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Inertial motion superradiance, the emission of radiation by an initially unexcited system moving inertially
but superluminally through a medium, has long been known. Rotational superradiance, the amplification of
radiation by a rotating rigid object, was recognized much later, principally in connection with black hole
radiances. Here we review the principles of inertial motion superradiance and prove thermodynamically that
the Ginzburg-Frank condition for superradiance coincides with the condition for superradiant amplification of
already existing radiation. Examples we cite include a new type of black hole superradiance. We correct
Zel'dovich’s thermodynamic derivation of the Zel'dovich-Misner condition for rotational superradiance by
including the radiant entropy in the bookkeeping. We work out in full detail the electrodynamics of a
Zel'dovich rotating cylinder, including a general electrodynamic proof of the Zel'dovich-Misner condition, and
explicit calculations of the superradiant gain for both types of polarization. Contrary to Zel'dovich’s pessimis-
tic conclusion we conclude that, if the cylinder is surrounded by a dielectric jacket and the whole assembly is
placed inside a rotating cavity, the superradiance is measurable in the labof8a5%6-282(198)08516-4

PACS numbse(s): 42.50.Fx, 04.70.Bw, 03.50.De, 41.60.Bq

I. INTRODUCTION when condition(1) is satisfied. Misnel{5] independently
made a suggestion that the Kerr black hole will amplify
A free structureless particle moving inertially in vacuum waves, and supported it with unpublished calculations. The
cannot absorb or emit a photon. This well known fact fol- corresponding spontaneous emission was first put into evi-
lows solely from Lorentz invariance and four-momentumdence field theoretically by Unrul].
conservation. But a free object endowed with internal struc- Following Misner’s observation one of us notgd that
ture can, of course, absorb photons, and can also emit theim the Kerr black hole case superradiant amplification is clas-
provided it is initially excited above its ground staest  sically required when conditiofl) holds because that is the
massM larger than minimum possible valud ). Some- only way to fuffill Hawking’s classically rigorous horizon
what surprisingly, when the object, which may be electri-area theoreni8] (see also Refl9]). From the same logic it
cally neutral overall, moves uniformly through a medium, followed[7] that superradiance of electrically charged waves
emission may be allowed even when the object starts off iy a charged black hole is required whenever
its ground state. The early recognition of this possibility by

Ginzburg and Frankl1] (Ginzburg[2] gives a modern re- w—qd/h<0 2

view) marks the beginning of our subject, which we term

superradiance. where q is the elementary charge of the field addthe
The term superradiance, introduced by Didk8, origi-  electrostatic potential of the black hole measured at the ho-

nally referred to amplification of radiation due to coherencerjzon.

in the emitting medium. Many years later Zel'dovi¢H] Following the emergence of black hole thermodynamics

pointed out that a cylinder made of absorbing material angi10] it became clear that black horizon area plays the role of
rotating about its axis with frequendy is capable of ampli-  entropy for black holes. This correspondence and the cited
fying those modes of scalar or electromagnetic radiation imargument for superradiance from black hole area immedi-

pinging on it which satisfy the condition ately suggests that the necessity of superradiance in ordinary
objects is solely a consequence of thermodynamics. In fact,
o—mQ<0 (1)  zeldovich[11] used a thermodynamic argument in his dis-

cussion to show that superradiance of the rotating cylinder
wherew is the waves’ frequency am the azimuthal quan- must take place. Following this idea we extend in this paper
tum number with respect to the axis of rotation. Zel'dovichthe superradiance condition to a broad range of circum-
realized that, when quantum physics is allowed for, the rostances. Indeed, we make the point that superradiance is a
tating object should be able to emit spontaneously in theiseful and broad guiding principle for radiating systems in
regime(1), and anticipated that a rotatir{gerr) black hole  electrodynamics and elsewhere.
should show both amplification and spontaneous emission This paper is organized as follows. In Sec. Il we review
and elaborate on the Ginzburg-Frank argument for spontane-
ous emission in certain modes by an object moving inertially
*Email address: bekenste@vms.huji.ac.il and superluminally in a medium. We then give a thermody-
TAlso at the Department of Applied Mathematics and Statisticsnamic argument for superradiant amplification of those clas-
University of Campinas, Campinas SP, Brazil. Email sical waves which satisfy the Ginzburg-Frank condition. In
address: schiffer@obelix.unicamp.br Sec. Ill we discuss a number of phenomena involving am-
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plification of waves which can be reduced to the inertial wo=Y(w—V-k), (5)
superradiance motif; one is a new effect. Sec. IV discusses,

in the footsteps of Zel'dovicf4,11], the thermodynamic ba-

sis of spontaneous emission and superradiant amplificatiois the standard Doppler shift formula.

by rotating objects. In Sec. V we give an electrodynamic In the casgv|>1/n(w) the object moves faster than the
proof of rotational superradiance, and calculate in detail thgphasevelocity of electromagnetic waves of frequensylf ¢
superradiant gain of a conductiignd/or otherwise dissipa- denotes the angle betwekrandv, a photon in a mode with
tive) rotating cylinder for one type of polarization. This new cos®>[n(w)|v|]~! has negativew—v-k, and can thus be
treatment improves and corrects Zel'dovich's semiquantitaemitted only in consonance wittexcitation of the object
tive estimate$11], extends the results to situations where the(M’—M>0). Ginzburg and Frank refer to this eventuality
material’s permeabilities are not unity, and can easily be exas theanomalousDoppler effect. They note a variety of cir-
tended to relativistic rotatiofas may be relevant for pul- cumstances other than superluminal motion in a dielectric for
sars. It is followed by a description of a device which can which the conditions for the anomalous Doppler effect can
make rotational superradiance measurable in the laboratoripe met: a particle moving in vacuum through a narrow chan-
The Appendix extends some of the above results to the seael drilled into a dielectric, a particle shot into a gap between

ond polarization. dielectric slabs, emission from a collection of sources which
Unless otherwise noted we use units in which the speed addre successively excited so that the active source moves
light in vacuumis unity: c=1. along with superluminaphasevelocity, etc.[1,2]
Thus an object in its ground state may become excited
Il. INERTIAL MOTION SUPERRADIANCE: PRINCIPLES and emit a photon, provided it moves superluminally through

a medium. The energy source must be the bulk motion.
Emission is not just allowed by the conservation laws; it will
Let E andE’=E—f%w denote the object’s total energy in occur spontaneously, as follows from thermodynamic rea-
the laboratory frame before and after the emission of a pho-soning. The object in its ground state with no photon around
ton with energyhw and momentunik (both measured inthe constitutes a low entropy state; the excitation of the object to
laboratory framg while P andP’ =P—#k denote the corre- one of a number of possible excited states with emission of a
sponding momentay=JE/JP is the initial velocity of the photon with momentum in a variety of possible directions
object. The object’s rest ma$d is nothing but the energy evidently entails an increase in entropy. Thus the emission is
measured in the rest fram&) =y(E—v-P) with y=(1  favored by the second law.
—v?) 12 while after the emission, with obvious notation,  Recall that according to Eq4b), whenw—v-k<0 ab-
M’=+y'(E'—v'-P’). Then a straightforward calculation to sorptionof a photon is possible only if accompanied by a

A. Spontaneous superradiance

O(w), Ok) and O(v' —V) gives de-excitationof the object M’ —M<0). Thus a superlumi-
nally moving object in the ground state is forbidden from
M'=M=—yh(w—V-K)+hw- OV —V). (3)  absorbing in certain modes.

