+ such that μ∗

i = 0 if i /∈ I2, satisfying
‖λ∗‖+ ‖μ∗‖ > 0 and

∑
i∈I1

λ∗
i∇hi(x

∗) +
∑
i∈I2

μ∗
i∇gi(x∗) = 0,

we have that there exists δ > 0 such that for all x ∈ B(x∗, δ), the gradients ∇hi(x),
∇gj(x), i ∈ I1, j ∈ I2, are linearly dependent. (In simple words, the “positive linear
dependence” of some gradients of active constraints imply that the same gradients
remain linearly dependent in a neighborhood of x∗.)

This constraint qualification is weaker than MFCQ. Thus, results ensuring KKT
under CPLD are stronger than results in which KKT is guaranteed subject to the
fulfillment of MFCQ or LICQ. This attractive feature has already motivated the
introduction of augmented Lagrangian derivative-free methods in which optimality in
the limit is associated with CPLD [17, 35].

Weaker constraints qualifications that imply the KKT conditions when associated
with sequential optimality conditions were recently introduced in [5, 6].

GSS is a derivative-free method for linearly constrained optimization [26, 28]. At
each iteration of GSS a finite search set Gk is generated. The directions in Gk generate
the tangent cone of the almost active constraints at the current iterate. The norms of
these directions are bounded below and above by positive algorithmic parameters and
satisfy a minimum angle condition given by another algorithmic parameter. A set of
heuristics directions Hk can also be used for the search. The use of these directions
does not interfere in the convergence analysis of the algorithm but may be important
in practice.

Given a step size tk, an iteration of GSS is deemed successful if the objective
function f has a sufficient decrease along a feasible step tkd

k for some dk ∈ Gk ∪Hk.
In this case, the algorithm obtains the new iterate taking this step and moves on.
The sufficient decrease is measured with a monotone function ρ : R+ → R+ such

that lim ρ(t)
t = 0. Usually (for example, at the implementation in [47]), the forcing

function ρ has the form αt2, where α > 0 is an algorithmic parameter.
An iteration of the GSS algorithm is deemed unsuccessful if f(xk + tkd

k) ≥
f(xk) − ρ(tk) for all dk ∈ Gk ∪ Hk. In this case the algorithm stays at the current
point and reduces the step size by a fixed ratio. The algorithm stops when tk < Δ,
where Δ > 0 is an algorithmic parameter that defines the convergence criterion. In
[28] the authors show how to associate the projected gradient at unsuccessful iterates
with the step size tk. As a consequence, the size of the projected gradient at the final
point is bounded by a multiple of Δ.

The GSS version implemented in [47] will be used to solve the subproblems of our
IR algorithm. We will use all the default parameters of [47], with the exception of the
stopping criterion Δ, that will be determined at each iteration of the IR algorithm.

3. IR algorithm. The problem considered in the rest of this paper is

(3.1) Minimize f(x) subject to h(x) = 0 and x ∈ Ω,

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1193

where f : Ω ⊆ R
n → R, h : Ω→ R

m, and Ω is a bounded polytope given by

(3.2) Ω = {x ∈ R
n | aTi x ≤ bi, i = 1, . . . , p}.

We assume that the polytope Ω is bounded because, in the convergence theory, we
need to ensure boundedness of the generated sequence {xk} ⊆ Ω. Boundedness of Ω
is the most natural sufficient condition on the problem that guarantees boundedness
of the sequence. The algorithm is well defined and finds optimal points even without
the boundedness assumption on Ω whenever the sequence {xk} is bounded.

We assume that h is smooth and its first derivatives are available.
For all x ∈ Ω, θ ∈ (0, 1) we define the merit function Φ(x, θ) by

(3.3) Φ(x, θ) = θf(x) + (1− θ)‖h(x)‖.
The main algorithm considered in this paper is defined as follows.
Algorithm 1. Let r ∈ [0, 1), β > 0, μ̄ ≥ γ > 0, and 1 < αl ≤ αu be algorithmic

parameters. Choose x0 ∈ Ω, θ0 ∈ (0, 1). Set k ← 0.
Step 1. Restoration.
Compute yk ∈ Ω such that

(3.4) ‖h(yk)‖ ≤ r‖h(xk)‖
and

(3.5) ‖yk − xk‖ ≤ β‖h(xk)‖.
Step 2. Penalty parameter.
If

(3.6) Φ(yk, θk)− Φ(xk, θk) ≤ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖)

set θk+1 = θk.
Else, compute

(3.7) θk+1 =
(1 + r)(‖h(xk)‖ − ‖h(yk)‖)

2[f(yk)− f(xk) + ‖h(xk)‖ − ‖h(yk)‖] .

Step 3. Optimization and regularization.
Choose μ ∈ [γ, μ̄].
Step 3.1. Tangent set descent of the regularized objective function.
Find d ∈ R

n such that yk + d ∈ Ω, ∇h(yk)T d = 0, and

(3.8) f(yk + d) + μ‖d‖2 ≤ f(yk).

Step 3.2. Descent condition for the merit function.
If

(3.9) Φ(yk + d, θk+1) ≤ Φ(xk, θk+1) +
1− r

2
(‖h(yk)‖ − ‖h(xk)‖)

define dk = d, μk = μ, xk+1 = yk + dk, update k ← k + 1, and go to Step 1. Else,
update

(3.10) μ ∈ [αlμ, αuμ]

and go to Step 3.1.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1194 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Remarks.
1. The conditions stated at Step 3.1 are not sufficient to prove convergence to

points that satisfy optimality conditions. Note that even the trivial choice
d = 0 satisfies these requirements. In this case we will still be able to prove
feasibility of limit points, but not optimality. The proof of optimality will
result from choosing d as an approximate solution of the subproblem

(3.11)

Minimize f(yk + d) + μ‖d‖2
subject to ∇h(yk)Td = 0,

yk + d ∈ Ω,

which should satisfy the stopping criterion of GSS with a small tolerance Δk.
This requirement will be stated as a precise assumption later.

2. An interesting case is when d = 0 is the only feasible solution of (3.11).
Since the constraints of the minimization subproblem are linear, the KKT
conditions of the subproblem are exactly satisfied at d = 0. If the current
point is feasible, yk is a solution of the original problem. Otherwise, there will
be new restoration phases and so new opportunities of improving feasibility.
If d = 0 remains the only feasible point at all the iterations, convergence will
occur according to the theory that will be presented in this paper.

3. In the present paper we adopted the restoration criterion (3.5), used in [21,
39, 40], instead of the one used by Fischer and Friedlander in [19]. The
condition ‖yk − xk‖ ≤ β‖h(xk)‖ says that yk should not be very far from
xk; otherwise the algorithm could choose yk equal to the same feasible point
at every restoration phase. Fischer and Friedlander use, instead of (3.5), the
related condition f(yk) ≤ f(xk) + β‖h(xk)‖. Under a Lipschitz assumption
on f , the latter is implied by (3.5) (with a different constant). However,
we prefer to use (3.5) here because this condition does not involve f , which
is supposed to be the expensive function. In other words, with the present
requirement, the restoration phase does not need to evaluate f at all.

4. The merit function used in this paper is Φ(x, θ) = θf(x)+(1−θ)‖h(x)‖. As in
usual penalty algorithms, very small values of θ reduce the merit function to
a mere almost-infeasibility measure. In order to keep a good balance between
optimality and feasibility, we do not want very quick reductions of the penalty
parameter θ. In [19] the new value of θ is computed as the maximum value of
{θ, θ/2, θ/4, . . .} such that (3.6) is satisfied. In the present paper, by means of
formula (3.7), we compute the maximum possible θ such that (3.6) is fulfilled.
Therefore, our explicit computation of the maximum possible θ yields a larger
value of the penalty parameter than the one computed using [19].

5. The practical effectiveness of Algorithm 1 relies strongly on the efficiency of
the method used to solve (3.11). Algorithm 1 defines a sequence of alter-
nated restoration and linearly constrained minimization steps. The objective
function at the minimization steps is the objective function of the original
problem plus a regularization term. This formulation is adequate for the em-
ployment of derivative-free minimization on the tangent subspace. The IR
formulation [19], which is based on line searches, is not appropriate since in
that case, one needs to guarantee that descent is possible along the obtained
direction without explicit gradient information.

4. Convergence. Let us first state some assumptions that will be used in this
section. The first assumption is that the restoration step is well defined.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1195

Assumption A1. For all k = 0, 1, 2, . . . it is possible to compute yk ∈ Ω such that
(3.4) and (3.5) are fulfilled.

Clearly, this assumption ceases to be satisfied when, for example, the feasible
set is empty. Sufficient regularity conditions on the problem that guarantee that
Assumption A1 holds have been given in [19, 39]. In [39] the LICQ is used to ensure
that Assumption A1 holds in a neighborhood of the solution. In [19] it is shown that
if the MFCQ holds at all feasible points of (3.1), then the restoration step is always
well defined.

On the other hand, recall that the existence of an “error bound” related to the
feasible set means that the distance between x and the feasible set is bounded by a
multiple of ‖h(x)‖. Therefore, if an “error bound” with factor β exists, then for each
xk there exists a feasible ȳk such that ‖ȳk − xk‖ ≤ β‖h(xk)‖. In other words, it is
possible to find yk that fulfills conditions (3.4) and (3.5). If β needs to be very large,
this means that very large variations in x are necessary to produce small variations
in h. This is typical of situations in which constraint qualifications do not hold.

The following assumption states that f satisfies a Lipschitz condition.
Assumption A2. There exists Lf > 0 such that

(4.1) |f(x)− f(y)| ≤ Lf‖x− y‖

for all x, y ∈ Ω.
Lemma 4.1. Assume that A1 and A2 are fulfilled. Then, for all k ∈ N, Steps 1

and 2 of Algorithm 1 are well defined. Moreover, the sequence {θk} is nonincreasing,
the inequality

(4.2) Φ(yk, θk+1)− Φ(xk, θk+1) ≤ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖)

is fulfilled for all k, and there exists θ̄ > 0 such that

(4.3) θk ↓ θ̄.

Proof. Step 1 is well defined by Assumption A1.
Assuming that θk > 0 we will first prove that Step 2 is well defined and that

0 < θk+1 ≤ θk. Using Assumption A1, if ‖h(yk)‖−‖h(xk)‖ = 0, then by (3.4) we have
that ‖h(yk)‖ = ‖h(xk)‖ = 0. Therefore by (3.5) yk = xk. So, Φ(xk, θk) = Φ(yk, θk).
Thus (3.6) holds in this case and consequently θk+1 = θk > 0.

Therefore, it remains to consider only the case in which ‖h(yk)‖ < ‖h(xk)‖. In
this case we obtain that
(4.4)

‖h(xk)‖ − ‖h(yk)‖+ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖) = 1 + r

2
(‖h(xk)‖ − ‖h(yk)‖) > 0.

By direct calculations, the inequality (3.6) is equivalent to

θk[f(y
k)− f(xk) + ‖h(xk)‖ − ‖h(yk)‖](4.5)

≤ ‖h(xk)‖ − ‖h(yk)‖+ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖).

Thus, by (4.4) and the fact that θk > 0, the requirement (3.6) is fulfilled whenever
f(yk) − f(xk) + ‖h(xk)‖ − ‖h(yk)‖ ≤ 0. In this case, the algorithm also chooses
θk+1 = θk > 0.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1196 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Therefore, we only need to consider the case in which

f(yk)− f(xk) + ‖h(xk)‖ − ‖h(yk)‖ > 0.

In this case, both the numerator and the denominator of (3.7) are positive. So, it turns
out that θk+1 > 0 whenever θk+1 is equal to θk or it is defined by (3.7). Moreover, if
(3.6) does not hold, then by (4.5) we have that

Φ(yk, θ)− Φ(xk, θ) >
1− r

2
(‖h(yk)‖ − ‖h(xk)‖)

for all θ ≥ θk. Now, since the choice (3.7) obviously implies that

θk+1[f(y
k)− f(xk) + ‖h(xk)‖ − ‖h(yk)‖](4.6)

= ‖h(xk)‖ − ‖h(yk)‖+ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖).

we conclude that 0 < θk+1 ≤ θk in all cases. So, since θ0 ∈ (0, 1) as a initial parameter
of the algorithm, the sequence {θk} is positive and nonincreasing. Furthermore, by
(3.6), (3.7), and (4.6), we have that

Φ(yk, θk+1)− Φ(xk, θk+1) ≤ 1− r

2
(‖h(yk)‖ − ‖h(xk)‖).

It only remains to prove that the sequence {θk} is bounded away from zero. For this
purpose, it suffices to show that θk+1 is greater than a fixed positive number when it
is defined by (3.7). In this case we have that

1

θk+1
=

2[f(yk)− f(xk) + ‖h(xk)‖ − ‖h(yk)‖]
(1 + r)[‖h(xk)‖ − ‖h(yk)‖]

≤ 2

1 + r

[|f(yk)− f(xk)|
‖h(xk)‖ − ‖h(yk)‖ + 1

]
.

Thus, by (4.1), (3.4), and (3.5),

(4.7)
1

θk+1
≤ 2

1 + r

[
Lfβ

1− r
+ 1

]
.

This implies that the sequence {1/θk+1} is bounded. Therefore, the sequence {θk} is
bounded away from zero, as we wanted to prove.

