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The many faces of superradiance
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Inertial motion superradiance, the emission of radiation by an initially unexcited system moving inertially
but superluminally through a medium, has long been known. Rotational superradiance, the amplification of
radiation by a rotating rigid object, was recognized much later, principally in connection with black hole
radiances. Here we review the principles of inertial motion superradiance and prove thermodynamically that
the Ginzburg-Frank condition for superradiance coincides with the condition for superradiant amplification of
already existing radiation. Examples we cite include a new type of black hole superradiance. We correct
Zel’dovich’s thermodynamic derivation of the Zel’dovich-Misner condition for rotational superradiance by
including the radiant entropy in the bookkeeping. We work out in full detail the electrodynamics of a
Zel’dovich rotating cylinder, including a general electrodynamic proof of the Zel’dovich-Misner condition, and
explicit calculations of the superradiant gain for both types of polarization. Contrary to Zel’dovich’s pessimis-
tic conclusion we conclude that, if the cylinder is surrounded by a dielectric jacket and the whole assembly is
placed inside a rotating cavity, the superradiance is measurable in the laboratory.@S0556-2821~98!08516-6#

PACS number~s!: 42.50.Fx, 04.70.Bw, 03.50.De, 41.60.Bq
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I. INTRODUCTION

A free structureless particle moving inertially in vacuu
cannot absorb or emit a photon. This well known fact f
lows solely from Lorentz invariance and four-momentu
conservation. But a free object endowed with internal str
ture can, of course, absorb photons, and can also emit t
provided it is initially excited above its ground state~rest
massM larger than minimum possible valueMgr). Some-
what surprisingly, when the object, which may be elec
cally neutral overall, moves uniformly through a mediu
emission may be allowed even when the object starts of
its ground state. The early recognition of this possibility
Ginzburg and Frank@1# ~Ginzburg @2# gives a modern re-
view! marks the beginning of our subject, which we ter
superradiance.

The term superradiance, introduced by Dicke@3#, origi-
nally referred to amplification of radiation due to coheren
in the emitting medium. Many years later Zel’dovich@4#
pointed out that a cylinder made of absorbing material a
rotating about its axis with frequencyV is capable of ampli-
fying those modes of scalar or electromagnetic radiation
pinging on it which satisfy the condition

v2mV,0 ~1!

wherev is the waves’ frequency andm the azimuthal quan-
tum number with respect to the axis of rotation. Zel’dovi
realized that, when quantum physics is allowed for, the
tating object should be able to emit spontaneously in
regime~1!, and anticipated that a rotating~Kerr! black hole
should show both amplification and spontaneous emis
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when condition~1! is satisfied. Misner@5# independently
made a suggestion that the Kerr black hole will ampl
waves, and supported it with unpublished calculations. T
corresponding spontaneous emission was first put into
dence field theoretically by Unruh@6#.

Following Misner’s observation one of us noted@7# that
in the Kerr black hole case superradiant amplification is cl
sically required when condition~1! holds because that is th
only way to fulfill Hawking’s classically rigorous horizon
area theorem@8# ~see also Ref.@9#!. From the same logic it
followed @7# that superradiance of electrically charged wav
by a charged black hole is required whenever

v2qF/\,0 ~2!

where q is the elementary charge of the field andF the
electrostatic potential of the black hole measured at the
rizon.

Following the emergence of black hole thermodynam
@10# it became clear that black horizon area plays the role
entropy for black holes. This correspondence and the c
argument for superradiance from black hole area imme
ately suggests that the necessity of superradiance in ordi
objects is solely a consequence of thermodynamics. In f
Zel’dovich @11# used a thermodynamic argument in his d
cussion to show that superradiance of the rotating cylin
must take place. Following this idea we extend in this pa
the superradiance condition to a broad range of circu
stances. Indeed, we make the point that superradiance
useful and broad guiding principle for radiating systems
electrodynamics and elsewhere.