. . . L A further case is absorption or emission by a superluminal
As written, this formula is relevant for emission; for absorp'object of photons with the directions given precisely by

tion the sign in front of p—v-k) §hou|d be r_ev_ersed. The cos9=[n(w)V|]~. According to Eqs(4a,h both are pos-
factor O(v’'—v) represents recoil effects; it is of order gjyje anddo notrequire a change in the object. In fact, both
fiw/M and becomes negligible for a sufficiently heavy ob-rocesses can occur consecutively, thus constituting scatter-

ject. In this recoilless limit ing of a photon with no change in the object. Consequently,
M — v k) o for superluminal motion, scattering with both initial and final
M*—M vi(o=v-k); - (emission (43 directions specified by co8=[n(w)|v|]~* can be coherent
M'—M=yAi(w—v-k); (absorption. (4b) scattering. In particular, all these processes are possible for a

structureless particle which, of course, has only one state

We note that in vacuurm = |k|>v-k so that emission is (structureless is a relative concept; we mean the particle
possible only with de-excitationM’—M<0), while ab- 100ks structureless at the relevant energy gcale
sorption is coupled with excitationM’—M>0), as plain
intuition would have.

Now suppose the object moves uniformly through an iso-
tropic medium transparent to electromagnetic waves possess- Section Il A deals withspontaneous superradianbg an
ing an index of refractiom(w)>1. Thefw and#k are still  elementary object; Ginzburf2] has in mind a two level
the energy and momentum of the photon, but naw atom(a dipole. The condition for superradiance is that the
=|k|/n(w). Wheneverlv|<1/n(w) (subluminal motion for emitted quantum’s energy in the moving object's frame,
the relevant frequengy we recover the connections #(w—Vv-k), be negative. Then its emission may be inter-
“de-excitation—emission” and ‘“excitatior~absorption.”  preted, in the medium’s frame, as absorption of a positive
Ginzburg and Frankl,2] refer to this kind of emission or energy quantum with consequent excitation of the object.
absorption as the ordinary Doppler effect, because the reldA/hen the object has complicated structure, it is simpler to
tion betweenw andk and the rest frame transition frequency derive the condition for amplification directly from the sec-
wo=|M—M'|/#, ond law of thermodynamics. We thus assume here that the

B. Superradiant amplification
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object may dissipate energy internally. This allows us to deing any entropy carriedto the object by the waves. Now

velop the following classical argument. the entropy in a single mode of a field containing on the
Suppose that the incident radiation is exclusively inmeanN quanta is at modtl3]

modes with frequency neas and propagating withiAn of

the directionn. Let | (»,n) denote the corresponding inten- Smax= (N+1)In(N+1)=N In N~In N (10

sity (power per unit area, unit solid angle and unit band-

width). Experience tells us that the body will absorb power

a(w,n) (NI (w,nN)AwAn, where 2(n) is the geometric

cross section normal to, anda(w,n)<1 is a characteristic

absorptivity of the body. Simultaneously the object will scat-

ter power[1—a(w,n)]2(n)I(w,n)AwAn. By conservation

of energy

where the approximation applies foé>1. The scattered
waves carry a mean number of quanta proportional to
I (w,n). Hence, for largeN, the outgoing waves’ contribu-
tion to dS/dt is bounded from above by a quantity of
O[In I(w,n)]. There is an additional contribution t&5/dt of
O(W) coming from the spontaneous emission. Hence

dSIdt<O[In 1(w,n)]+O(W). (11)

dE
—t=a2IAwAn—W (6)

d If any dissipation takes place, the second law of thermo-

h is th " | . h dynamics demandd §'dt+dS/dt>0. As I(w,n) is made
whereW is the overall power spontaneously emitted by thejarger and larger, the total entropy rate of change becomes

body (including any thermal emissionWe ignore energy  yominated by the term proportional igw,n) in Eq. (9)
going into scattered photons because it will not show up INhecauseW and U are kept fixed. Positivity ofdS/dt

Eq. (9) below. " :
Now the linear momentum conveyed by the radiation is ds/dt then requires
nn(w) times the energy conveyed. The easiest way to see (w—v-k)a(w,n)>0. 12

this is to think of the radiation as composed of quanta, each

with energyfo and momentuntk with wn(w)=|k|. How-  Thus whenever the Ginzburg-Frank condition,

ever, the result also holds classically, and can be derived, for

instance, by comparing the temporal-spatial and spatial- w—V-k<0 (13

spatial components of the energy-momentum tensor for th

field. Thus absorption and spontaneous emission cause th& the anomalous Doppler effect is fulfilled, we necessarily
linear momentunP of the body to change at a rate have a(w,n)<0. This . result was obtaln.ed by assuming
a>lAwAn>W. But since—barring nonlinear effectsa—

=) must be independent of the incident intensity, the result must
gr =~ "N(w)axlAwAn—U () be true for any intensity which can still be regarded as clas-
sical. Nowa<0 means that the scattered wave, with power

whereU signifies the rate of spontaneous momentum emisproportional to t-a, is stronger than the incident one
sion. We have not included the transfer of momentum due téwhich is represented by the “1” in the previous expres-
scattering because this has no influence on(Egbelow. sion). Thus the moving object amplifies preexisting radiation
As already hinted, in calculating the rate of change of restn modes satisfying the Ginzburg-Frank condition. We say
mass of the bodyM, we may forget the effects of elastic that the object superradiates. For modes with-v-k
scattering. For in the frame of the body waves are scattereg 0, a>0 and so the object absorbs on the whole.
with no Doppler shift(since there is no motign which As a rule of thumb amplification of waves may be re-
means that they contain the same energy before and after t@arded as the classical counterpart of stimulated emission at
scattering. Thus the scattering cannot contributei/dt.  the quantum level. By Einstein’s argument stimulated emis-
BecauseM is just the body’s energy in its own frame, the Sion goes hand in hand with spontaneous emission in the

rest mass changes at a rate given by a Lorentz transformgame mode. The spontaneous emission corresponding to su-
tion: perradiance amplification is just the Ginzburg-Frank emis-

sion discussed in connection with Edéa,b.
dM/dt=y(dE/dt—v-dP/dt). (8 Obviouslya switches sign at the superradiance threshold
w=V-k. This switch cannot take place ka/ having a pole

Of course, a change in the proper mass means that the NnUgncea<1. If a is analytic inw—Qm, it must thus have the
ber of microstates accessible to the object has changed, i.@xpansion

that its entropyS has changed. Defining an effective tem-
perature for the bodyT=0M/4JS, we see by Eqs(6), (7) a=a(v,nN)(w—V-K)+--- (14
that

in the vicinity of the neutral frequencyp=v-k. However,

we must emphasize that thermodynamics does not require
the functiona to be continuous ab=v-Kk.
The superradiance discussed here and in Sec. Il A will
where we have replacetvn(w)—Kk. evidently occur also for fields other than the electromagnetic.
Let us now take into account the rate of change of radiaAll that is required is that the energy and momentum of a
tion entropy,dS/dt. We get an upper bound on it by ignor- quantum be expressible in terms of frequency and wavevec-

ds vy

It f[w’l(w—v-k)aEIAwAn—WJrv-U] 9

064014-3



JACOB D. BEKENSTEIN AND MARCELO SCHIFFER PHYSICAL REVIEW 58 064014

tor in the usual way. Thus one can replace above “photons” B. Gravitational generation of electromagnetic waves
and “electromagnetic waves” by phonons and sound waves,

otc We now discuss a hew phenomenon. Suppose an electri-

cally neutral black hole of massl moves with constant
velocity v through a uniform and isotropic dielectric with an
Il. INERTIAL MOTION SUPERRADIANCE: EXAMPLES index of refraction whose real partigw). In order to avoid

We now aive four examples of phenomena that can b guestions regarding the destructive effect of the hole on the
9 . npies of phenomena can b ielectric, it is convenient to imagine that the dielectric is
understood as manifestations of inertial motion superradi-__. .
ance. One is novel. solid, and that the hole travels down a narrow straight chan-
nel drilled through the dielectric. Thus the hole does not

accrete material, but its gravitational field certainly influ-
A. Vavilov-Cherenkov effect ences the dielectric.