Formula (4.7) shows that the penalty parameter θ can be close to zero only if
Lfβ is big. Now, Lf is the Lipschitz constant of f (a characteristic of the problem)
which measures the variation of the objective function. It is natural that objective
functions with large variations need “bad” penalty parameters, since one needs to
penalize the constraints to equilibrate functional variations. Moreover, by (4.7), the
cause of θ being small could be the fact that (3.5) holds only for big values of β. This
means that the variation of the constraints is small as a function of x, so ‖h(x)‖ is
small far from the solution and very small penalty parameters are necessary in order
to compensate the variation of f .

From now on, we employ an additional smoothness condition on h. Essentially,
we are going to assume that ∇h satisfies a Lipschitz condition. This is a sufficient
condition for the fulfillment of Assumption A3 below.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1197

Assumption A3. There exists Lh > 0 such that for all d ∈ R
n, y ∈ Ω such that

y + d ∈ Ω and ∇h(y)Td = 0, one has

(4.8) ‖h(y + d)‖ ≤ ‖h(y)‖+ Lh‖d‖2.
Let us prove now that if μ is large enough, then condition (3.8) implies that

condition (3.9) is fulfilled.
Lemma 4.2. Assume that A1, A2, and A3 are fulfilled. Let xk ∈ Ω be an iterate

computed by Algorithm 1. Then, after a finite number of updates (3.10), condition
(3.9) is satisfied. Moreover, there exists μbound > 0 such that μk ≤ μbound for all
k ∈ N.

Proof. By (3.10) and the initialization of μ at Step 3, μ ≥ γ at all the IR iterations.
Therefore, by (3.8),

f(yk + d) + γ‖d‖2 ≤ f(yk + d) + μ‖d‖2 ≤ f(yk).

Let us show now that condition (3.9) holds for μ large enough. By Lemma 4.1, there
exists θ̄ > 0 such that

(4.9) θk ≥ θ̄ for all k.

We are going to prove now that if

(4.10) μ ≥ 1− θ̄

θ̄
Lh,

then inequality (3.9) is also fulfilled.
By (4.10) we have that

(4.11) (1 − θ̄)Lh − θ̄μ ≤ 0.

By (4.2), Assumption A3, and the definition of Φ, we have

Φ(yk + d, θk+1)− Φ(xk, θk+1)(4.12)

= Φ(yk + d, θk+1)− Φ(yk, θk+1) + Φ(yk, θk+1)− Φ(xk, θk+1)

≤ θk+1[f(y
k + d)− f(yk)] + (1− θk+1)(‖h(yk + d)‖ − ‖h(yk)‖)

+
1− r

2
(‖h(yk)‖ − ‖h(xk)‖)

≤ −θk+1μ‖d‖2 + (1 − θk+1)Lh‖d‖2 + 1− r

2
(‖h(yk)‖ − ‖h(xk)‖).

But, by (4.9) and (4.11),

(4.13) −θk+1μ‖d‖2 + (1− θk+1)Lh‖d‖2 ≤ −θ̄μ‖d‖2 + (1− θ̄)Lh‖d‖2 ≤ 0.

By (4.12) and (4.13), it follows that (3.9) holds whenever (4.10) takes place. Thus,
after a finite number of updates (3.10), (3.9) is satisfied. By the boundedness of the
initial μ, the update rule (3.10), and (4.10), the whole sequence {μk} is bounded
independently of k.

Theorem 4.1. Assume that {xk} and {yk} are generated by Algorithm 1 and
that Assumptions A1, A2, and A3 hold. Then,

(4.14) lim
k→∞

‖h(xk)‖ = lim
k→∞

‖h(yk)‖ = lim
k→∞

‖dk‖ = 0.

Moreover, {xk} and {yk} admit the same limit points and every limit point is feasible.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1198 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Proof. By condition (3.9), for all k ∈ N,

Φ(xk+1, θk+1) ≤ Φ(xk, θk+1) +
1− r

2
(‖h(yk)‖ − ‖h(xk)‖).

Therefore, by (3.4),

(4.15) Φ(xk+1, θk+1) ≤ Φ(xk, θk+1)− (1− r)2

2
‖h(xk)‖.

Let us define ρk = (1 − θk)/θk for all k ∈ N. By Lemma 4.1 there exists θ̄ > 0 such
that θk ≥ θ̄ for all k ∈ N. This implies that ρk ≤ 1/θ̄ − 1 for all k ∈ N. Since {ρk} is
bounded and nondecreasing it follows that

(4.16)

∞∑
k=0

(ρk+1 − ρk) = lim
k→∞

ρk+1 − ρ0 <∞.

By compactness, the sequence {‖h(xk)‖} is bounded. Therefore, by (4.16), there
exists c > 0 such that

(4.17)

∞∑
k=0

(ρk+1 − ρk)‖h(xk)‖ ≤ c <∞.

Now, by (3.9),

f(xk+1) +
1− θk+1

θk+1
‖h(xk+1)‖ ≤ f(xk) +

1− θk+1

θk+1
‖h(xk)‖ − (1 − r)2

2θk+1
‖h(xk)‖.

Since θk+1 < 1, we have that (1−r)2

2θk+1
> (1−r)2

2 . So, by the definition of ρk+1,

f(xk+1) + ρk+1‖h(xk+1)‖ ≤ f(xk) + ρk+1‖h(xk)‖ − (1 − r)2

2
‖h(xk)‖.

Therefore, for all k ∈ N,

f(xk+1)+ρk+1‖h(xk+1)‖ ≤ f(xk)+ρk‖h(xk)‖+(ρk+1−ρk)‖h(xk)‖− (1− r)2

2
‖h(xk)‖.

Thus, for all k ∈ N we have

f(xk)+ρk‖h(xk)‖ ≤ f(x0)+ρ0‖h(x0)‖+
k−1∑
j=0

(ρj+1−ρj)‖h(xj)‖− (1− r)2

2

k−1∑
j=0

‖h(xj)‖.

Therefore, by (4.17),

f(xk) + ρk‖h(xk)‖ ≤ f(x0) + ρ0‖h(x0)‖+ c− (1− r)2

2

k−1∑
j=0

‖h(xj)‖.

Thus,

(1− r)2

2

k−1∑
j=0

‖h(xj)‖ ≤ −[f(xk) + ρk‖h(xk)‖] + f(x0) + ρ0‖h(x0)‖+ c.

Since {ρk} is bounded, by the continuity of f and h and the compactness of Ω, it
follows that the series

∑∞
k=0 ‖h(xk)‖ is convergent. Therefore,

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1199

lim
k→∞

‖h(xk)‖ = 0.

Thus, by (3.5),

lim
k→∞

‖yk − xk‖ = 0

and so the sequences {xk} and {yk} admit the same limit points.
Now, by (3.8) and the fact that μ ≥ γ, for all k ∈ N we have

f(xk+1)− f(xk) = f(xk+1)− f(yk) + f(yk)− f(xk) ≤ −γ‖dk‖2 + f(yk)− f(xk).

Then, by (3.5) and (4.1),

f(xk+1)− f(xk) ≤ −γ‖dk‖2 + Lfβ‖h(xk)‖
for all k ∈ N. Therefore,

f(xk) ≤ f(x0)− γ
k−1∑
�=0

‖d�‖2 + Lfβ
k−1∑
�=0

‖h(x�)‖.

Since the series
∑∞

k=0 ‖h(xk)‖ is convergent, there exists c̄ > 0 such that for all k ∈ N,

f(xk) ≤ f(x0) + c̄− γ

k−1∑
�=0

‖d�‖2.

Thus, since f is bounded below on Ω, the series
∑∞

k=0 ‖dk‖2 is convergent and ‖dk‖
tends to zero.

Observe that up to now, no optimality condition has been assumed for the ap-
proximate solution of (3.11), which means that dk = 0 could be a possible choice for
all k ∈ N. In this case, the algorithm would have performed only restoration steps.
Moreover, the existence of derivatives of f has not been assumed at all. Employing a
Lipschitz condition for f quarantees the algorithm is well-defined and the limit points
are feasible but without additional smoothness assumptions. This feature opens the
possibility of using efficient fully derivative-free algorithms for finding useful directions
d by solving (3.11).

Assumption A4 imposes that the approximate solution d in (3.11) should be
obtained by means of the algorithm GSS for derivative-free minimization with linear
constraints [26, 28]. Since d = 0 is feasible for problem (3.11), this assumption is
consistent with (3.8). This will be used to ensure optimality conditions of the limit
points of the IR algorithm.

Assumption A4. For all k ∈ N, the direction d at Step 3.1 of Algorithm 1
is obtained by solving (3.11) by means of algorithm GSS of [28], using a stopping
criterion parameter Δk > 0 such that limk→∞ Δk = 0.

For deciding to stop the execution, GSS employs a fixed tolerance η > 0 such that
the only linear constraints that are considered in the testing procedure are those that
are “almost active” at yk + d with tolerance η. This includes, of course, the active
constraints at yk + d. Recalling the definition of Ω (3.2), it is useful to define

A(k, η) = {i ∈ {1, . . . , p} | − η ≤ aTi (y
k + d)− bi ≤ 0}

and

Ω(k, η) = {x ∈ R
n | aTi x ≤ bi for all i ∈ A(k, η)}.

A(k, η) is the set of indices of the linear constraints that are almost active at the
point yk + d ∈ Ω and Ω(k, η) is the polytope Ω considering only the almost active

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1200 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

constraints. Clearly, Ω ⊆ Ω(k, η) and if η =∞, one has that Ω = Ω(k, η). Moreover,
since yk ∈ Ω, for d small enough we have that

A(k, η) = {i ∈ {1, . . . , p} | − 2η ≤ aTi y
k − bi ≤ 0}.

Finally, we define

Dk = {x ∈ Ω(k, η) | ∇h(yk)T (x− yk) = 0}.
Assumption A5. From now on we will assume that the derivatives of f , although

not used in our algorithm at all, exist and are Lipschitz continuous, with constant Lg,
for all x in a neighborhood of Ω.

We emphasize that Assumption A5 is necessary to prove Theorem 6.3 of [28].
This result ensures that when one uses the GSS algorithm to minimize a function F
subject to linear constraints, then

‖PD(x−∇F (x)) − x‖ ≤ cΔ,

where x is a point obtained after an unsuccessful iteration, Δ is the step size at the
current GSS iteration, c is a constant that only depends on algorithmic parameters
and problem-dependent magnitudes, and D is the subspace defined by the almost
active constraints at x.

The termination of the GSS algorithm occurs after an unsuccessful iteration. By
Assumption A4 we employ the GSS algorithm as a subproblem solver to minimize
Fk(x) ≡ f(x) + μk‖x − yk‖2 subject to x − yk ∈ Dk. Therefore, Theorem 6.3 of [28]
can be used to determine the optimality properties at xk+1, namely,

(4.18) ‖PDk
(xk+1 −∇f(xk+1)− 2μk(x

k+1 − yk))− xk+1‖ ≤ ckΔk.

Moreover, since the algorithmic parameters and the problem magnitudes are naturally
bounded, we may assume that ck ≤ c > 0 for all k ∈ N.

This property is enough to prove the main convergence result for the IR algorithm
(with GSS).

Theorem 4.2. Assume that the sequence {xk} is generated by Algorithm 1 and
that Assumptions A1–A5 hold. Let x∗ be a limit point of {xk}. Then, x∗ is feasible
and satisfies the AGP condition. Moreover, if the CPLD constraint qualification holds
at x∗, then x∗ fulfills the KKT conditions.

Proof. The feasibility of x∗ has been proved in Theorem 4.1.
By the contraction property of projections, Assumption A5, and (4.18) we have

that

‖PDk
(yk −∇f(yk))− yk‖
≤ ‖PDk

(xk+1 −∇f(xk+1))− xk+1‖
+ ‖PDk

(xk+1 −∇f(xk+1))− PDk
(yk −∇f(yk)) + yk − xk+1‖

≤ ‖PDk
(xk+1 −∇f(xk+1))− xk+1‖+ (Lg + 2)‖xk+1 − yk‖

≤ ‖PDk
(xk+1 −∇f(xk+1))− PDk

(xk+1 −∇f(xk+1)− 2μk(x
k+1 − yk))‖

+ ‖PDk
(xk+1 −∇f(xk+1)− 2μk(x

k+1 − yk))− xk+1‖+ (Lg + 2)‖dk‖
≤ ‖2μk(x

k+1 − yk)‖
+ ‖PDk

(xk+1 −∇f(xk+1)− 2μk(x
k+1 − yk))− xk+1‖+ (Lg + 2)‖dk‖

≤ (2μk + Lg + 2)‖dk‖+ cΔk.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1201

Therefore, by Lemma 4.2 (boundedness of μk), Theorem 4.1 (‖dk‖ → 0), and As-
sumption A5, we have that

lim
k→∞

‖PDk
(yk −∇f(yk))− yk‖ = 0.

This implies that the limit point x∗ satisfies the AGP optimality condition. Therefore,
the desired result follows from Theorem 2.2 of [4].

5. Implementation. One of the most attractive characteristics of IR methods
relies on the freedom to choose the methods for both restoration and optimization
phases. This allows one to use suitable methods which exploit the structure of the
problem. In Algorithm 1, although Assumption A4 requires the use of a specific algo-
rithm for solving subproblem (3.11), any derivative-free method for linear constraints
whose limit points satisfy (4.18) can be used.