A point charge moving at speadthrough a transparent Let a spectrum of electromagnetic waves pervade the di-
isotropic dielectric medium faster than the phase speed dlectric. Those wave modes for which—v-k=w[1-V
electromagnetic radiation for some range of frequencies wilt N"n(w)]<0 can undergo superradiant amplification from
emit radiation at all those frequencies; for each frequency théhe black hole. In the argument of Sec. Il B the entropy of
radiation front is a cone with opening angl®2(w»), where the object is now replaced by black entropy together with

. . entropy of the surrounding dielectric. Now black hole en-
sinOc(w)=[vn(w)] " (15 tropy is proportional to the horizon area, and Hawking’s area
theorem[8] tells us that black hole area will increase in any
This Vavilov-Cherenkov effect, discovered experimentallyclassical process, such as absorption of electromagnetic
in 1934, and explained theoretically by Tamm and Frankwaves by the hole. If the dielectric can dissipate, it will also
[12], was the first example of coherent radiation from ancontribute to the increase in entropy through changes it un-
unaccelerating source. We now elaborate on Ginzby&f's dergoes in the vicinity of the passing hole. Thus the argu-
discussion of the effect in terms of superradiance. ment of Sec. Il B tells us that the black hole plus surrounding

Since the charge has no internal degrees of freedom, itdielectric will amplify the radiation in the mentioned modes
rest mass is fixed. We may thus 9ét'—M =0 in Eqs. atthe expense of the hole’s kinetic energy. Likewise, even if
(4a,h. Those conditions cannot thus be satisfied for there are no waves to start with, the argument of Sec. Il A
<1/n(w) since their right hand sidéRHS) would then be tells us that the black hole plus dielectric will spontaneously
strictly positive: no absorption or emission is possible from aemit photons into modes that obey the Ginzburg-Frank su-
subluminal particle. However, far>1/n(w) the RHS van- perradiance conditiofi3).
ishes when the photon’s direction makes an anyl® the In the conversion of kinetic energy to waves, gravitation
particle’s velocity, where cof=[vn(w)] 1. But then the must obviously play a role. For the black hole is assumed
front of photons emitted as the charge goes by forms a conencharged, so that the process is distinct from the Vavilov-
with opening angle 24/2— &) which evidently coincides Cherenkov effect. Since the waves cannot classically emerge
with 20.. As argued in Sec. Il A, the growth of entropy from within the hole, we must look for their source in the
associated with the multiplicity of possible azimuthal direc-polarization cloud accompanying the hole. This cloud forms
tions of the emitted photon favors emission; the emitted phobecause gravity pulls on the positively charged nuclei in the
tons constitute the Vavilov-Cherenkov radiation. dielectric stronger than on the enveloping electrons. As a

In truth the above description is somewhat simplistic. It isresult the array of nuclei sags with respect to the electrons,
well known that the Vavilov-Cherenkov radiation actually and produces an electrical polarization of the dielectric ac-
comes from those regions in the dielectric that feel stronglycompanied by an electric field which ultimately balances the
the electromagnetic field of the char§g2]. In effect the tendency of gravity to rip out nuclei from electrons. It is this
charges carries along with it a polarization cloud of dielectricelectric structure which is to be viewed as the true source of
material. As the charges advances, the atomic constituents #fe photons, some of which are absorbed by the black hole
this cloud are replaced continuously by fresh atoms fromand cause the area increase, while the rest constitute emis-
upstream. Because of this renewal, the systension.

“charge+cloud” is a dissipative one: part of the energy that  In special circumstances the present problem may be
goes into exciting an atom in the cloud is inexorably carriedmapped onto that of the Vavilov-Cherenkov effect by noting
away into the wake of the charge. that the induced electric fiel is related to the gravitational

The argument of Sec. Il B then tells us that the movingone, g, by eE=—éJug where su~Am, is the nucleus-
charge(and its polarization cloudmust also amplify ambi- electron mass differencé\(is the mass number of the atoms,
ent radiation which satisfies conditiofi3). Writing v-k ~ m, the proton’s magsande>0 the unit of charge. From the
=vwn(w)cosd, it follows that amplification occurs for gravitational Poisson equation it follows thaV-E
cos¥>1lvn(w). Thus radiation modes inside the Cherenkov=47GM(Jule) 6(r—rq) wherery denotes the momentary
cone(those with wavevector more aligned with the charge’sblack hole position. The electric field accompanying the
motion than the Vavilov-Cherenkov modgsiust be ampli- black hole is thus that of a pointlike charg®
fied. This Vavilov-Cherenkov superradiant amplification has=GAMm,/e. There is a big assumption here that the di-
not yet been observed. electric has time to relax to form the above compensating
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field. Such relaxation does occur for sufficiently sma|l  that mode, as discussed in Sec. Il A. Furthermore, the quasi-
but since we needv| to be sufficiently large for the particles thus created can undergo superradiant amplification
Ginzburg-Frank condition to hold, stringent conditions areupon impinging on other parts of the wallSec. Il B. As a
required of the dielectri¢high n and fast relaxation When  consequence an avalanche of quasiparticle formation ensues,
these are satisfied the electromagnetic radiation will be of thevhich acts to convert the superfluid into a normal fluid. It is
Vavilov-Cherenkov form for the equivalent char@emov-  clear that the transition away from superfluidity is a literal
ing with velocity v. Q/e is about 16A times the gravita- example of the superradiance phenomenon. In this phenom-
tional radius of the hole measured in units of the classicaknon the sound speed, of ordeg, plays the role of the
radius of theelectron Hence a fast 19 g primordial black  speed of light in our original arguments.

hole moving in a suitable dielectric would radiate just like an

equally fast particle bearing-10°A elementary charges. D. Superradiance in Mach shocks

This is relevant for the experimental search for primordial It is well known that when a solid object travels through

black holes. - . o .
When things are looked at this way, the black hole chard" originally qu!escent ﬂ.u'd with a spee)q= |V|. exce_edl_ng

acter of the object is not critical. What matters is that it is}:?:]g];(f?r#gib; 'Cr;r::rlfa];hé'gr']:i:?g%gﬁni?%%?&?n#g

endowed with a gravitational field. This tells us that an ordi-. )

nary object with the same mass would have similar effect ag”lterlor of this Mach cone is filled by perturbations originat-

a black hole, so long as both are smaller than the channel’§Y in the object, while.the fluid exterior to the cone ig, still
width. It is also worthwhile noting that the effects here dis- InPerturbed. The opening angle of the con®,, is easily

cussed will be significant only when the wavelengths in_determlned by considering the locus of sound signals emitted

volved are large compared to the width of the channel. Oth-by the to?jetf]t a]ch(jtra\;]glng in all (t:iir(frc]:tionz at spt@ggvit.h
erwise, the object acts as if in vacuum, and we expect ngesPect fo the Tiuid which convects them downs r¢an

superradiance. SinOy=cs/v; 0<Oy<m/2. (17)