The version of GSS used here is the one implemented in HOPSPACK. The suffi-
cient descent condition is defined by ρ(t) = αt2 with α = 0.01. The search directions
have unitary norm and, after every unsuccessful GSS iteration, the search step is
halved. A constraint is declared almost active when its distance to the current point
is smaller than 2Δ, where Δ > 0 is the tolerance used for the stopping criterion. See
formula (5.4) below.

5.1. Restoration phase. In order to satisfy requirements (3.4) and (3.5), we
consider the smooth nonlinear programming problem

(5.1) Minimize ‖y − xk‖2 subject to h(y) = 0 and y ∈ Ω.

In [19] it is proved that if all the feasible points of (3.1) satisfy MFCQ, the global
solution of (5.1) satisfies condition (3.5) for some problem-dependent value of β which
does not depend on k. For solving (5.1) we employed ALGENCAN, an augmented
Lagrangian method described in [3] with the implementation provided in [59]. At each

(outer) iteration this method minimizes ‖y − xk‖2 +
ρk,j

2

∑m
i=1(hi(y) + λk,j

i /ρk,j)
2

subject to y ∈ Ω using an active set approach. The approximate solution of each
subproblem will be called yk,j and the initial approximation for solving (5.1) is yk,0 =
xk. The initial penalty parameter ρk,1 is chosen in order to equilibrate the values of the

objective function and the constraints of (5.1), and the initial Lagrange multipliers λk,0
i

are chosen to be null. Lagrange multipliers are updated according to the classical first-
order formula λk,j+1 = λk,j+ρk,jh(y

k,j). The active set method at each outer iteration
stops when an approximate solution of the subproblem is found, in such a way that the
norm of the projected gradient of the objective function of the subproblem is less than
10−5 times the same norm at the initial point for the subproblem. The ALGENCAN
process for solving (5.1) stops when optimality is fulfilled up to a precision εoptk and

feasibility is fulfilled up to a precision εfeask . Since in our restoration case feasibility of

(5.1) is much more important than optimality, we employed a loose value for εoptk in

our tests (εoptk = 0.1 at all the IR iterations), which means that the KKT conditions
of (5.1) aim to be satisfied up to that moderate precision. On the other hand, we

used a rather strict criterion for εfeask :

εfeask = max{10−8/
√
n,min{εfeask−1, ‖h(xk)‖}Δk},

where εfeas0 = 0.01 and Δk is specified in the optimization phase.
Employing these criteria, one usually obtains an approximate solution yk ∈ Ω

of (5.1) that satisfies ‖h(yk)‖ ≤ r‖h(xk)‖ and ‖yk − xk‖ ≤ β‖h(xk)‖ with r = 0.99

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1202 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

and β = 1000. However, if after a maximum of 20 augmented Lagrangian iterations,
a point yk ∈ Ω satisfying those requirements has not been found, the IR algorithm
stops declaring failure at the restoration phase.

5.2. Optimization phase. For solving (3.11) in the optimization phase, we use
the GSS algorithm [26, 28], which was implemented in the software HOPSPACK [47].

The optimization phase of the IR algorithm may be expensive because it involves
objective function evaluations. While condition (3.9) is not satisfied, a linearly con-
strained derivative-free problem has to be solved for increasing values of μ. According
to Lemma 4.2, sufficiently large values for μ produce directions that satisfy this con-
dition, at the cost of taking small step sizes. On the other hand, small values of μ
generate large step sizes, but subproblem (3.11) may need to be solved several times
until condition (3.9) is fulfilled.

Inspired in Lemma 4.2 we use the following rule to set good values for μ. At the
first iteration (k = 0), μ is initialized by the formula

μ = 1.01min{max{γ, μ′}, 1040γ},

where

μ′ =

⎧⎨
⎩

1− θ1
θ1

‖h(x0)‖ − ‖h(y0)‖
‖x0 − y0‖2 if y0 �= x0,

γ if y0 = x0.

After solving subproblem (3.11), we compute

(5.2)
μ′′ =

⎧⎨
⎩

1− θk+1

θk+1

‖h(yk + d)‖ − ‖h(yk)‖
‖d‖2 if d �= 0

μ if d = 0,
and

μ′ = 1.01min{max{γ, μ′′}, 1010μ, 1040γ},

where μ is the regularization parameter that has just been used in the objective
function of (3.11) and d is the approximate solution found by GSS. If condition (3.9)
is not satisfied, we update μ by the formula

(5.3) μ = max{μ′, 10μ}

and we solve (3.11) again; otherwise μ′ is stored and used in the next iteration for the
initialization of μ. At subsequent iterations (k ≥ 1), μ is initialized by μ = μ′, where
μ′ was calculated in the previous iteration, and is updated by rules (5.2)–(5.3).

These implemented rules for initialization and updating of μ are compatible with
the rules described in Algorithm 1, with the algorithmic parameters μ̄, αl, and αu

implicitly determined. Other implementation details used in this phase are given
below:

1. We set γ = 2−20.
2. The initial point for subproblem (3.11) is d = 0. If the approximate solution

d does not satisfy (3.9), we use this solution as initial point for solving (3.11)
again.
The advantages of using such initial points are that both are feasible solutions
and, using the update given by (5.2), if the starting point is declared an
approximate solution by GSS, then (3.9) is automatically satisfied.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1203

3. We set Δ0 = 0.5 and

(5.4) Δk+1 = max{10−16,min{δk, 0.1max{‖h(yk + dk)‖, ‖dk‖}},
where δk = 0.5/(1.1)k. Using (5.4) we require more effort in the GSS algo-
rithm when both the infeasibility and the step size are decreasing or when a
sufficient large number of iterations has been taken. Since limk→∞ δk = 0 the
updating formula (5.4) is (numerically) consistent with Assumption A4.

4. The execution of the IR algorithm was stopped whenever xk+1 = yk+dk was
found such that

‖h(yk + dk)‖ ≤ 10−8 and Δk ≤ 10−3.

In addition, the algorithm stopped in the case of a failure of the restoration
phase.

6. Numerical experiments. The IR algorithm was implemented in C/C++
language employing the GSS subroutine included in HOPSPACK [47], which is an
augmented Lagrangian algorithm developed to deal with general derivative-free prob-
lems described in [25]. HOPSPACK also uses GSS to minimize the augmented La-
grangian function subject to linear and bound constraints. For using ALGENCAN
in the restoration phase an interface between C++ and Fortran 77 was used. The
code of ALGENCAN and its interface with C++ are available in [59]. In order to
generate the executable file we used gfortran-4.2, g++-4.2 and cmake. The last one
was necessary for compiling HOPSPACK. The BLAS and LAPACK libraries (version
3.2.1) were also necessary.

The Hock and Schittkowski [22] test set is widely used to test derivative-free
algorithms on moderate-size problems. For running the IR algorithm, the bound
constraints of each problem define the set Ω. Linear (not bound) constraints of the
original problem were processed in the same way as nonlinear ones. In the case of
HOPSPACK linear constraints of the original problem were used in the definition of
Ω. A subset of 105 constrained problems, from a set of 116 general nonlinear prob-
lems, was selected to test our algorithm. The box-constrained problems (9 problems)
and the “badly coded” problems 67 and 85 were ignored. The initial point x0 was
computed as the Euclidean projection on Ω of the initial point x0

HS given in [22].
Note that this process does not involve any objective function evaluation. For the ap-
plication of the IR algorithm all the inequality constraints were converted to equality
constraints by the addition of nonnegative slack variables.

We compared the number of function evaluations used in our method with the
augmented Lagrangian method HOPSPACK [47], which implements the algorithm
described in [25]. Table 6.1 shows the problems considered in this test. The column
Prob. corresponds to the problem number from [22]. The columns Var., Ineq., and
Eq. are the number of variables, inequality constraints, and equality constraints, re-
spectively. The values between parentheses represent the number of linear constraints.
In HOPSPACK we imposed, as a feasibility convergence criterion, that the norm of
h(x) should be smaller than 10−8. For optimality we maintained the default toler-
ance parameter 10−3 which corresponds to the size of the grid in GSS. Note that these
criteria are quite compatible with the ones used for IR.

Since both IR and HOPSPACK use GSS for solving subproblems, we believe that
comparisons against HOPSPACK are the most relevant. However, for completeness,
we also included COBYLA [48], NOMAD [10, 11, 31], and SDPEN [36] in our com-
parison. These three algorithms do not use GSS at all. We used Miller’s Fortran 90

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1204 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Table 6.1

Description of the test problems.

Prob. Var. Ineq. Eq. Prob. Var. Ineq. Eq. Prob. Var. Ineq. Eq.

6 2 0 1 43 4 3 0 80 5 0 3
7 2 0 1 44 4 6(6) 0 81 5 0 3
8 2 0 2 46 5 0 2 83 5 6 0
9 2 0 1(1) 47 5 0 3 84 5 6 0
10 2 1 0 48 5 0 2(2) 86 5 10(10) 0
11 2 1 0 49 5 0 2(2) 87 6 0 4
12 2 1 0 50 5 0 3(3) 88 2 1 0
13 2 1 0 51 5 0 3(3) 89 3 1 0
14 2 1 1(1) 52 5 0 3(3) 90 4 1 0
15 2 2 0 53 5 0 3(3) 91 5 1 0
16 2 2 0 54 6 0 1(1) 92 6 1 0
17 2 2 0 55 6 0 6(6) 93 6 2 0
18 2 2 0 56 7 0 4 95 6 4 0
19 2 2 0 57 2 1 0 96 6 4 0
20 2 3 0 58 2 3 0 97 6 4 0
21 2 1(1) 0 59 2 3 0 98 6 4 0
22 2 2(1) 0 60 3 0 1 99 7 0 2
23 2 5(1) 0 61 3 0 2 100 7 4 0
24 2 3(3) 0 62 3 0 1(1) 101 7 6 0
26 3 0 1 63 3 0 2(1) 102 7 6 0
27 3 0 1 64 3 1 0 103 7 6 0
28 3 0 1(1) 65 3 1 0 104 8 6 0
29 3 1 0 66 3 2 0 105 8 1 (1) 0
30 3 1 0 68 4 0 2 106 8 6 (3) 0
31 3 1 0 69 4 0 2 107 9 0 6
32 3 1 1(1) 70 4 1 0 108 9 13 0
33 3 2 0 71 4 1 1 109 9 4 (2) 6
34 3 2 0 72 4 2 0 111 10 0 3
35 3 1(1) 0 73 4 2(1) 1(1) 112 10 0 3(3)
36 3 1(1) 0 74 4 2(2) 3 113 10 8 (3) 0
37 3 2(2) 0 75 4 2(2) 3 114 10 8 (4) 3(1)
39 4 0 2 76 4 3(3) 0 116 13 15 (5) 0
40 4 0 3 77 5 0 2 117 15 5 0
41 4 0 1(1) 78 5 0 3 118 15 29(29) 0
42 4 0 2 79 5 0 3 119 16 0 8(8)

implementation of COBYLA [61]. COBYLA is a sequential trust region algorithm
that employs linear approximations of the objective function and the constraints. The
linear models come from interpolation at the vertices of a simplex whose regularity is
maintained throughout the process. We stopped COBYLA’s executions when the size
of the simplex became smaller than 10−6. SDPEN is a sequential penalty derivative-
free algorithm for nonlinear constrained optimization based on the methods described
in [36]. We used the Fortran 90 implementation of SDPEN available at the DFL
web page [60]. SDPEN executions were stopped when the steplength became smaller
than 10−8. NOMAD [31] is coded in C++ and implements the mesh adaptive direct
search algorithm (MADS) from Audet and Dennis [10], a direct search method whose
convergence theory is based on Clarke’s nonsmooth calculus. MADS is an extension
of the generalized pattern search algorithm [9, 58] in which globalization is achieved
by simple decrease with integer lattices and constraints are handled using a progres-
sive barrier technique [11]. NOMAD executions stopped when the default feasibility
criterion took place and, in addition, the grid size was smaller than 10−3.

One should be cautious in deriving conclusions from the comparison since the
amount of problem information used by HOPSPACK, NOMAD, COBYLA, and

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1205

SDPEN is significantly less than that used by the IR algorithm. On the other hand,
those algorithms have already been proved to be efficient for solving industrial prob-
lems and substantial coding effort has been invested in them.

In Tables 6.2 and 6.3 we show the detailed numerical results. In this table, P is
the problem’s number and, for each algorithm, f is the best functional value, ‖h‖ is
the norm of infeasibility, and #FE is the number of objective function evaluations.
There is no information about HOPSPACK in problems 54, 111, and 114 because the
execution was interrupted after 20 minutes of CPU time.

Using the results reported in Tables 6.2 and 6.3, we drew graphics of data and
performance profiles [18, 46]. The performance measure was the number of objective
function evaluations. A problem was considered solved by an algorithm if the obtained
solution x̄ was such that

(6.1) ‖h(x̄)‖ ≤ 10−8 and
|f(x̄)− fL|

max{1, |f(x̄)|, |fL|} ≤ 0.1,

where fL is the lowest objective function value found among the compared algorithms.
The results are displayed in Figure 6.1. Algorithmic executions were stopped after
20 minutes of CPU time. This happened only in problems 54, 111, and 114 with
HOPSPACK (indicated with (–) in Tables 6.2 and 6.3).

We note that IR failed to solve 11 problems, while COBYLA failed in 14 prob-
lems. If only a small budget of function evaluations is tolerated, COBYLA is the
most efficient of the methods tested. The reason is that, unlike the other methods,
COBYLA uses a (linear) model of the objective function, which is more efficient than
using pattern search procedures when the functions are relatively well behaved. In
the next section we will see that when one combines GSS with a model-based method
(Powell’s quadratic BOBYQA) in two nonacademic problems, the robustness of IR
dramatically increases.

The numerical results seem to indicate that the IR method with GSS is reli-
able. In some cases HOPSPACK performed a large number of function evaluations.
This is because GSS is adversely affected by the Lipschitz constant associated with
the augmented Lagrangian and this constant increases with the value of the penalty
parameter, independently of the degree of nonlinearity of the constraints. On the
other hand, IR is adversely affected by a big Lipschitz constant on the gradients of
the constraints, because this is related to the reliability of the linearization. In the
extreme case, if the constraints are nearly linear, IR will perform a moderate num-
ber of iterations with well-conditioned subproblems for the application of GSS, but
HOPSPACK could need to deal with badly conditioned subproblems. The cases in
which IR performs many function evaluations are generally due to poor linearization:
In some optimization phases, many function evaluations are spent with the objective
of minimizing f in a domain that does not represent well the true feasible set. Lack
of fulfillment of constraint qualifications can also cause slow convergence. This is the
case, for example, of problem 13, in which the CPLD condition does not hold at the
minimizer.

6.1. Fitting simulation models. In order to illustrate the applicability of the
IR algorithm, we will describe two nonacademic problems. In both cases we used IR
with some adjustments, having in mind the specific problems. These problems have
the form

Minimize f(x) subject to h(x) = 0.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1206 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

T
a
b
l
e
6
.
2

N
u
m
erica

l
resu

lts
fo
r
th
e
IR

a
lgo

rith
m
,
N
O
M
A
D
,
H
O
P
S
P
A
C
K
,
C
O
B
Y
L
A
,
a
n
d
S
D
P
E
N

in
th
e
fi
rst

5
3
o
f
1
0
5
test

p
ro
blem

s
fro

m
th
e
H
ock

a
n
d
S
ch

ittko
w
ski

test
set.

T
h
e
en

tries
m
a
rked

w
ith

�
co
rrespo

n
d
to

n
o
n
so
lved

p
ro
blem

s
a
cco

rd
in
g
to

(6
.1
).