C. Critical speed for superfluidity The cone’s opening angle is the same in both the object’s

. . . . and the fluid’s rest frames.
A superfluid can flow through thin channels with no fric- .
tion. However, when the speed of flow is too large, the su- Let us look at Mach shocks irom ihe vantage point of

perfluidity is destroyed. Landau gave a criter{d4] for the igﬁ::&g%ﬁnCsttar'u::rt]utrz(fesr:s_tg;?]m; clfoﬁlhoenglsu“z)’ngﬁegﬁﬁd_
critical speedv. for removal of superfluidity. Although in P P y

practice superfluidity disappears already at much Iowe}Nhen these satisfy the Ginzburg-Frank condition in the form

speeds as the superfluid develops turbulence through the for- w—V-k=w—vk cos9=0. (18)
mation of vortices, the Landau critical speed is the top speed

at which superfluidity can survive no matter how carefully Now for phononsw=c¢k; hence they are spontaneously
tailored the channel is to the flow. The Landau critical spee@&mitted at an angle} to the object's velocityw such that

is cosv=cg/v. These phonons thus have components of veloc-
ity csx/l—cszlv2 and ci/u normal and parallel to, respec-
tively. A Galilean transformatior(velocity v) to the rest
frame of the object gives for the angt¥ of superradiance
emission in the new frame

ve=min e(p)/|p| (16)

where (p) is the dispersion relation of the quasiparticles
(phonons and rotomghat can occur as excitations above the

condensate constituting the superfluid. In superfluid Hg TRV

~6x10° cms L. Landau’s argument is that at speeds of sin &' = Csv1—cslv _Gs.

flow aboveuv, it becomes energetically permissible for bulk [(ceV1—cZv)2+(cHlv—v)2)¥2 v’

kinetic energy of the superfluid to transform into energy of

one internal excitation—a quasiparticle. Once an abundance m2< Y <. (19

of quasiparticles has appeared, there is a normal component

to the fluid, which, of course, is not a superfluid. The range of9’ is so chosen because in the new frame the

The Landau argument is usually framed in the rest fram&omponent of phonon velocity collinear with the object’s
of the fluid with respect to which the walls of the channel arevelocity, cﬁ/v—v, is negative indicating that the emission
in motion [14]. In the following argument we also employ occurs into the back hemisphere, that containing the fluid’s
that frame. Now the walls play the role of the object in ourvelocity. Because sit’ =sin®,, we conclude that the su-
superradiance argument, and the waves of frequemcy perradiant phonons are emitted from the objeling the
=e¢/h and wavenumbek=p/# associated with the quasi- shock discontinuity.
particles, are surrogates of the electromagnetic waves in the Now as the shock follows the object with velocity it
arguments of Sec. Il. When the walls move with speedadvances normal to itself with speedsin ®,,=c. Accord-
>v.=mine(p)/|p|, the quantityw—v-k=(e—v-p)/A be- ing to shock theoryf16], a shock with speeds is a weak
comes negative for at least one quasiparticle mode. It thediscontinuity, i.e., the fluid's density is nearly the same on
becomes entropically preferable for the wall material to be-both its sides. It thus seems possible that the shock itself is
come excitedand simultaneously create a quasiparticle in entirely made up of superradiant phonons.
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Further, consider any sound waves, e.g., thermal phonons, Now the energyAE, of a small system measured in a
present in the fluid before the arrival of the object. The ob-frame rotating with angular frequenc® is related to its
ject is—by assumption—structureless; however, it is accomenergyAE and angular momentumdJ in the inertial frame
panied in its motion by a boundary layer of fluid that par- by [15]
tially “sticks” to it [16]. Because the layer is constantly
being renewed as the “old” fluid in it is swept downstream, AE,=AE-Q-AJ. (23)
it is dissipative. Therefore, those waves which satisfy the ] ] ] o
Ginzburg—Frank conditionl3) will be amplified as they are Thus, when as a rgsult of interaction with the rad|at|qn, the
overtaken by the object. These waves propagate at afigles€nergy of our rotating body changes G¥/dtx At and its

to the object’s direction which obey angular momentum in the direction of the rotation axis by
dJ/dtxAt, its rest mass-energy changes byE(dt
cos 9> w(|k||v]) t=cs/v (20) —QdJ/dt) X At. From this we infer, in parallel to the deri-

vation of Eq.(9), that the body’s entropy changes at a rate
i.e., they are emitted inside the Mach cone. In addition, if we
regard the object with its boundary layer as one yvith many d_S: 1 w—m{) a ) Ao—W+QU,|. (24)
possible energy states, then phonons can be emitted also by dat T )
Ginzburg and Frank’s anomalous Doppler emisggse Sec.
Il B). These also travel inside the Mach cone. Thus the entire As in the discussion involving Eq$10), (11) we would
acoustic “noise” originating from supersonic motion in a now argue that wheh, () is large, the term proportional to
fluid has a superradiance interpretation. (w—mQ)ay(w) in Eq. (24) dominates the overall entropy
balance. The second law thus demands that

IV. ROTATIONAL SUPERRADIANCE: PRINCIPLES (0—mQ)a,(w)>0. (25)

We focus on an axisymmetrimacroscopidody rotating . ) .
rigidly with constant angular velocit§} about its symmetry It follows that whenever the Zel'dovich-Misner conditioh
axis which is supposed fixed. The assumption of axisymiS Met,an(w)<0 necessarily. As in Sec. Il A, we can argue
metry is critical; otherwise precession of the axis wouldthat the sign of,(w) should not depend on the strength of
arise. We further assume the body contains many internéhe incident radiation if nonlinear radiative effects do not
degrees of freedom, so that it can internally dissipate abintervene. Hence, independent of the strengthy¢t), con-
sorbed energy. We assume it has reached internal equiliglition (1) is the generic condition for rotational superradi-
rium and has well defined entrof®; rest mas# and tem-  ance.
peratureT. Evidently a,,(w) switches sign atw=Qm. This switch

The body is exposed to external radiationvacuum We ~ cannot take place byy,(w) having a pole there since
classify the radiation modes by frequeneyand azimuthal ~am(®)<1.Ifan(w) is analytic inw—Qm, it must thus have
numberm. This last refers to the axis of rotation. Supposethe expansion
that in the modes with azimuthal numhbarand frequencies
in the range ifw,w+ Aw}, powerl ,(w)Aw is incident on
the body. Then, as is easy to verify from the energy-,

momentum tensor, or from the quantum picture of radiation!” the vicinity of “’_:Qm' However, we mus’g again stress
that thermodynamics does not demand continuitygfw)

the radiative angular momentum is incident at rateat Qm=0. Specific examples like that of the rotating
I Aw. If | is | h hink of W™ v
(M)l m(@) A0 m(®) s large enough, we can think o 9y|inder[Eq. (56) below] do show continuity.

the radiation as classical. Experience tells us that the bod
will absorb a fractiona,,(w) of the incident power and an-
gular momentum flow in the modes in question, where V. SUPERRADIANCE OF A ROTATING CYLINDER
an(w)<1 is a characteristic coefficient of the body. A frac-
tion [1—an(w)] will be scattered into modes with the same
w andm. We may thus replace Eq&), (7) by

()= am(Q)(0—0m)+-- (26)