I
R

N
O

M
A
D

H
O

P
S
P
A
C
K

C
O

B
Y
L
A

S
D

P
E
N

P
f

‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

6
5
.5

7
E
−

1
0

4
E
−

0
9

3
6
6

�
3
.3

3
E
+

0
0

�
7
E
−

0
7

�
8
3

�
4
.8

4
E
+

0
0

�
5
E
−

0
3

�
1
5
1

1
.5

6
E
−

1
3

6
E
−

1
2

5
7

�
4
.8

4
E
+

0
0

�
2
E
−

0
8

�
2
2
3

7
−

1
.7

3
E
+

0
0

1
E
−

0
9

1
5
3

�
−

1
.7

2
E
+

0
0

�
2
E
−

0
7

�
7
3

�
6
.9

3
E
−

0
1

�
0
E
+

0
0

�
3
2
5

−
1
.7

3
E
+

0
0

4
E
−

1
2

6
3

�
−

1
.3

1
E
+

0
0

�
8
E
−

1
0

�
2
3
3

8
−

1
.0

0
E
+

0
0

2
E
−

0
9

4
�

−
1
.0

0
E
+

0
0

�
1
E
−

0
6

�
1
1
7

�
−

1
.0

0
E
+

0
0

�
9
E
−

0
3

�
1
8
7

−
1
.0

0
E
+

0
0

9
E
−

1
0

2
4

�
−

1
.0

0
E
+

0
0

�
3
E
−

0
8

�
3
5
1

9
−

5
.0

0
E
−

0
1

4
E
−

1
5

1
1
7

−
5
.0

0
E
−

0
1

0
E
+

0
0

1
8
6

−
5
.0

0
E
−

0
1

4
E
−

1
5

2
6

−
5
.0

0
E
−

0
1

9
E
−

1
6

4
7

�
0
.0

0
E
+

0
0

�
0
E
+

0
0

�
1
1
1

1
0

−
1
.0

0
E
+

0
0

7
E
−

0
9

2
6
0

−
1
.0

0
E
+

0
0

0
E
+

0
0

2
0
5

�
−

8
.6

5
E
−

0
1

�
0
E
+

0
0

�
3
5
7

−
1
.0

0
E
+

0
0

2
E
−

1
2

1
0
1

�
−

7
.0

7
E
−

0
1

�
0
E
+

0
0

�
2
4
4

1
1

−
8
.5

0
E
+

0
0

8
E
−

0
9

1
2
6

−
8
.5

0
E
+

0
0

0
E
+

0
0

3
2
1

−
8
.4

8
E
+

0
0

0
E
+

0
0

5
2
3

−
8
.5

0
E
+

0
0

4
E
−

1
3

9
1

�
5
.5

5
E
+

0
2

�
0
E
+

0
0

�
2
5
6

1
2

−
3
.0

0
E
+

0
1

7
E
−

0
9

6
8
5

−
3
.0

0
E
+

0
1

0
E
+

0
0

1
1
7

−
3
.0

0
E
+

0
1

0
E
+

0
0

3
4
2

−
3
.0

0
E
+

0
1

3
E
−

1
2

5
7

−
2
.8

2
E
+

0
1

0
E
+

0
0

2
4
4

1
3

1
.0

9
E
+

0
0

6
E
−

0
9

5
2
3
2
6

1
.0

0
E
+

0
0

0
E
+

0
0

1
1
0

9
.9

7
E
−

0
1

5
E
−

0
9

1
1
8
3

1
.0

0
E
+

0
0

3
E
−

2
3

5
8

9
.9

9
E
−

0
1

4
E
−

1
0

1
7
8

1
4

1
.3

9
E
+

0
0

3
E
−

0
9

2
0

1
.3

9
E
+

0
0

0
E
+

0
0

1
5
1

�
1
.3

9
E
+

0
0

�
4
E
−

0
6

�
2
0
2

1
.3

9
E
+

0
0

1
E
−

1
6

2
3

�
8
.0

0
E
+

0
0

�
2
E
−

1
1

�
2
4
3

1
5

3
.0

6
E
+

0
0

7
E
−

1
4

8
2

3
.0

6
E
+

0
0

0
E
+

0
0

1
5
4

3
.0

6
E
+

0
0

0
E
+

0
0

4
5
1

�
3
.6

0
E
+

0
0

�
9
E
−

1
3

�
7
9

3
.0

6
E
+

0
0

0
E
+

0
0

1
8
2

1
6

2
.5

8
E
−

0
1

7
E
−

1
0

5
4
6

�
3
.9

8
E
+

0
0

�
0
E
+

0
0

�
2
0
8

2
.5

0
E
−

0
1

0
E
+

0
0

6
0
0

�
3
.9

8
E
+

0
0

�
0
E
+

0
0

�
5
2

2
.5

0
E
−

0
1

0
E
+

0
0

2
2
7

1
7

1
.0

0
E
+

0
0

8
E
−

1
0

1
1
8

1
.0

0
E
+

0
0

3
E
−

1
7

1
3
2

1
.0

0
E
+

0
0

0
E
+

0
0

6
1
2

1
.0

0
E
+

0
0

9
E
−

1
2

3
8

�
4
.0

0
E
+

0
0

�
0
E
+

0
0

�
1
6
3

1
8

5
.0

0
E
+

0
0

9
E
−

1
0

3
9
2
1
7

5
.0

0
E
+

0
0

0
E
+

0
0

3
1
1

�
1
.0

7
E
+

0
1

�
0
E
+

0
0

�
2
6
3

5
.0

0
E
+

0
0

3
E
−

1
3

9
5

�
7
.2

5
E
+

0
0

�
0
E
+

0
0

�
2
4
4

1
9

−
6
.9

6
E
+

0
3

3
E
−

0
9

1
3
8

−
6
.9

6
E
+

0
3

0
E
+

0
0

2
2
5

�
−

7
.4

7
E
+

0
3

�
3
E
−

0
1

�
1
3
7
0

−
6
.9

6
E
+

0
3

3
E
−

1
2

4
6

−
6
.9

6
E
+

0
3

0
E
+

0
0

1
3
8
5

2
0

4
.0

2
E
+

0
1

8
E
−

1
0

8
8

3
.8

2
E
+

0
1

0
E
+

0
0

1
9
0

3
.8

2
E
+

0
1

0
E
+

0
0

3
9
3

3
.8

2
E
+

0
1

0
E
+

0
0

1
8

3
.8

2
E
+

0
1

0
E
+

0
0

1
5
9

2
1

−
1
.0

0
E
+

0
2

7
E
−

1
5

1
5
3

−
1
.0

0
E
+

0
2

0
E
+

0
0

2
3
1

−
1
.0

0
E
+

0
2

0
E
+

0
0

3
2

−
1
.0

0
E
+

0
2

0
E
+

0
0

3
8

−
1
.0

0
E
+

0
2

0
E
+

0
0

1
5
9

2
2

1
.0

0
E
+

0
0

9
E
−

0
9

3
5

1
.0

0
E
+

0
0

0
E
+

0
0

1
5
3

1
.0

0
E
+

0
0

0
E
+

0
0

2
7
6

1
.0

0
E
+

0
0

0
E
+

0
0

2
4

�
2
.5

0
E
+

0
1

�
0
E
+

0
0

�
2
2
5

2
3

2
.0

0
E
+

0
0

7
E
−

0
9

3
7

2
.0

0
E
+

0
0

0
E
+

0
0

1
9
4

2
.0

0
E
+

0
0

0
E
+

0
0

4
6
6

2
.0

0
E
+

0
0

0
E
+

0
0

3
1

2
.0

0
E
+

0
0

0
E
+

0
0

2
2
1

2
4

−
1
.0

0
E
+

0
0

1
E
−

0
9

1
3
2

−
1
.0

0
E
+

0
0

0
E
+

0
0

1
1
9

−
1
.0

0
E
+

0
0

4
E
−

1
6

2
7

−
1
.0

0
E
+

0
0

4
E
−

1
6

2
0

−
1
.0

0
E
+

0
0

0
E
+

0
0

2
1
4

2
6

1
.5

8
E
−

0
7

9
E
−

0
9

1
1
1
1
2

�
3
.6

0
E
−

0
1

�
0
E
+

0
0

�
3
0
0

�
2
.1

2
E
+

0
1

�
0
E
+

0
0

�
5
8
5

7
.2

2
E
−

0
9

8
E
−

1
3

5
0
4
1

�
2
.1

2
E
+

0
1

�
4
E
−

1
6

�
3
2
5

2
7

4
.0

0
E
+

0
0

7
E
−

0
9

4
1
3
5

4
.0

0
E
+

0
0

0
E
+

0
0

2
5
2

�
4
.0

0
E
+

0
0

�
3
E
−

0
6

�
1
3
5
8

4
.0

0
E
+

0
0

1
E
−

1
2

4
1
4

4
.0

0
E
+

0
0

0
E
+

0
0

3
4
7

2
8

2
.0

5
E
−

2
3

9
E
−

1
6

5
1
0

1
.1

1
E
−

0
6

0
E
+

0
0

5
0
8

7
.7

0
E
−

0
8

3
E
−

1
5

2
6
4

6
.5

6
E
−

1
2

0
E
+

0
0

1
2
1

�
1
.3

0
E
+

0
1

�
0
E
+

0
0

�
3
2
5

2
9

−
2
.2

6
E
+

0
1

6
E
−

1
0

6
4
7

−
2
.2

6
E
+

0
1

0
E
+

0
0

3
0
2

−
2
.2

5
E
+

0
1

0
E
+

0
0

3
2
7

−
2
.2

6
E
+

0
1

4
E
−

1
2

1
0
1

�
−

1
.6

8
E
+

0
1

�
0
E
+

0
0

�
3
2
8

3
0

1
.0

0
E
+

0
0

4
E
−

0
9

7
9
0

1
.0

0
E
+

0
0

0
E
+

0
0

7
9

1
.0

0
E
+

0
0

0
E
+

0
0

5
5

1
.0

0
E
+

0
0

0
E
+

0
0

8
6

1
.0

0
E
+

0
0

0
E
+

0
0

2
6
5

3
1

6
.0

0
E
+

0
0

8
E
−

1
0

5
2
6

6
.0

0
E
+

0
0

0
E
+

0
0

2
7
7

6
.0

0
E
+

0
0

0
E
+

0
0

9
2
1

6
.0

0
E
+

0
0

8
E
−

1
4

8
4

�
1
.0

0
E
+

0
1

�
0
E
+

0
0

�
2
6
7

3
2

1
.0

0
E
+

0
0

1
E
−

0
9

8
6

�
1
.9

9
E
+

0
0

�
6
E
−

1
7

�
5
9
9

1
.0

0
E
+

0
0

2
E
−

1
6

5
1

1
.0

0
E
+

0
0

2
E
−

1
6

3
1

�
1
.4

9
E
+

0
0

�
1
E
−

1
0

�
3
6
1

3
3

�
−

4
.0

0
E
+

0
0

�
5
E
−

0
9

�
5
4

−
4
.5

9
E
+

0
0

0
E
+

0
0

4
0
8

−
4
.5

9
E
+

0
0

0
E
+

0
0

3
8
1

−
4
.5

9
E
+

0
0

0
E
+

0
0

3
5

�
−

4
.0

0
E
+

0
0

�
0
E
+

0
0

�
2
1
2

3
4

−
8
.3

4
E
−

0
1

2
E
−

0
9

2
2
8

�
−

1
.1

2
E
−

0
1

�
0
E
+

0
0

�
4
6
3

�
−

2
.2

8
E
−

0
1

�
0
E
+

0
0

�
5
8
2

�
−

8
.3

4
E
−

0
1

�
5
E
−

0
8

�
4
3

�
−

4
.8

8
E
−

0
2

�
0
E
+

0
0

�
3
2
5

3
5

1
.1

1
E
−

0
1

7
E
−

1
0

2
8
9

1
.1

1
E
−

0
1

0
E
+

0
0

2
2
1

1
.1

1
E
−

0
1

0
E
+

0
0

3
4
0

1
.1

1
E
−

0
1

1
E
−

1
6

6
8

�
2
.5

0
E
−

0
1

�
0
E
+

0
0

�
3
2
2

3
6

−
3
.3

0
E
+

0
3

1
E
−

1
2

2
7
3

−
3
.3

0
E
+

0
3

0
E
+

0
0

4
5
7

−
3
.3

0
E
+

0
3

0
E
+

0
0

6
0

−
3
.3

0
E
+

0
3

0
E
+

0
0

5
4

−
3
.3

0
E
+

0
3

0
E
+

0
0

2
3
1

3
7

−
3
.4

6
E
+

0
3

1
E
−

0
9

4
0
4

−
3
.4

6
E
+

0
3

0
E
+

0
0

6
3
8

−
3
.4

6
E
+

0
3

5
E
−

1
4

1
0
2

−
3
.4

6
E
+

0
3

0
E
+

0
0

1
1
1

−
3
.4

3
E
+

0
3

0
E
+

0
0

3
5
0

3
9

−
9
.8

9
E
−

0
1

4
E
−

0
9

1
2
5

�
−

1
.0

1
E
+

0
0

�
6
E
−

0
3

�
9
9
7

−
1
.0

0
E
+

0
0

0
E
+

0
0

8
3
0

−
1
.0

0
E
+

0
0

1
E
−

1
2

1
4
6

�
−

2
.3

4
E
−

0
5

�
1
E
−

1
4

�
4
5
0

4
0

−
2
.5

0
E
−

0
1

2
E
−

0
9

1
3
3

�
−

2
.5

0
E
−

0
1

�
1
E
−

0
6

�
1
4
7

�
−

2
.5

1
E
−

0
1

�
2
E
−

0
3

�
8
9
7

−
2
.5

0
E
−

0
1

3
E
−

1
2

1
1
0

−
2
.3

3
E
−

0
1

6
E
−

0
9

5
2
9

4
1

1
.9

3
E
+

0
0

1
E
−

0
9

4
3
0

1
.9

3
E
+

0
0

0
E
+

0
0

6
0
0

1
.9

3
E
+

0
0

2
E
−

1
5

2
9
2

1
.9

3
E
+

0
0

0
E
+

0
0

1
2
1

2
.0

0
E
+

0
0

0
E
+

0
0

2
1
3

4
2

1
.3

9
E
+

0
1

2
E
−

0
9

8
3
1

1
.4

0
E
+

0
1

0
E
+

0
0

2
7
6

1
.4

0
E
+

0
1

0
E
+

0
0

7
7
9

1
.3

9
E
+

0
1

2
E
−

1
2

1
0
2

1
.4

0
E
+

0
1

0
E
+

0
0

4
3
5

4
3

−
4
.4

0
E
+

0
1

8
E
−

1
0

1
8
7
8

−
4
.4

0
E
+

0
1

0
E
+

0
0

2
2
5

−
4
.4

0
E
+

0
1

0
E
+

0
0

1
1
3
4

−
4
.4

0
E
+

0
1

2
E
−

1
2

1
2
5

�
−

2
.2

6
E
+

0
1

�
0
E
+

0
0

�
4
6
1

4
4

�
−

1
.3

0
E
+

0
1

�
2
E
−

0
9

�
2
7
7

−
1
.5

0
E
+

0
1

0
E
+

0
0

2
4
9

�
−

1
.3

0
E
+

0
1

�
0
E
+

0
0

�
5
7

−
1
.5

0
E
+

0
1

1
E
−

1
5

4
6

−
1
.5

0
E
+

0
1

0
E
+

0
0

3
1
1

4
6

1
.4

2
E
−

0
6

1
E
−

0
9

1
4
8
5

�
3
.3

4
E
+

0
0

�
2
E
−

1
6

�
2
4
6

�
3
.3

4
E
+

0
0

�
2
E
−

1
6

�
7
7
7

2
.2

9
E
−

0
8

4
E
−

1
3

3
0
5
8
0

�
3
.3

4
E
+

0
0

�
2
E
−

1
6

�
5
4
1

4
7

1
.1

5
E
−

0
8

9
E
−

1
0

2
8
9

�
1
.2

5
E
+

0
1

�
0
E
+

0
0

�
3
4
3

�
1
.2

5
E
+

0
1

�
0
E
+

0
0

�
9
0
1

1
.7

5
E
−

1
2

8
E
−

1
3

1
3
7

�
1
.2

5
E
+

0
1

�
3
E
−

1
6

�
5
3
7

4
8

1
.0

7
E
−

2
4

2
E
−

1
5

8
6
1

�
2
.4

6
E
+

0
0

�
0
E
+

0
0

�
3
1
7

1
.1

2
E
−

0
6

2
E
−

1
5

4
9
7

1
.0

2
E
−

1
2

2
E
−

1
6

1
3
8

�
8
.4

0
E
+

0
1

�
0
E
+

0
0

�
5
4
1

4
9

1
.3

4
E
−

0
7

2
E
−

1
4

2
0
3
0
8

�
2
.6

6
E
+

0
2

�
0
E
+

0
0

�
4
0
8

1
.4

3
E
−

0
4

7
E
−

1
5

1
0
0
2

1
.4

4
E
−

0
5

2
E
−

1
6

2
0
0
0

�
2
.6

6
E
+

0
2

�
2
E
−

1
6

�
5
4
1

5
0

9
.2

5
E
−

2
7

6
E
−

1
4

6
2
0

�
1
.7

4
E
+

0
4

�
0
E
+

0
0

�
3
6
9

5
.2

9
E
−

0
7

6
E
−

1
4

2
9
0

3
.5

6
E
−

1
3

3
E
−

1
6

2
9
5

�
1
.8

2
E
+

0
4

�
0
E
+

0
0

�
6
0
5

5
1

1
.9

4
E
−

2
7

9
E
−

1
6

5
0
7

�
6
.4

1
E
−

0
1

�
0
E
+

0
0

�
3
8
4

1
.2

5
E
−

0
6

9
E
−

1
6

1
4
2

1
.5

6
E
−

1
3

0
E
+

0
0

1
2
4

�
8
.5

0
E
+

0
0

�
0
E
+

0
0

�
5
3
9

5
2

5
.3

3
E
+

0
0

3
E
−

0
9

3
0
7

5
.3

4
E
+

0
0

0
E
+

0
0

4
4
9

�
5
.3

3
E
+

0
0

�
8
E
−

0
6

�
3
1
1

5
.3

3
E
+

0
0

3
E
−

1
7

2
2
6

�
4
.5

9
E
+

0
2

�
5
E
−

0
7

�
4
4
2
3
5

5
3

4
.0

9
E
+

0
0

3
E
−

0
9

3
0
8

4
.3

7
E
+

0
0

0
E
+

0
0

2
8
4

4
.0

9
E
+

0
0

1
E
−

1
4

2
1
6

4
.0

9
E
+

0
0

1
E
−

1
6

1
2
8

�
7
.0

0
E
+

0
1

�
0
E
+

0
0

�
5
4
7

5
4

�
−

1
.5

4
E
−

0
1

�
5
E
−

1
0

�
4
4
7

−
9
.0

8
E
−

0
1

0
E
+

0
0

8
0
7
4

�
−

�
−

�
−

�
−

1
.5

4
E
−

0
1

�
1
E
−

1
2

�
3
6
9
0

�
−

8
.0

6
E
−

0
1

�
0
E
+

0
0

�
9
0
0
0
0
0
1

5
5

6
.6

7
E
+

0
0

3
E
−

0
9

1
8

6
.7

1
E
+

0
0

2
E
−

1
6

3
0
1

�
6
.0

0
E
+

0
0

�
1
E
+

0
0

�
0

6
.6

7
E
+

0
0

2
E
−

1
6

5
1

�
6
.8

1
E
+

0
0

�
8
E
−

0
8

�
2
7
6
4

5
6

�
−

1
.0

6
E
−

0
6

�
5
E
−

1
0

�
2
1
2
6
7

�
−

1
.0

0
E
+

0
0

�
9
E
−

1
6

�
4
5
2

�
−

1
.0

0
E
+

0
0

�
9
E
−

1
6

�
2
0
7
5

−
3
.4

6
E
+

0
0

8
E
−

1
2

3
5
5

�
−

1
.0

0
E
+

0
0

�
5
E
−

1
6

�
7
5
7

5
7

3
.0

6
E
−

0
2

1
E
−

0
9

2
8
7

2
.8

5
E
−

0
2

0
E
+

0
0

1
9
3

3
.0

6
E
−

0
2

0
E
+

0
0

7
4

3
.0

6
E
−

0
2

0
E
+

0
0

4
0

2
.8

5
E
−

0
2

0
E
+

0
0

2
1
4

5
8

3
.1

9
E
+

0
0

1
E
−

0
9

1
0
2

3
.1

9
E
+

0
0

0
E
+

0
0

1
9
7

3
.1

9
E
+

0
0

0
E
+

0
0

8
1
7

�
3
.1

9
E
+

0
0

�
5
E
−

0
7

�
3
5

�
4
.0

0
E
+

0
0

�
0
E
+

0
0

�
2
1
7

5
9

−
7
.8

0
E
+

0
0

4
E
−

0
9

9
2
9

−
7
.8

0
E
+

0
0

0
E
+

0
0

3
3
5

�
−

6
.7

5
E
+

0
0

�
0
E
+

0
0

�
3
4
0

�
−

6
.7

5
E
+

0
0

�
0
E
+

0
0

�
1
7
8

�
−

6
.7

5
E
+

0
0

�
0
E
+

0
0

�
2
8
4

6
0

3
.2

6
E
−

0
2

8
E
−

1
0

5
9
6

�
4
.5

3
E
+

0
0

�
9
E
−

0
7

�
1
3
9

�
5
.4

7
E
−

0
2

�
2
E
−

0
3

�
4
6
5

3
.2

6
E
−

0
2

3
E
−

1
2

8
3

�
2
.3

9
E
+

0
1

�
4
E
−

1
0

�
3
6
5

6
1

−
1
.4

4
E
+

0
2

3
E
−

0
9

1
8
2

−
1
.4

3
E
+

0
2

0
E
+

0
0

2
0
3

−
1
.4

3
E
+

0
2

0
E
+

0
0

6
2
1

�
−

8
.1

9
E
+

0
1

�
7
E
−

1
3

�
1
0
6

�
−

1
.0

1
E
+

0
2

�
2
E
−

0
8

�
3
7
2

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1207

T
a
b
l
e
6
.
3

N
u
m
erica

l
resu

lts
fo
r
th
e
IR

a
lgo

rith
m
,
N
O
M
A
D
,
H
O
P
S
P
A
C
K
,
C
O
B
Y
L
A
,
a
n
d
S
D
P
E
N

in
th
e
la
st

5
2
o
f
1
0
5
test

p
ro
blem

s
fro

m
th
e
H
ock

a
n
d
S
ch

ittko
w
ski

test
set.

T
h
e
en

tries
m
a
rked

w
ith

�
co
rrespo

n
d
to

n
o
n
so
lved

p
ro
blem

s
a
cco

rd
in
g
to

(6
.1
).