Devices for making rotational superradiance observable
(see Sec. V E beloware modeled on Zel'dovich’s rotating
cylinder[11]. In this section we compute the classical super-
radiance of a Zel'dovich cylinder. Admittedly, by detailed

d—EzamlmAw—W (21)  balance there must also kguantum spontaneous emission
dt by the cylinder, but we do not enter into this issue here.
We idealize the cylinder as infinitely long. Let its radius
and be R and let it be rotating rigidly in vacuum with constant

angular frequency). We suppose it to be made of material
with spatially uniform permittivity e(w) and permeability
m(w); these are not necessarily real because of the possibility
of dissipative processes in the material. Alternatively, the
where J is the body’s angular momentum andl; is the  material may be electrically conducting in which case we
overall rate of spontaneous angular momentum emission idenote its conductivity by Although it is possible to rep-
waves. resent conductivity as an imaginary partedi), we shall not

dJ
aZ(m/w)amlmAw—UJ (22
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do so here. Iy is small, e.g. a semiconductor, one can allowand magnetic inductiorn the rotating frame Outside the

nontrivial e(w) and u(w) alongsideo. cylinder one should se@ =0 ande=pu=1 in these equa-
tions.
A. Constitutive relations and Maxwell equations Let us now pass to the Maxwell equations:
In the relativistic treatment we have in mind the electro- Flap.y=0 (313
magnetic field is described by the antisymmetric teristf '
composed in the usual way of the electric fi@ldand mag- H“B’B:4wj"‘. (31b

netic inductionB. The electric displacemeit and magnetic . .
field H form an ana|ogous tensdﬂ-aﬁ_ The usual constitu- In view of the SymmetrleS of the prOblem we shall look for

tive relationsD=€E, B=uH andj=cE can be expressed solutions where the fields vary dgr)e'(M#**z ) with m
in covariant form as an integer, andv and k real constants. Here is the fre-
guency in the laboratory frame; in the cylindefistating
H*Puz=eF“Puy (279 frame, the azimuthal coordinate i’ = ¢—Qt, and hence
the frequency isw’'=w—m. Our choice of modes
*FPug=u*Hug (27b  means that in writing the equations one can simply replace
) dlddp—1m, etc. From Eq(3139 we get, after raising indices,
j*=oF*Pug+ou. (270
A(F%%r2)/gr —1wr?F12— imF%1=0 (32a
We have written the electric current as a sum of a conductive
part(recall that electric and magnetic fields are observer de- A(FZr2)/or +1kr?F2+ 1mF3=0 (32b)
pendent concepts and are here computed in the frame of the
material whose 4-velocity is%) and a convective part with IF%¥or +10F31—1kF%1=0 (320
¢ being theproper charge density. This last is included to
give us the flexibility to treat, say, a dielectric bearing a net IKF%%+ 1 wF 23— 1mr~2F%=0. (320
charge densityin which case we would set=0). We use ] ) )
the notation*F“ﬁE%s“BV‘stg with £#57% the Levi-Civita Finally we take in Eq(31b) successivelyy=0, 1, 2 and
tensor. It should be observed thatand u are frequency -
dependent in general, so that equations involving them refer, o, 02 03 2
to time Fourier components of fields. And the arguments of B(HI ) ar + 1mrHE - IkrH = 4oy r Ey+rye (339
ionrd,i;rshould be frequencies the frame of the rotating cyl- |oHOM IMH2— [KH2= 4770 E, (33b)
In cylindrical coordinatedx?x*,x?,x3}={t,r,#,z} with 12 B 02 23 _ _
flat metric A(H*T)/or —10rH 1krH 4moyE,—ryeQ (330
ds2=—dt2+dr?+ r2dg?+d 2 28) A(H3) or —imrHZ+10rH®=470E,. (330
Outside the cylinder one should putt=0 andp =0 in Eqgs.

we obviously have inside the cylinder (33a_d,

ug=(-1,00r3,0y; y=(1-0%3)" "2 (29
B. Axial electric and magnetic modes(k=0)
It is easy to generalize this to curved spacetime, but we shall
not do so here.
By successively taking=0,1,3 in Eqs{(27a,b and con-
verting components of duals to components of the original

As in any electromagnetic problem of this type, there are
here two distinct modes for each $et,m,k}. Here we char-
I’:\cterize them for the cage=0.

First assume, in harmony with E30g that everywhere

fields we get inside and outside the cylindéF®?=H%=E,=0. It wil
e 1H02= FOZErflE(b (303 transpire that this is a consistent choice, and therefore
characterizes the first mode. EquatidB2g then gives
pHI=F3=B, (30b) wr2F2+ mF%=0 everywhere, while outside the cylinder

(H*=F*F; ¢=p=0) Eq. (33b gives wF*+mF¥?=0.
e L(HOL+ Qr2H1%) =FO4 Or2F12=,~1E (309 These simultaneous equations requité=F%=H?=H%
=0 outside the cylinder. To connect these with the interior
w(HB-QHO%)=F2B_OF%=(ry)"1B, (300 fields we go to Eqs(33a,9. There may be a charge layer at
r=R of surface densit)Aq=f§fgdr. Integrating the two
e {H®-Qr2H?3)=F%-Or?F#=y"'E, (300 equations across the layer gives for the jumps in the fields
AH%=qgy(R) and AH¥=—-qQy(R) so thatQH%+H2
w(HP+ OHY =F2+ OF%=(ry) !B,. (30f) must be continuous across the surface. If we now &dd
times Eq.(33a to Eq. (330 we find thatr (QH%+H'?) is
Here E,, E,, E,, B, B, andB, denote the physical independent ofr everywhere, including at=R. Since it
components in the indicated directions of the electric fieldvanishes forr>0, it must vanish everywhere. Then by

064014-7



JACOB D. BEKENSTEIN AND MARCELO SCHIFFER PHYSICAL REVIEW 58 064014

Eq. (30f) QF°*+F¥=0 everywhere. But as we mentioned, If we now substitute these in E¢35) and cancel out the
wr’F2+mF%=0 everywhere; these two simultaneouscommon phase' (™~ ) we get

equations forcé %! andF'? to vanish everywhere. It is now

evliglent by solving Eqs(30c,f simultaneously that®* and 27 +rf' — (M= 0Qr?)?— ep(w—mQ)?r?

H** must also vanish everywhere. _ -1 _ 27§ _

As we shall show in Sec. V C, one can constriét and Amty “polo—m)rijf=0 S
F2° out of F® which obeys an autonomous equation. Thusyheref(r)=F%e~'(M~“) and’ denotes an ordinary radial
the ansatzF*'=F%=F?=H®"=H®=H¥=0 defines a derivative. All this is forr <R. In the cylinder’s exterior we
mode of the system. We call it the axial electfRE) mode  jyst setex—1 ando—0. This is the promised exact radial
because its electric fieltbnly componenfF®) points along  equation for the AE mode; the fields®! and F23 can be
the cylinder’s axis. It corresponds to Zel'dovicl{$1] first  recovered from Eqg34a,b. '

mode. . a1 Now we are ready to discuss the energy flux. Both inside

Now we look for a mode which hasee Eq.(30D] F**  and outside the cylinder thadial energy flux is[12]
=H3= B,=0. Again, it will transpire that this is a consis-
tent choice. From Eq$32b,q it follows thatr2F?3=C, and S, =(EXH),/4m=(F?H¥2— F®°H3Y) /47 (39
F%=C, with C; andC, independent of . Equation(33d)
implies that outside the cylindenF2— wF%=0. This lastis But _F% and H'* both vanish, so this reduces to
inconsistent with the previous expressions unless we put FOH3Y47. This is the instantaneous flux; of more interest
C,=C,=F®B=F2=H%=HZ=0 in the exterior. Now IS the time-averaged flux which can be obtained by substitut-
since F2 is the magnetic field componemrmal to the  ing [12]
cylinder’s surface, it must be continuous there. THlig
along with F23 must also vanish inside the cylinder. The F03_>E[fel(m¢*wt)+f*efl(m¢*wt)] (399
tangential electric field F°® must likewise be continuous at 2
the surface; thu€, and F% have to vanish inside as well.
By solving Egs.(30d,e simultaneously we find that also
H%3=H2=0 inside.

As we show in the Appendix, one can constrBft, F!? 1) e (b o)
and F% out of a single function obeying an autonomous —i1(f* p*)e ] (39D
equation. Thus the ansaB®=F3!=F23=H®%3=H31=H23
=0 defines a second mode. We call it the axial magneti
(AM) mode because its magnetic fig¢tthly componenti1?)
points along the cylinder's axis. It corresponds to
Zel'dovich’'s [11] second mode.

1
31_ 31 , (M- wt)
H>=F /,u—>2w[|(f lp)e

and then averaging. Here we have used(B4a to simplify.
Note that the complex conjugate of the primary fiéldon-
tributes with weight 14*. We thus have for the time-
averaged radial flux

— 1
C. Electrodynamic proof of superradiance S= T6mio (F*f =1 ™). (40)
for AE modes (k=0)

Here we give a new basically electrodynamic proof thatln the process two terms involving exponerets'(m¢~«!

for «—mQ <0 the cylinder superradiates. We shall first ob-have averaged out. _ o
tain the radial equation governing the shape of the AE mode We can get a useful equation for the Wronskian-like ex-

with k=0. First we note that according to Eq82c,d, pression in the last equation by first dividing E87) by r u,
multiplying it by f*, and then subtracting from the result its
F3l=10w 1oF%or (348 complex conjugate:
23_ o —1.-2-03 d
Fo=mo TR (4D (P 1= £ p*) )= = 2ir [l 24 (B+ ) )
Next we solve foH%, H?® andH3! from Egs.(30b,d, and (41

substitute these and E(449 in Eq. (33d) to get with (3 means imaginary part

r=ta(raF%¥ar)lor + mwy(B, + eu QE,) A=Tul| |2 (424

2 2p \—
o y(epB QI8 =4mouk,. (39 B=[Je(0—mQ)2+ A(m—wQr?)2r 2,2 (42h

But by combining the definitions o, and B, in Egs.

(30a-% with Eq. (34b we have that C=4mo(o=mQ)y. (429

In the vacuum outside the cylindéte=Ju=0=0 so that

E,=y0 Ho—mQ)F*® (368 according to Eqs(40), (41) S,«1/r. This just means that
energy is conserved outside the cylinder, the overall outflow
B,=v(wr?) Ym—wQr?)F%, (36 (inflow) at large distances equaling tharatR. Thus to find
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out which way energy flows at large distances, it is sufficienthat R lies deep within the near zone, which circumstance

to determine the sign d§, atr=R. suppresses the matter-wave coupling.
Now becausé represents a physical electric field, it must 1S Zel'dovich’s pessimistic conclusion valid also when
be bounded at=0. And thenf’ cannot diverge as fast as €4 #1? One may be skeptic because whendiffers sig-

1/r. 1t follows that, barring the exceptional circumstance thathificantly from unity, Eq.(37) does not reduce to E¢44),
wu=0, r(f*f'/u—ff*'/u*)—0 asr—0. Hence by inte- butratherto the Bessel equatittba below whose solution

grating Eq.(41) from r=0 tor =R we find regular atr =0 is different fromJ,(wr). One also wonders
what happens when the conductivity is large, so that the
backreaction of the cylinder on the wave cannot be ne-
glected, and whery is significantly greater than unity? To
answer these question we shall work with the full E2j7),

and match its interior and exterior solutions. We can then be
To determine the sign of this expression we note that it folmore specific about the prefactor in Zel'dovich’s expression
lows from the second law of thermodynamick2] that o and the corrections it is subject to for large

=0, and thatie andJu are both odd in the frequency and | et us assume that the ingoing wave generated by some
both positive for positive frequency. Of course, frequencyexternal agencyt?(wr), has unit coefficient. Then the to-

327w

S(r=R)= f:r[,zuf'|2+(B+C)|f|2]dr. (43

R

here means frequency in the frame of the material, namely,| radial wave amplitude outside the cylinder will g,

o—mQ. HenceA, B andC all bear the same sign as

an energy outflow to infinitysuperradianceif only if the
Misner-Zel'dovich conditionw—mQ <0 is satisfied, as we
might have guessed from the method of Sec. IV.

D. Gain in superradiance for nonrelativistic rotation: AE
modes

In his pioneering study of superradiance of a rotating cyl-

inder, Zel'dovich[11] concluded that for AE modes with
—mQ <0, m>0 andk=0, the gain coefficieridefined pre-
cisely after Eq.(49)] is very small for nonrelativistic rota-

tion. The gist of his argument is as follows. Outside the

cylinder the radial equatiof87) reduces exactly to

P27 +rf' —[m?— w?r?]f=0; r>R (44)
whose solutions are the Hankel functiohf)(wr) and
HEnZ)(wr), the first(second representing outgoingngoing
waves at infinity. Inside the cylinder Zel'dovich takes u
=1, and neglects the effect of to argue that one may, to
sufficient accuracy, approximafteby J,(wr) which is that
combination ofH{Y(wr) andH®)(wr) regular atr =0. We
may justify this form by realizing that

[(M—wQr?)2—(w—mQ)%r?]y?=(m?— w?r?) (45

so that in the stated limit Eq37) reduces to Eq(44) also
inside the medium. This is true even for relativistic rotation,
a point not remarked on by Zel'dovich.

Working nonrelativistically Zel'dovich then calculates via
Ohm’s law the current induced in the cylinder by the elec-
tric and magnetic fieldE and B deriving from thisf. Be-
cause the medium rotates, he finds that(w—mQ). Thus
the Joule workj,E, is negative: the cylinder does work on

=H®(wr)+pHM(wr) wherep is the (possibly complex

%mplitude for reflection off the cylinder. For superradiance

we expecip|?>1.
Inside the cylinder the exadt(r) is determined by Eqg.
(37) which in light of Eq.(45) can be rewritten in the more
convenient form
r2f7+rf’ —[m?—«?r?]f=0; r<R

(463

2

kK=w’+(1—ep)(0—mO) 2y +14mymo(w—me).

(46b)

This is again a Bessel equation whose solution regular at
=0 isJ,(«r). The radial wave amplitude inside will thus be
fin=1Im(xr) where 7 is the (possibly complex amplitude
for transmission into the cylinder.