I
R

N
O

M
A
D

H
O

P
S
P
A
C
K

C
O

B
Y
L
A

S
D

P
E
N

P
f

‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

f
‖
h‖

#
F
E

6
2

−
2
.6

3
E
+

0
4

2
E
−

1
6

8
4
8

−
2
.6

3
E
+

0
4

2
E
−

1
5

4
1
8

−
2
.6

3
E
+

0
4

1
E
−

1
6

2
3
3

−
2
.6

3
E
+

0
4

3
E
−

1
7

4
5
5

−
2
.5

3
E
+

0
4

3
E
−

1
8

3
0
8

6
3

9
.6

2
E
+

0
2

4
E
−

0
9

1
7
1

�
9
.6

6
E
+

0
2

�
6
E
−

0
6

�
1
2
8

�
9
.6

3
E
+

0
2

�
5
E
−

0
4

�
3
1
7

9
.6

2
E
+

0
2

2
E
−

1
2

9
1

�
9
.7

2
E
+

0
2

�
5
E
−

0
8

�
9
6
3

6
4

6
.3

0
E
+

0
3

3
E
−

0
9

1
0
2
5

6
.3

0
E
+

0
3

0
E
+

0
0

7
4
1

6
.3

0
E
+

0
3

0
E
+

0
0

6
6
8
0

6
.3

0
E
+

0
3

2
E
−

1
7

6
7
8

6
.3

9
E
+

0
3

0
E
+

0
0

5
7
7

6
5

9
.5

4
E
−

0
1

5
E
−

0
9

1
8
4
0

9
.5

4
E
−

0
1

0
E
+

0
0

3
2
2

1
.0

1
E
+

0
0

0
E
+

0
0

3
7
9

9
.5

4
E
−

0
1

4
E
−

1
2

1
0
4

�
5
.2

2
E
+

0
0

�
0
E
+

0
0

�
2
1
9

6
6

5
.1

8
E
−

0
1

4
E
−

0
9

4
0
6

5
.3

2
E
−

0
1

0
E
+

0
0

5
1
1

5
.3

3
E
−

0
1

0
E
+

0
0

5
6
6

5
.1

8
E
−

0
1

4
E
−

1
3

8
1

5
.3

2
E
−

0
1

0
E
+

0
0

3
2
3

6
8

−
9
.2

0
E
−

0
1

9
E
−

0
9

1
0
4
2
4

�
−

3
.0

8
E
−

0
1

�
4
E
−

1
7

�
3
4
6

�
−

8
.4

4
E
−

0
1

�
2
E
−

0
4

�
1
3
1
6

−
9
.2

0
E
−

0
1

2
E
−

1
3

3
1
7
3

�
−

3
.7

2
E
−

0
1

�
4
E
−

1
7

�
3
9
2

6
9

−
9
.5

7
E
+

0
2

2
E
−

0
9

4
1
3
0

�
−

8
.4

6
E
+

0
2

�
2
E
−

1
7

�
4
8
6

�
−

9
.5

7
E
+

0
2

�
1
E
−

0
4

�
2
4
7
1

−
9
.5

7
E
+

0
2

6
E
−

1
4

1
6
8
2
1

−
9
.4

9
E
+

0
2

1
E
−

1
7

3
8
0

7
0

�
2
.6

9
E
−

0
1

�
1
E
−

0
9

�
5
5
6
3

7
.5

0
E
−

0
3

0
E
+

0
0

1
1
3
4

7
.7

4
E
−

0
3

0
E
+

0
0

3
7
6
6

7
.5

0
E
−

0
3

0
E
+

0
0

1
5
5
4
8
7

7
.5

0
E
−

0
3

0
E
+

0
0

4
0
7
5

7
1

1
.7

0
E
+

0
1

9
E
−

0
9

4
5
8
6

�
1
.8

2
E
+

0
1

�
6
E
−

0
8

�
1
0
7

�
1
.7

0
E
+

0
1

�
5
E
−

0
7

�
1
9
3
9

1
.7

0
E
+

0
1

7
E
−

1
4

1
0
1

1
.6

0
E
+

0
1

0
E
+

0
0

2
1
7

7
2

7
.2

8
E
+

0
2

3
E
−

0
9

5
8
1
8
1

7
.3

3
E
+

0
2

1
E
−

1
3

1
6
0
4

7
.2

8
E
+

0
2

0
E
+

0
0

1
8
1
8
8

7
.2

8
E
+

0
2

6
E
−

1
8

1
7
8
2

�
8
.8

2
E
+

0
2

�
9
E
−

1
2

�
9
0
0
0
0
0
3

7
3

2
.9

9
E
+

0
1

1
E
−

0
9

2
1
1

3
.0

0
E
+

0
1

0
E
+

0
0

4
6
4

3
.0

2
E
+

0
1

0
E
+

0
0

2
2
3

2
.9

9
E
+

0
1

7
E
−

1
7

4
1

�
1
.2

7
E
+

0
2

�
7
E
−

1
1

�
4
4
5

7
4

5
.1

3
E
+

0
3

6
E
−

1
0

3
9
2

�
5
.1

7
E
+

0
3

�
8
E
−

0
7

�
4
7
3
4
7

�
5
.1

4
E
+

0
3

�
1
E
+

0
0

�
4
6
1
4
5

5
.1

3
E
+

0
3

6
E
−

1
4

3
2
7
6

�
1
.2

6
E
+

0
3

�
6
E
−

0
1

�
4
0
6

7
5

5
.1

7
E
+

0
3

1
E
−

0
9

1
3
9

�
5
.1

3
E
+

0
3

�
3
E
−

0
2

�
9
8
8
3

�
5
.2

3
E
+

0
3

�
2
E
−

0
1

�
2
2
6
7
8

�
5
.2

7
E
+

0
3

�
2
E
−

0
4

�
3
1
1
2

�
1
.2

6
E
+

0
3

�
5
E
−

0
1

�
4
0
6

7
6

−
4
.6

8
E
+

0
0

6
E
−

1
0

5
0
5

−
4
.6

8
E
+

0
0

0
E
+

0
0

4
7
2

−
4
.6

8
E
+

0
0

0
E
+

0
0

4
0
3

−
4
.6

8
E
+

0
0

5
E
−

2
3

9
6

−
4
.4

7
E
+

0
0

0
E
+

0
0

3
7
5

7
7

2
.4

2
E
−

0
1

2
E
−

0
9

7
9
0

�
2
.4

0
E
+

0
2

�
9
E
−

0
8

�
3
5
8

�
4
.6

8
E
+

0
0

�
2
E
−

0
4

�
1
9
0
4

2
.4

2
E
−

0
1

5
E
−

1
3

1
5
8

�
1
.6

5
E
+

0
3

�
6
E
−

0
9

�
6
5
4

7
8

−
2
.9

2
E
+

0
0

8
E
−

0
9

5
6
6

�
−

2
.1

5
E
+

0
0

�
1
E
−

0
5

�
2
1
3

�
−

2
.8

9
E
+

0
0

�
4
E
−

0
3

�
8
6
9

−
2
.9

2
E
+

0
0

4
E
−

1
2

1
4
8

�
−

8
.5

2
E
−

0
1

�
2
E
−

0
8

�
6
0
0

7
9

7
.8

8
E
−

0
2

6
E
−

0
9

3
6
2

�
8
.8

6
E
+

0
1

�
1
E
−

0
6

�
2
0
3

�
2
.4

2
E
−

0
1

�
1
E
−

0
3

�
1
0
5
4

7
.8

8
E
−

0
2

7
E
−

1
3

1
2
0

�
1
.0

6
E
+

0
2

�
9
E
−

0
9

�
6
0
7

8
0

5
.3

9
E
−

0
2

2
E
−

0
9

6
5
8

�
2
.0

9
E
−

0
1

�
5
E
−

0
6

�
2
1
0

�
1
.0

0
E
+

0
0

�
5
E
−

0
3

�
5
5
7

5
.3

9
E
−

0
2

3
E
−

1
2

1
3
8

�
1
.0

0
E
+

0
0

�
7
E
−

0
9

�
6
0
4

8
1

5
.3

9
E
−

0
2

6
E
−

0
9

7
7
0

�
3
.3

2
E
−

0
1

�
3
E
−

0
6

�
1
9
6

�
1
.0

0
E
+

0
0

�
5
E
−

0
3

�
5
5
7

5
.3

9
E
−

0
2

6
E
−

1
2

1
7
3

�
1
.0

0
E
+

0
0

�
7
E
−

0
9

�
6
0
4

8
3

−
3
.0

7
E
+

0
4

2
E
−

0
9

4
5
0

−
3
.0

7
E
+

0
4

0
E
+

0
0

1
3
0
6

−
3
.0

7
E
+

0
4

0
E
+

0
0

1
7
2
9

−
3
.0

7
E
+

0
4

4
E
−

1
4

1
0
6

−
3
.0

0
E
+

0
4

0
E
+

0
0

4
5
2

8
4

−
5
.2

8
E
+

0
1

4
E
−

1
0

3
3
8

−
5
.2

3
E
+

0
1

0
E
+

0
0

1
7
3
4

−
5
.2

8
E
+

0
1

0
E
+

0
0

2
8
4
2

−
5
.2

8
E
+

0
1

1
E
−

1
0

8
9

−
5
.0

7
E
+

0
1

0
E
+

0
0

4
0
2

8
6

−
3
.2

3
E
+

0
1

3
E
−

1
0

4
3
7

−
3
.2

3
E
+

0
1

0
E
+

0
0

5
3
4

−
3
.2

3
E
+

0
1

0
E
+

0
0

4
8
5

−
3
.2

3
E
+

0
1

2
E
−

1
6

1
1
1

�
−

2
.7

7
E
+

0
1

�
0
E
+

0
0

�
6
3
2

8
7

8
.8

5
E
+

0
3

1
E
−

0
9

8
6
0

9
.1

4
E
+

0
3

4
E
−

0
9

4
9
8

�
9
.3

3
E
+

0
3

�
7
E
−

0
1

�
1
6
2
4
4

�
9
.2

2
E
+

0
3

�
8
E
−

0
7

�
8
7
0
7
0

9
.2

8
E
+

0
3

7
E
−

0
9

1
0
2
0

8
8

1
.3

7
E
+

0
0

8
E
−

1
2

1
0
5

1
.3

6
E
+

0
0

0
E
+

0
0

2
8
0

1
.3

6
E
+

0
0

0
E
+

0
0

1
3
4
1

1
.3

6
E
+

0
0

3
E
−

1
2

1
6
8

1
.3

6
E
+

0
0

0
E
+

0
0

2
9
7

8
9

1
.3

6
E
+

0
0

4
E
−

0
9

5
1
0

1
.3

6
E
+

0
0

0
E
+

0
0

4
2
3

1
.3

6
E
+

0
0

0
E
+

0
0

2
2
0
8

1
.3

6
E
+

0
0

4
E
−

1
2

3
1
2

1
.3

6
E
+

0
0

0
E
+

0
0

3
4
4

9
0

1
.3

7
E
+

0
0

4
E
−

0
9

1
3
0
4

1
.3

6
E
+

0
0

0
E
+

0
0

7
1
2

1
.3

6
E
+

0
0

0
E
+

0
0

2
8
8
5

1
.3

6
E
+

0
0

2
E
−

1
2

1
7
4
4

1
.3

6
E
+

0
0

0
E
+

0
0

5
9
8

9
1

1
.3

6
E
+

0
0

5
E
−

0
9

1
3
0
5

1
.3

7
E
+

0
0

0
E
+

0
0

8
4
7

1
.3

6
E
+

0
0

0
E
+

0
0

4
4
7
0

1
.3

6
E
+

0
0

2
E
−

1
2

3
7
7

1
.3

8
E
+

0
0

0
E
+

0
0

7
5
5

9
2

1
.3

7
E
+

0
0

3
E
−

0
9

3
2
3
5

1
.3

6
E
+

0
0

0
E
+

0
0

1
0
6
8

1
.3

6
E
+

0
0

0
E
+

0
0

4
6
7
2

1
.3

6
E
+

0
0

3
E
−

1
2

3
8
7
7

1
.3

7
E
+

0
0

0
E
+

0
0

1
0
0
0

9
3

1
.4

8
E
+

0
2

2
E
−

0
9

2
0
0
6

1
.3

5
E
+

0
2

0
E
+

0
0

5
2
7

1
.3

7
E
+

0
2

0
E
+

0
0

1
2
9

1
.3

5
E
+

0
2

7
E
−

1
3

4
9
5
8

1
.3

7
E
+

0
2

0
E
+

0
0

6
4
4

9
5

1
.5

6
E
−

0
2

2
E
−

0
9

7
4
1

1
.5

6
E
−

0
2

0
E
+

0
0

1
4
8

1
.7

1
E
−

0
2

0
E
+

0
0

1
5
6

1
.5

6
E
−

0
2

2
E
−

1
6

4
4

�
1
.2

5
E
+

0
0

�
0
E
+

0
0

�
3
4
0

9
6

1
.5

6
E
−

0
2

5
E
−

1
0

6
6
8

1
.5

6
E
−

0
2

0
E
+

0
0

1
4
8

1
.7

1
E
−

0
2

0
E
+

0
0

1
5
6

1
.5

6
E
−

0
2

2
E
−

1
6

4
4

�
1
.2

5
E
+

0
0

�
0
E
+

0
0

�
3
4
0

9
7

�
4
.0

7
E
+

0
0

�
5
E
−

1
0

�
5
6
5
4

3
.1

4
E
+

0
0

0
E
+

0
0

3
9
5

�
4
.1

2
E
+

0
0

�
0
E
+

0
0

�
1
4
5

3
.1

4
E
+

0
0

5
E
−

2
0

1
7
2

�
4
.0

7
E
+

0
0

�
0
E
+

0
0

�
3
4
8

9
8

3
.1

4
E
+

0
0

8
E
−

1
0

1
5
4
0

3
.1

4
E
+

0
0

0
E
+

0
0

3
6
2

�
4
.1

2
E
+

0
0

�
0
E
+

0
0

�
1
4
5

3
.1

4
E
+

0
0

3
E
−

2
3

7
3

�
4
.0

7
E
+

0
0

�
0
E
+

0
0

�
3
4
7

9
9

−
8
.3

1
E
+

0
8

2
E
−

0
9

4
�

−
8
.1

6
E
+

0
8

�
2
E
+

0
0

�
3
1
1

�
−

7
.4

6
E
+

0
8

�
3
E
+

0
3

�
7
2
9

�
−

8
.3

1
E
+

0
8

�
5
E
−

0
7

�
7
6
1

�
−

7
.8

5
E
+

0
8

�
2
E
+

0
3

�
7
2
0

1
0
0

�
5
.1

8
E
+

0
3

�
7
E
−

1
0

�
1
3
1
4

6
.8

1
E
+

0
2

0
E
+

0
0

1
3
3
6

6
.8

4
E
+

0
2

0
E
+

0
0

8
7
3

6
.8

1
E
+

0
2

2
E
−

1
1

3
8
0

6
.8

5
E
+

0
2

0
E
+

0
0

7
7
1

1
0
1

1
.8

1
E
+

0
3

1
E
−

0
9

2
6
7

�
2
.5

4
E
+

0
3

�
0
E
+

0
0

�
1
5
9
5

1
.8

2
E
+

0
3

0
E
+

0
0

1
4
6
1
4

�
7
.9

1
E
+

0
4

�
8
E
+

0
4

�
1
8
6

1
.9

7
E
+

0
3

0
E
+

0
0

1
1
9
5

1
0
2

�
1
.1

3
E
+

0
3

�
9
E
−

1
0

�
5
7
6
9
7

�
1
.4

2
E
+

0
3

�
0
E
+

0
0

�
1
1
6
5

9
.2

0
E
+

0
2

0
E
+

0
0

1
5
2
2
2

9
.1

2
E
+

0
2

2
E
−

1
2

3
5
8
9
5
5
4

�
1
.0

6
E
+

0
3

�
0
E
+

0
0

�
1
4
9
7

1
0
3

�
1
.5

5
E
+

0
3

�
3
E
−

1
2

�
2
2

�
1
.6

8
E
+

0
3

�
0
E
+

0
0

�
2
0
4
7

5
.4

4
E
+

0
2

0
E
+

0
0

1
4
5
8
3

�
3
.0

0
E
+

0
3

�
2
E
−

0
1

�
5
2
9
2
1
6

�
7
.5

6
E
+

0
2

�
0
E
+

0
0

�
1
1
1
5

1
0
4

3
.9

5
E
+

0
0

6
E
−

0
9

2
8
7
9
4

4
.0

8
E
+

0
0

0
E
+

0
0

6
8
1

3
.9

5
E
+

0
0

0
E
+

0
0

9
8
4
4

3
.9

5
E
+

0
0

2
E
−

1
2

2
5
6
7

4
.1

4
E
+

0
0

0
E
+

0
0

8
7
0

1
0
5

1
.1

4
E
+

0
3

1
E
−

0
9

2
5
3
2
4

1
.1

4
E
+

0
3

0
E
+

0
0

1
7
8
7

1
.1

4
E
+

0
3

0
E
+

0
0

1
0
5
8
0

1
.1

4
E
+

0
3

0
E
+

0
0

1
6
3
5
4
5
9

1
.1

4
E
+

0
3

0
E
+

0
0

1
4
7
3
0

1
0
6

7
.0

5
E
+

0
3

9
E
−

0
9

6
8
4
3
0

�
6
.8

4
E
+

0
3

�
3
E
−

0
1

�
8
6
1

�
1
.1

4
E
+

0
4

�
0
E
+

0
0

�
3
0
4
2
4

7
.0

5
E
+

0
3

4
E
−

1
1

2
1
7
1
4
0
6

�
1
.4

2
E
+

0
4

�
0
E
+

0
0

�
1
0
1
0

1
0
7

5
.0

6
E
+

0
3

4
E
−

0
9

2
6
5

�
5
.2

3
E
+

0
3

�
2
E
−

0
5

�
7
9
5

�
5
.0

6
E
+

0
3

�
3
E
−

0
3

�
7
2
3
2

5
.0

6
E
+

0
3

2
E
−

1
3

1
9
4

�
6
.1

9
E
+

0
3

�
4
E
−

0
7

�
1
4
9
3

1
0
8

�
−

5
.0

0
E
−

0
1

�
1
E
−

0
9

�
1
3
9
8
2
3

−
8
.4

4
E
−

0
1

0
E
+

0
0

2
3
2
2

�
−

5
.0

0
E
−

0
1

�
0
E
+

0
0

�
9
9

�
−

5
.0

0
E
−

0
1

�
2
E
−

1
2

�
1
9
2

�
−

4
.2

9
E
−

0
1

�
0
E
+

0
0

�
8
8
5

1
0
9

5
.3

9
E
+

0
3

6
E
−

1
0

6
2
7
9
2

�
5
.2

1
E
+

0
3

�
1
E
+

0
1

�
2
4
4
2
4
7

�
5
.5

0
E
+

0
3

�
2
E
−

0
2

�
5
7
5
5
1

5
.6

3
E
+

0
3

4
E
−

1
1

6
7
1
2
5
7

�
1
.1

5
E
+

0
4

�
6
E
+

0
2

�
1
7
7
1

1
1
1

�
−

4
.2

8
E
+

0
1

�
2
E
−

0
9

�
2
4
7
0

�
−

4
.3

3
E
+

0
1

�
4
E
−

0
8

�
3
2
5
5

�
−

�
−

�
−

−
4
.7

8
E
+

0
1

2
E
−

1
4

9
0
7
4

�
−

4
.2

4
E
+

0
1

�
1
E
−

0
9

�
9
0
8

1
1
2

−
4
.7

8
E
+

0
1

3
E
−

0
9

1
0
9
0
7

�
−

4
.1

4
E
+

0
1

�
3
E
−

0
6

�
5
2
4

−
4
.7

8
E
+

0
1

8
E
−

1
6

7
3
0

−
4
.7

8
E
+

0
1

5
E
−

1
7

1
6
8
8

�
−

4
.0

9
E
+

0
1

�
4
E
−

1
0

�
1
0
7
7

1
1
3

2
.4

3
E
+

0
1

4
E
−

1
0

4
4
6
9

2
.6

1
E
+

0
1

0
E
+

0
0

1
0
6
2

2
.5

4
E
+

0
1

0
E
+

0
0

1
9
4
4

2
.4

3
E
+

0
1

1
E
−

1
2

3
3
9

�
2
.8

3
E
+

0
1

�
0
E
+

0
0

�
1
1
1
8

1
1
4

−
1
.7

6
E
+

0
3

2
E
−

0
9

1
0
8
6
0
5

�
−

1
.0

6
E
+

0
3

�
2
E
−

1
0

�
2
2
3
3

�
−

�
−

�
−

�
−

1
.3

7
E
+

0
3

�
4
E
−

1
3

�
1
3
7
7
6

�
−

7
.8

9
E
+

0
3

�
6
E
−

0
1

�
1
2
3
4

1
1
6

9
.7

6
E
+

0
1

5
E
−

0
9

4
8
1
5
5

�
9
.4

1
E
+

0
1

�
8
E
−

0
3

�
2
3
8
7

�
5
.0

0
E
+

0
1

�
8
E
−

0
2

�
9
1
3
1

9
.7

6
E
+

0
1

2
E
−

1
3

1
1
1
3
5
3
2

�
5
.0

0
E
+

0
1

�
9
E
−

0
2

�
2
4
8
4

1
1
7

3
.2

3
E
+

0
1

5
E
−

1
0

7
9
5
1

�
1
.7

1
E
+

0
2

�
0
E
+

0
0

�
7
0
0
1
8

�
5
.4

0
E
+

0
1

�
0
E
+

0
0

�
7
1
9
0

3
.2

3
E
+

0
1

3
E
−

1
3

1
5
6
6

�
1
.3

0
E
+

0
3

�
0
E
+

0
0

�
1
2
1
9

1
1
8

6
.6

5
E
+

0
2

1
E
−

0
9

1
9
8
7

6
.8

3
E
+

0
2

0
E
+

0
0

3
3
7
0

6
.6

5
E
+

0
2

2
E
−

1
4

3
7
6
2

6
.6

5
E
+

0
2

2
E
−

1
6

2
8
1

6
.8

5
E
+

0
2

0
E
+

0
0

1
7
4
6

1
1
9

2
.4

5
E
+

0
2

2
E
−

0
9

1
3
5
6

�
7
.9

1
E
+

0
2

�
9
E
−

0
6

�
1
2
3
6

2
.4

5
E
+

0
2

5
E
−

1
5

9
4
4

2
.4

5
E
+

0
2

3
E
−

1
5

5
7
8

�
5
.7

9
E
+

0
3

�
4
E
−

0
1

�
2
9
1
6

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1208 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Fig. 6.1. Data (a) and performance (b) profiles for the comparison between IR (Algorithm 1),
COBYLA, NOMAD, HOPSPACK, and SDPEN.

This allowed us to employ an acceleration of the GSS procedure. Since the sub-
problems involve minimization with linear equality constraints, they can be reduced
to unconstrained subproblems having as variables the coordinates with respect to
a null-space basis. We initiated the solution of each subproblem calling Powell’s
BOBYQA [49] for that unconstrained minimization and switching to GSS at the end
of BOBYQA’s calls. Since BOBYQA builds quadratic models of the objective func-
tion, it can be more efficient than pattern search methods in many cases. Since we
switch to GSS at the end, the convergence theory proved in this paper remains valid.
Other modifications concern scaling and specific parameters. The models have been
simplified to provide clear examples without technicalities.

Asset pricing. A proprietary model defines the price of an asset P at time t+1
as a random variable that depends on the price at time t and three model parameters
x1, x2, x3. A different asset V depends on y1, y2, y3 under a similar model. By means
of simulation we obtain nsim trajectories for the prices of these assets on ntime
periods of time. Given the true (historical) trajectories of P and V over that period
we wish to estimate the parameters that maximize the probability of occurrence of
those trajectories (or trajectories that are close to the historical ones with a tolerance
tol). Related models may be found in [2, 29, 55].

The assets are related by phenomenological constraints: x3 and y3 must have the
same sign, x1 should be close to y1, and x2 should be close to y2. These characteristics
are modeled by the smooth constraints x3y3 − z21 = 0, (x1 − y1)

2 + z22 − 0.01 = 0,
and (x2 − y2)

2 + z23 − 0.01 = 0. Clearly, the evaluation of the objective function is
expensive and the derivatives are not available. On the other hand, we have three
analytic nonlinear constraints. In a simplified version of the model with which we aim
to illustrate the IR approach, the state variable y(t+1) that corresponds to the price of
P is defined by σsup = min{0.1,max{x1+x3t, 0}}, σinf = min{0.1,max{x2+x3t, 0}},
csup = (1 + σsup)y(t), and cinf = y(t)/(1 + σinf), and y(t + 1) is uniformly random
between cinf and csup.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1209

Table 6.4

Comparison of the asset pricing problem.

Method Function ‖h‖ #FE

IR 6.34E−2 9.75E−12 551
HOPSPACK 9.86E−1 0.00E+00 2391
NOMAD 9.94E−1 0.00E+00 1026
COBYLA 9.89E−1 0.27E−11 187
SDPEN 5.54E−1 1.70E−11 459

Analogously, we define the random evolution of the prices of V (called z(t)). At
the ith simulation run we compute num(i), the number of times in which y(t) or
z(t) differ from the historical prices in less than tol. The objective function that we

minimize is given by f(x) = 1/
∑nsim

i=1 num(i). The initial point was set to be random
between 0 and 0.1. For each method we report the final infeasibility (sup-norm),
the best functional value obtained at feasible points, and the number of functional
evaluations. The results are given in Table 6.4. Note that all the methods find feasible
points, IR finds the local minimizer with lowest functional value, while HOPSPACK,
NOMAD, and COBYLA seem to find close local minimizers and the local minimizer
found by SDPEN is better than the ones obtained by those methods.

Thin films. The transmission T of a thin absorbing film deposited on a thick
transparent substrate (see [56, 57]) is given by

(6.2) T =
Ax

B − Cx+Dx2
,

where

A = 16s(n̄2 + κ2),(6.3)

B = [(n̄+ 1)2 + κ2][(n̄+ 1)(n̄+ s2) + κ2],(6.4)

C = [(n̄2 − 1 + κ2)(n̄2 − s2 + κ2)− 2κ2(s2 + 1)]2 cosϕ(6.5)

− κ[2(n̄2 − s2 + κ2) + (s2 + 1)(n̄2 − 1 + κ2)]2 sinϕ,

D = [(n̄− 1)2 + κ2][(n̄− 1)(n̄− s2) + κ2],(6.6)

ϕ = 4πn̄d/λ, x = exp(−αd), α = 4πκ/λ.(6.7)

In formulae (6.3)–(6.7) λ is the wavelength, s = s(λ) is the refractive index of
the transparent substrate (assumed to be known), n̄ = n̄(λ) is the refractive index
of the film, κ = κ(λ) is the attenuation coefficient of the film (α is the absorption
coefficient), and d is the thickness of the film.

Typical transmission curves are given in [14]. We are given ncurv empirical curves
representing transmittances of the same material with different (given) thicknesses.
Observations take place at wavelengths λmin = λ1 < . . . < λnobs = λmax. To each
empirical transmittance curve γi(λ) we associate the number of its local maximizers
M(γi) and the average transmittance A(γi). We wish to estimate the functions n̄(λ)
and κ(λ) that best fit M(γi), i = 1, . . . , ncurv. The objective function to be mini-
mized will be f(n̄, κ) =

∑
i |A(n̄, κ, di) − A(γi)|2 +

∑
i |M(n̄, κ, di) −M(γi)|2, where

M(n̄, κ, di) is the number of local maximizers of the theoretical curve with thickness
di, refractive index n̄, and attenuation coefficient κ, and A(n̄, κ, di) is the average
transmittance of same theoretical curve. The following constraints are imposed to
the functions n̄(λ) and κ(λ) [14]:

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1210 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

Table 6.5

Comparison on the thin films problem.