Now we match interior with exterior solutions by the
usual continuity conditions on electric and magnetic fields.
By integrating Eq.(349 fromr=R—¢ to r=R+¢ and re-
lying on the boundedness &** we conclude thaF g,
=F%|; . But sinceF®=f(r)e'(M*~ Y it is obvious thatf
must be continuous at=R. By similarly integrating Eq.
(33d) and invoking the boundednessiéf®, H% andE, we
find H¥|z, =H%g_. Then from Eqs(30b) and (343 it fol-

lows that f'|g =(f'/u)|r_. One checks that with these

matching condition§r in Eq. (40) is continuous at =R.
With the expressions fdf,, andf;, written out earlier, the
matching conditions are
Im(kR)=pHP(wR) +HZ(wR) (479

(TK/,u)Jm’(KR)prHﬁnl)’(a)R)%—wH(nf)’(wR)
(47b

where’ here means derivative with respective to the argu-

the field and superradiance ensues. Zel'dovich obtains a gajfent. Solving these simultaneously feand rearranging the

coefficient <o - (MmO —m)(wR)?™. The factorswR come
from the small argument approximatiah,(x)~x™ for x
<m; recall that because of the Zel'dovich-Misner condition
and the assumed nonrelativistic rotatiar,<mQR<m. As

Zel'dovich remarks, the physical reason for the smallness is

result with help of the identityd™®),,=H{@* gives

_ ) m(y) HZ (%)
1= uxm(X)* 7m(y) HP(x)*

(483
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=yH®2)! (2) - = !
Xm(X) XH m(X)/H m(X), Wm(y) ‘]m(y)/[y‘]m(();)s]b) B 87T(X/2)2m N /-LJm(y)

M=) 7 (e DmIn(y) +yIma(y)

(53

with x=wR andy=«R. ]
=0, and soy is real. It follows that numerator and denomi- ¥YIn=YJm-1—MJy. Since—ay, is proportional to the small
nator of Eq.(48a are complex conjugates so thiat=1.  factor x2™  superradiance is mostly confined to thre=1
This is in harmony with the arguments of Sec. IV that super-node(unless the ingoing wave only has>1).
radiance goes hand in hand with dissipation. We went through the derivation of E¢3) with possibly
Let us now define the dimensionless parameter)R complexe and . as a matter of principle, and because it will
(peripheral velocity of the cylinder in units of) and ¢  be required for the discussion in the Appendix. But in prac-
=4mupoR in terms of which tice little need can arise to consider compkear u. For low
frequencies both these quantities are real withecoming
y2=x2+(1— en)(Xx—mv)2y2+1(x—mv)&y. (49  complex in real materials only at frequencied 0™ Hz (in
ferromagnetsu can become dispersive at somewhat lower
They shall be the square root which is positive in the limit frequencies[12]. Recall that the appropriate argumenteof
o—0. A useful approximation for the gain coefficienta,,  or w in our discussion isv—m{ which must be negative.
=|p|?—1 [this is the same as the coefficient(w) appear- But a macroscopic cylinder rotating nonrelativistically will
ing in Sec. IV] can be obtained from Eq&48a,b by passing do so belowQ=10' Hz. And as mentionedn cannot be
to the nonrelativistic limitv <1, y~1 which, form not too  large without superradiance being suppressed. Thus in the

large, impliesx<<1. laboratory we cannot arrange fer— m() to be negative and
First the recursion relation[17] foﬁ)’szﬁﬂl sufficiently large in magnitude to access the complex range
—mH,,® allows us to write of € or u. Henceforth we consider only realand .

As mentioned, for nonrelativistic rotation<1 and x

xHZ  (x) <1 and thugx—mv|<1. The low conductivity regime may
Xm(X)=—m+ R (50)  be defined by the additional condition
m
|x—mu|é<1. (54)

Forx<1 the leading terms of the real and imaginary parts of

the Hankel function arg17] When all these are valid, the argumgnof the Bessel func-

tions is a smalcomplexnumber, and we can expand

2 21 X
InY)= gy |17 ame T (%9
xm 2m
(2) ~ . .
Ho' (0~ omtl—m m=1 (31D gypstituting this, Eq49) and the definitions of, x andv in

Eq. (53 and reinstating gives to leading order
whereyg~0.577216 is the Euler-Mascheroni constant. Sub-

stituting in Eq.(50) we have to leading real and imaginary 1672 1?(wRI2¢)>™(w —mQ) o R?/c?
orders inx an~ (56)
m(m+1)!(u+1)2
(X)~ —m— &t l+|n f+ w24 X_2_ 1rxm which shows clearly that forq—m() <0 there is superra-
Xm m 2 2 Ve 2 (m—1)122m-1 diance @,<0). The formula supports Zel'dovich’s asser-

tion that for low conductivity the gain coefficient is propor-
o (52 tional to oR*(MQ—w)(wR)?™. Our result gives the
_ ) proportionality constant and shows thag,, is independent
We now substitute from Eq52) into Eq.(488 and recall  of ¢. Numerical work shows that E¢56) remains accurate to
that the ratio oH{? to its complex conjugate has unit modu- within 1% up to|x—muo|é~1.
lus. Factoring out * umayy(y) from numerator and de-  For|x—mu|&>1 we return to Eq(53). Because the gain
nominator, we find in each the functidn,(y)=unn(y)[1  coefficient falls off with growingm, we discuss here only
+umyn(y)]~ multiplied in one by a small complex ex- the results fom= 1. Clearly the terms? and x—mv)?2 in
pression and in the other by the conjugate of this expressioy? are negligible because<v andv<1. (We presume that
As a result to leadin§O(x?)] order,h,,, appears irp multi- ¢ is not too large, which is reasonable because for a good
plied only by an imaginary factor, so that only the imaginary conductore and u are formally unity) Hence the argument
part of h,, remains in|p|2. Retaining only dominant terms y in Eq. (53) reduces td (x—v)&]Y2% The imaginary part is
leads to best evaluated numerically. As a function ok—v)é
it sports single maximum of height 0.1887 located at
(x—v) &~ —6.325. From these last numbers and &3) we
infer the maximal gain coefficient for gives:

N 8m(x/2)°™
A~ =D Jh(y)
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—(a1)max=1.185wR/c)? at Q=w+0.503% oR?. In Eqg. (599 the factor o—m( is unchanged because it
(57) stems fromy. Thus a jacket of higle; material provides, for
m=1, a gain larger by a facta; over the vacuum value.

For a copper cylinder wittR=10 cm, the minimum re- The second ingredient of the superradiant device is cy-
quired for the peak to be present is ,0.0G;Sthis is also the cling through reflection. Suppose the rotating cylinder and its

offset between and theQ giving maximum superradiance. high-e jacket are placed inside a concentric cylindrical re-
flecting cavity of radiusR.>R (this is similar to Press and

_ _ _ Teukolsky’s idea for the “black hole bomb’18]). Introduce
E. Rotational superradiance devices in the intervening material an electromagnetic wave with low

From Eqgs(56), (57) it is clear that for superradiance of a M components. One simple way to do this is to apply across
nonrelativistically rotating cylinder the gain coefficienta,,  the ends of the cylinder along one edge a voltage varying
is extremely small(basically wR/c is very smal). This sinusoidally with frequencyw; this will produce preferen-
would seem to imply that superradiance cannot be observeihlly low m waves with their electric field parallel to the
in the laboratory. But in fact this is not the case for two cylinder's axis(hence AE modes Each such wave which
reasons. First by surrounding the cylinder with a jacket madeatisfies the Zel'dovich-Misner condition gains in power as
of material where the speed of light is rather small, oneper Eqs(59a,b as it interacts with the cylinder. Propagating
achieves a more favorable ratio of cylinder radius to waveout, the amplified wave is reflected back by the cavity for a
length with a consequent improvementna,,,. Second, a second round of amplification, and so on. If the cavity is a
suitable device can cycle the amplified radiation any numbeperfect reflector, and the material between cylinder and cav-
of times to compound the gain coefficient. This raises thety is perfectly transparent, there will be a net gain in power
possibility of practical dgwces for amplification of signals at \\hich increases linearly with the number of bounces. But if
the expense of mechanical energy. , the cavity absorbsor leaks radiation outwajdthe conse-

_ To explain the reason'for the f|_rst |mprovement in thequent loss in power may quench the process. However, ab-
simplest terms we consider the jacket material t0 havgqption in the cavity may be turned to our advantage by
n=1 but very large andeal permittivity €. Equations  aiing the cavity rotate in the same sense as the cylinder
(303—(33d can obviously be used outside the cylinder if we ith syfficiently large angular frequency so as to cause it
put everywhereos =0 =0 =0. The arguments of Sec. VB 459 o superradiate for the modes in question. If the cavity
characterizing the AE and AM modes can be repeated withy 4|15 are thick enough to prevent leakage, then each of the
like cqnclusmns. For AE mers we need to replace the radia),4yes mentioned will always gain power in each round trip,
equation(44) outside the cylinder bjcf. Eq. (37)] and the overall gain is limited only by the time one allows

2¢n P T2 . 2e21F () the process go on.
oM gt =05 TR, 8 When estimating the efficiency of such devices, the prin-
cipal question is how big cara,, be. For an isolated cyl-
Therefore, the argument of the Hankel functions in Sec. V Dinder, andm=1 AE modes, Eq(59b) gives for optimal pa-
iS now \/ijr rather thanwr. And the Hankel ang,,, func-  rameters that—(al)maxwl.Zej(wR/c)z. For the cylinder-
tions in Eqs(47a,h, (48a,h now take argumen{/?jx. There cavity device, this optimum gain is acquired over the back-
is no change in the matching conditiorﬁ$R+=f|R_ and and-forth light travel time Z/Zj(RC—R)/c; one must still

f’|R+:(f’/M)|R7 sinceu has not been changed. In E47p) ~ @dd to it the gain due to the cavity. As mentioned, for a

a factor\/?j appears alongsidg; it comes from the argu- cylinder made of good conducto'r, thg peak superradiance
ments of the differentiated Hankel functions. No change oc? CC.L:rS ;tﬂ.%w.' ?ezcleegher\)e -ioll_\()d '/”Q}ESR‘;‘C ths\/%/hrl\?der-
curs iny, the argument of the Bessel functions, which isc_a;/:qy_zewce Isd;)—é C(l(;z _2 (TEJN 4/\/)—' hl y
composed exclusively of quantities describing the cylinder. <"~ 0 cm andQ=2mX S «~(4/\¢) hour, so
Let us assume that even thoughis Iarge,\/?jx<1 (re- that the effect can become dramatic for lakge Many ma-
member we are in the superradiant regime(d®<1). The te_”a's made of polar molecu_les haye kigat low frequen-
assumption means that the rotational velocity is still wellC/€S: €-9-€(0)~80 for water ice whilee(0)~300 for lead
below the speed of light in the jacket. Then we can expangellund(_a [19]. And ferroelectrics just above the Curie point
the Hankel functions for small argument as before and arriv a\ge wryu?IIy unbtcr)]undsd(O) '[1t2]. h il ith
back at formulas(56) and (57) with the replacementg. variation on the above IS 1o have a coaxia Ca@.‘ﬁ
HM\/;J' and x— \/;jx. Since\/?j is assumed large, the no filling) rotating about its axis. Wave modes which not

. . ? only have angular variation, but also vary along the éttis
dependent factor in E56) is here replaced by unity so that k=0 case studied in Sec. V)Awill traveil along the cable

while bouncing between inner and outer boundaries. So long
167%(€)™(wR/2C)?™(w—mQ) oR?/c? as the Zel'dovich-Misner condition is satisfied for such a
Am™~ m(m+1)! (599 mode, it will be amplified—rather than damped—as it travels
along the cable. This might prove useful in protecting signals
from degradation. We should stress that similar amplification
—(a1) max= 1.185;(wR/c)? at Q=w+0.503%/oR?. will take place whatever the nature of the wave, sound waves
(59b) being another useful candidate.
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APPENDIX: SUPERRADIANCE IN AXIAL MAGNETIC
MODES

For completeness we now work out the gain coefficienty

for the AM modes withk=0. We sete=u=1 inside the
cylinder to simplify the equations. Thud*?=F*# every-
where. By the definition of the modes we hag&3=F3!
=F#=0.

note that the condition of continuity of tangential electric
fields requires thaF%|r =F%|r_. By Eq.(A2) this means
(£9")|r,=(£9")|r_- Further, by integrating EqsiAla,b
over a small radial interval spannimg= R and realizing that
quantities are bounded, we see tight =g|g_. These
matching conditions parallel those férwhen one replaces
mlr_—¢ Mk andu|g, —¢ Y, . Recalling Eq(Alb) we
see that Eqs(47a,b, (48a,h and (53) are applicable here

We combine Eqgs(33a,9 judiciously to cause the charge With the replacements—x, y—Yy andu—u, where

density termgwherever nonvanishingo cancel:
I(F2+QFr/gr+ ¢~ rF%=0 (Ala)

(154770-)/’1@)(R—r)—|(w—mQ). (Alb)

V2=x2+1E(Xx— M) (A6a)

n=1(o—mQ) Yz =1+1&x—mv)~ . (A6b)

Here ® denotes the Heaviside step function. The function \We now obtain a formula analogous t66) valid for
g(r)=(F2+QF"re~' (=Y shall here play a role analo- x<1 and when the small conductivity conditi¢54) holds.

gous tof(r) in Sec. V D. In terms of it Eq(Ala) gives

F02=_§r*lg!el(m¢>*wt). (AZ)
Now for r <R we eliminateE, between Eqs.30¢) and(33b)
to obtainF*YF? so that we may expressin terms ofF'2
alone. It follows that

Fi=(4nroy—1w){r 1geMe—ob (A3a)

FOl= — (4moyQr2—im)lr tgeM=<Y  (A3b)
Forr>R we use solely Eq(33b) to determineF%Y/F*2 the
result is again EqgA3a,b with o— 0. Hence all nonvanish-
ing field components can be recovered frgm

Substituting all these results in E@®23 we get the radial
equation for the AM modes:

(Zrg’) —{m?— w?r’—147yo(w—mQ)r20(R—r)]

xr~1lg=0. (A4)

We substitute the expansighb) into Eq. (53) and retain

terms toO(y?). The isolation of the imaginary part is easier
if the denominator is put in real form. Neglecting terms in
the numerator of higher order inandx—mv, and reverting
to dimensional quantities we get

87 (wRI2C)®™  (w—mQ)o A7)
a ~ .
" m! (0—mQ)2+ 47202

This formula again shows that superradiance occurs only
for o—m <0, and is in harmony with the expansi¢2b).
It supports the insight mentioned in Sec. V D that superradi-
ance is significant only fom=1. It corrects Zel'dovich’'s
approximate formula for the AM modes.a, = (w
—mQ) o (0—mQ)?+167%0%)] 1 and supplies the nor-
malization. We note that for fixe@R, a; has the peak

—(a)max=1.574wR/c)? at Q=w+2mwo. (A8)

Becausee=pu=1 here, this equation is quite similar to that This peak gain is similar to that for AE modes. But unless
for f, Egs.(46a,b; in fact the only difference between them the cylinder’s conductivity is small, th@ required to reach

is a term involvingdZ/dr. This last will vanish in the non-
relativistic limit where { becomes constantexcept atr

the peak gain will not be a practical one. For example, for
coppero~10' s~L. Put another way, for given the peak is

=R), and in that limit the equations are identical both insideaccessible only ifé<2v. For larger we must resort to

and outside the cylinder. Indeed

r’g"+rg' —[m’-w?r?]jg=0; r>R  (A5a)

r?g"+rg’ —[m*=«%2]g=0; r<R  (A5b)

numerical evaluation of the imaginary part in E§3) with

the substitutiongA6a,b); it certifies that the peak gaif#8)

is not even approached. In closing we should note that for
small ¢ faster rotation is necessary to reach the peak gain for
AE modes than for AM modes.
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