Method Function ‖h‖ #FE

IR 1.078E−04 2.120E−05 1668
HOPSPACK − − −
NOMAD − − −
COBYLA 1.700E+01 1.587E−03 3225
SDPEN 3.265E−03 3.400E−07 11579

There exists λinfl ∈ [λmin, λmax] such that κ(λ)/λ is convex if λ ≤ λinfl and
concave if λ > λinfl.

The unknowns of the problem are the values of κ(λ) at the observed grid wave-
lengths λmin < · · · < λmax and the inflection wavelength λinfl. The nonlinear con-
straints are represented by

[κ(λi+1)/λi+1 − 2κ(λi)/λi + κ(λi−1)/λi−1][λi − λinfl] + z2i = 0

for all i = 2, . . . , nobs−1. Therefore, the problem has 2 nobs−1 variables and nobs−2
nonlinear constraints. In the numerical tests we considered nobs = 101 (201 variables
and 99 nonlinear constraints) and ncurv = 10. The initial approximations for the
unknowns κ were chosen as in [14], the initial refraction coefficients were null, and
the initial inflection point was set to be 0.95 times the maximal wavelength. For the
IR algorithm, COBYLA, and SDPEN we report the final infeasibility (sup-norm),
the best functional value obtained at feasible points, and the number of functional
evaluations. The execution of NOMAD and HOPSPACK was interrupted after 2
hours of execution time. The results are given in Table 6.5.

7. Final remarks. We presented an IR approach for constrained derivative-
free optimization. The derivatives of the constraints were supposed to be available.
Global convergence to stationary points was proved and an implementation of the
proposed algorithm was tested against the derivative-free augmented Lagrangian al-
gorithm HOPSPACK, the Powell’s derivative-free algorithm COBYLA, which uses
a linear approximation approach, the MADS method NOMAD, and the sequential
penalty derivative-free algorithm SDPEN.

The availability of constraint derivatives is an important assumption since in
the optimization phase of the algorithm, we solve a linearly constrained derivative-
free optimization problem defined by the Jacobian of the constraints. On the other
hand, objective function derivatives are not used at all. Moreover, the gradient of
f plays a modest role in the convergence theory since it is only associated with the
convergence properties of the internal GSS solver [28]. Clearly, the efficiency of this
solver is essential to support the effectiveness of the overall algorithm. Nevertheless,
the independence of important properties of the IR algorithm with respect to the
smoothness of the objective function suggests that variations of the algorithm in which
smoothness of f would not be assumed at all should be useful. Further research may
be expected on this subject.

IR methods for constrained optimization are closely related to the block-generalized
Brown–Brent methods for solving nonlinear systems of equations defined in [38].
This relation was emphasized in [15] in connection with local convergence proofs.
In Brown–Brent methods one obtains local quadratic convergence without necessarily
using derivatives of the components of the system and employing a different number
of evaluations for each component. If the derivatives of all the components except

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1211

one are available, it is sensible to divide the system into two blocks, the first contain-
ing the derivable components and the second with only one function, for which the
gradient is not available. With such decomposition that the Brown–Brent method is
quadratically convergent, we take full advantage of the available derivatives, and we
need to evaluate the complicated component only twice per iteration. This procedure
suggests plausible ideas for considering a natural generalization of problem (3.1). We
have in mind the situation in which only the derivatives of some constraints are avail-
able, whereas the remaining constraints must be addressed using derivative-free tools.
This will be the subject of forthcoming research.

Acknowledgments. We are indebted to associate editor Prof. Margaret Wright
and two anonymous referees for many useful comments and remarks that led to sig-
nificant improvement of this paper.

REFERENCES

[1] J. Abadie and J. Carpentier, Generalization of the Wolfe reduced-gradient method to the
case of nonlinear constraints, in Optimization, R. Fletcher, ed., Academic Press, New
York, 1968, pp. 37–47.

[2] A. Agapie and C. Bratianu, Repetitive stochastic guesstimation for estimating parameters
in a GARCH model, J. Econom. Forecast., 2 (2010), pp. 213–222.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On Augmented
Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007),
pp. 1286–1309.

[4] R. Andreani, G. Haeser, and J. M. Mart́ınez, On sequential optimality conditions for
smooth constrained optimization, Optimization, 60 (2011), pp. 627–641.

[5] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant positive
linear dependence constraint qualification and applications, Math. Program., 135 (2012),
pp. 255–273.

[6] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, Two new constraint quali-
fications and applications, SIAM J. Optim., 22 (2012), pp. 1109–1135.

[7] R. Andreani, J. M. Mart́ınez, and M. L. Schuverdt, On the relation between the constant
positive linear dependence condition and quasinormality constraint qualification, J. Optim.
Theory Appl., 125 (2005), pp. 473–485.

[8] R. Andreani, J. M. Mart́ınez, and B. F. Svaiter, A new sequential optimality condition
for constrained optimization and algorithmic consequences, SIAM J. Optim., 20 (2011),
pp. 3533–3554.

[9] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J. Optim.,
13 (2003), pp. 889–903.

[10] C. Audet and J. E. Dennis, Jr., Mesh adaptive direct search algorithms for constrained
optimization, SIAM J. Optim., 17 (2006), pp. 188–217.

[11] C. Audet and J. E. Dennis, Jr., A progressive barrier for derivative-free nonlinear program-
ming, SIAM J. Optim., 20 (2009), pp. 445–472.

[12] N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box-
constrained optimal control problems, J. Optim. Theory Appl., 156 (2013), pp. 726–760.

[13] R. H. Bielschowsky and F. A. M. Gomes, Dynamic control of infeasibility in equality con-
strained optimization, SIAM J. Optim., 19 (2008), pp. 1299–1325.

[14] E. G. Birgin, I. Chambouleyron, and J. M. Mart́ınez, Estimation of the optical constants
and the thickness of thin films using unconstrained optimization, J. Comput. Phys., 151
(1999), pp. 862–880.

[15] E. G. Birgin and J. M. Mart́ınez, Local convergence of an inexact-restoration method and
numerical experiments, J. Optim. Theory Appl., 127 (2005), pp. 229–247.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimiza-
tion, MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2009.

[17] M. A. Diniz-Ehrhardt, J. M. Mart́ınez, and L. G. Pedroso, Derivative-free methods for
nonlinear programming with general lower-level constraints, Comput. Appl. Math., 30
(2011), pp. 19–52.

[18] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1212 BUENO, FRIEDLANDER, MARTÍNEZ, AND SOBRAL

[19] A. Fischer and A. Friedlander, A new line search inexact restoration approach for nonlinear
programming, Comput. Optim. Appl., 46 (2010), pp. 333–346.

[20] N. I. M. Gould and Ph. L. Toint, Nonlinear programming without a penalty function or a
filter, Math. Program., 122 (2010), pp. 155–196.

[21] C. C. Gonzaga, E. Karas, and M. Vanti, A globally convergent filter method for nonlinear
programming, SIAM J. Optim., 14 (2003), pp. 646–669.

[22] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems 187, Springer, New York, 1981.

[23] E. W. Karas, C. C. Gonzaga, and A. A. Ribeiro, Local convergence of filter methods for
equality constrained non-linear programming, Optimization, 59 (2010), pp. 1153–1171.

[24] C. Y. Kaya, Inexact restoration for Runge-Kutta discretization of optimal control problems,
SIAM J. Numer. Anal., 48 (2010), pp. 1492–1517.

[25] T. G. Kolda and J. D. Griffin, Nonlinearly-Constrained Optimization Using Asynchronous
Parallel Generating Set Search, Technical report SAND2007-3257, Sandia National Labo-
ratories, 2007.

[26] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: new perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[27] T. G. Kolda, R. M. Lewis, and V. Torczon, A Generating Set Direct Search Augmented
Lagrangian Algorithm for Optimization with a Combination of General and Linear Con-
straints, Technical report SAND2006-5315, Sandia National Laboratories, 2006.

[28] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM J. Optim., 17 (2006), pp. 943–968.

[29] R. Kollmann, S. Maliar, B. A. Malin, and P. Pichler, Comparison of solutions to the
multi-country real business cycle model, J. Econom. Dynam. Control, 35 (2011), pp. 186–
202.

[30] L. S. Lasdon, Reduced gradient methods, in Nonlinear Optimization 1981, M. J. D. Powell,
ed., Academic Press, New York, 1982, pp. 235–242.

[31] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm,
ACM Trans. Math. Software, 37 (2011), pp. 1–15.

[32] R. M. Lewis and V. Torczon, Pattern search algorithms for bound constrained minimization,
SIAM J. Optim., 9 (1999), pp. 1082–1099.

[33] R. M. Lewis and V. Torczon, Pattern search algorithms for linearly constrained minimiza-
tion, SIAM J. Optim., 10 (2000), pp. 917–941.

[34] R. M. Lewis and V. Torczon, A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds, SIAM J. Optim.,
12 (2002), pp. 1075–1089.

[35] R. M. Lewis and V. Torczon, A Direct Search Approach to Nonlinear Programming Problems
Using an Augmented Lagrangian Method with Explicit Treatment of Linear Constraints,
Technical report WM-CS-2010-01, College of William and Mary, 2010.

[36] G. Liuzzi, S. Lucidi, and M. Sciandrone, Sequential penalty derivative-free methods for
nonlinear constrained optimization, SIAM J. Optim., 20 (2010), pp. 2614–2635.

[37] S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained
optimization, Math. Program., 92 (2002), pp. 37–59.

[38] J. M. Mart́ınez, Generalization of the methods of Brent and Brown for solving nonlinear
simultaneous equations, SIAM J. Numer. Anal., 16 (1979), pp. 434–448.

[39] J. M. Mart́ınez, Inexact restoration method with Lagrangian tangent decrease and new merit
function for nonlinear programming, J. Optim. Theory Appl., 111 (2001), pp. 39–58.

[40] J. M. Mart́ınez and E. A. Pilotta, Inexact restoration algorithms for constrained optimiza-
tion, J. Optim. Theory Appl., 104 (2000), pp. 135–163.

[41] J. M. Mart́ınez and F. N. C. Sobral, Derivative-free constrained optimization on thin do-
mains, J. Global Optim., DOI: 10.1007/s10898-012-9944-x.

[42] J. M. Mart́ınez and B. F. Svaiter, A practical optimality condition without constraint qual-
ifications for nonlinear programming, J. Optim. Theory Appl., 118 (2003), pp. 117–133.

[43] A. Miele, H. Y. Huang, and J. C. Heideman, Sequential gradient-restoration algorithm for
the minimization of constrained functions, ordinary and conjugate gradient version, J.
Optim. Theory Appl., 4 (1969), pp. 213–246.

[44] A. Miele, A. V. Levy, and E. E. Cragg, Modifications and extensions of the conjugate-
gradient restoration algorithm for mathematical programming problems, J. Optim. Theory
Appl., 7 (1971), pp. 450–472.

[45] A. Miele, E. M. Sims, and V. K. Basapur, Sequential Gradient-Restoration Algorithm for
Mathematical Programming Problems with Inequality Constraints, Part 1, Theory, Aero-
Astronautics Report 168, Rice University, 1983.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DERIVATIVE-FREE INEXACT RESTORATION METHOD 1213

[46] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J.
Optim., 20 (2009), pp. 172–191.

[47] T. D. Plantenga, HOPSPACK 2.0 User Manual, Sandia National Laboratories, Albuquerque,
NM, 2009.

[48] M. J. D. Powell, A direct search optimization method that models the objective and con-
straint functions by linear interpolation, in Advances in Optimization and Numerical Anal-
ysis, S. Gomez and J.-P. Hennart, eds., Kluwer Academic, Dordrecht, Netherlands, 1994,
pp. 51–67.

[49] M. J. D. Powell, The BOBYQA Algorithm for Bound Constrained Optimization Without
Derivatives, Report NA2009/06, University of Cambridge, Cambridge, UK, 2009.

[50] L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to
SQP methods, SIAM J. Optim., 10 (2000), pp. 963–981.

[51] M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),
Part 1: Introduction and comparison with related methods, J. Optim. Theory Appl., 62
(1989), pp. 77–98.

[52] M. Rom and M. Avriel, Properties of the sequential gradient-restoration algorithm (SGRA),
Part 2: Convergence analysis, J. Optim. Theory Appl., 62 (1989), pp. 99–126.

[53] J. B. Rosen, The gradient projection method for nonlinear programming, Part 1, Linear Con-
straints, SIAM J. Appl. Math., 8 (1960), pp. 181–217.

[54] J. B. Rosen, The gradient projection method for nonlinear programming, Part 2, Nonlinear
Constraints, SIAM J. Appl. Math., 9 (1961), pp. 514–532.

[55] W. Semmler and G. Gong, Estimating parameters of real business cycle models, J. Econom.
Behav. Organ., 30 (1996), pp. 301–325.

[56] R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J.
Phys. E, 16 (1983), pp. 1214–1222.

[57] R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous
amorphous silicon films, J. Phys. E, 17 (1984), pp. 896–903.

[58] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim. 7 (1997),
pp. 1–25.

[59] TANGO (Trustable Algorithms for Nonlinear General Optimization), http://www.ime.usp.
br/∼egbirgin/tango/ (2005).

[60] DFL (Derivative-Free Library), http://www.dis.uniroma1.it/∼lucidi/DFL/.
[61] AMFS (Alan Miller’s Fortran Software), http://jblevins.org/mirror/amiller/.

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 1

43
.1

06
.2

03
.2

37
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