This paper is organized as follows. In Sec. II we revie
and elaborate on the Ginzburg-Frank argument for sponta
ous emission in certain modes by an object moving inertia
and superluminally in a medium. We then give a thermod
namic argument for superradiant amplification of those cl
sical waves which satisfy the Ginzburg-Frank condition.
Sec. III we discuss a number of phenomena involving a

,
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plification of waves which can be reduced to the inert
superradiance motif; one is a new effect. Sec. IV discus
in the footsteps of Zel’dovich@4,11#, the thermodynamic ba
sis of spontaneous emission and superradiant amplifica
by rotating objects. In Sec. V we give an electrodynam
proof of rotational superradiance, and calculate in detail
superradiant gain of a conducting~and/or otherwise dissipa
tive! rotating cylinder for one type of polarization. This ne
treatment improves and corrects Zel’dovich’s semiquant
tive estimates@11#, extends the results to situations where t
material’s permeabilities are not unity, and can easily be
tended to relativistic rotation~as may be relevant for pul
sars!. It is followed by a description of a device which ca
make rotational superradiance measurable in the labora
The Appendix extends some of the above results to the
ond polarization.

Unless otherwise noted we use units in which the spee
light in vacuumis unity: c51.

II. INERTIAL MOTION SUPERRADIANCE: PRINCIPLES

A. Spontaneous superradiance

Let E andE85E2\v denote the object’s total energy i
the laboratory frame before and after the emission of a ph
ton with energy\v and momentum\k ~both measured in the
laboratory frame!, while P andP85P2\k denote the corre-
sponding momenta;v5]E/]P is the initial velocity of the
object. The object’s rest massM is nothing but the energy
measured in the rest frame,M5g(E2v•P) with g[(1
2v2)21/2, while after the emission, with obvious notatio
M 85g8(E82v8•P8). Then a straightforward calculation t
O~v!, O~k! andO(v82v) gives

M 82M52g\~v2v•k!1\v•O~v82v! . ~3!

As written, this formula is relevant for emission; for absor
tion the sign in front of (v2v•k) should be reversed. Th
factor O(v82v) represents recoil effects; it is of orde
\v/M and becomes negligible for a sufficiently heavy o
ject. In this recoilless limit

M 82M52g\~v2v•k!; ~emission! ~4a!

M 82M5g\~v2v•k!; ~absorption!. ~4b!

We note that in vacuumv5uku.v•k so that emission is
possible only with de-excitation (M 82M,0), while ab-
sorption is coupled with excitation (M 82M.0), as plain
intuition would have.

Now suppose the object moves uniformly through an i
tropic medium transparent to electromagnetic waves poss
ing an index of refractionn(v).1. The\v and\k are still
the energy and momentum of the photon, but nowv
5uku/n(v). Wheneveruvu,1/n(v) ~subluminal motion for
the relevant frequency! we recover the connection
‘‘de-excitation↔emission’’ and ‘‘excitation↔absorption.’’
Ginzburg and Frank@1,2# refer to this kind of emission o
absorption as the ordinary Doppler effect, because the r
tion betweenv andk and the rest frame transition frequen
v0[uM2M 8u/\,
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v05g~v2v•k!, ~5!

is the standard Doppler shift formula.
In the caseuvu.1/n(v) the object moves faster than th

phasevelocity of electromagnetic waves of frequencyv. If q
denotes the angle betweenk andv, a photon in a mode with
cosq.@n(v)uvu#21 has negativev2v•k, and can thus be
emitted only in consonance withexcitation of the object
(M 82M.0). Ginzburg and Frank refer to this eventuali
as theanomalousDoppler effect. They note a variety of cir
cumstances other than superluminal motion in a dielectric
which the conditions for the anomalous Doppler effect c
be met: a particle moving in vacuum through a narrow ch
nel drilled into a dielectric, a particle shot into a gap betwe
dielectric slabs, emission from a collection of sources wh
are successively excited so that the active source mo
along with superluminalphasevelocity, etc.@1,2#

Thus an object in its ground state may become exc
and emit a photon, provided it moves superluminally throu
a medium. The energy source must be the bulk moti
Emission is not just allowed by the conservation laws; it w
occur spontaneously, as follows from thermodynamic r
soning. The object in its ground state with no photon arou
constitutes a low entropy state; the excitation of the objec
one of a number of possible excited states with emission
photon with momentum in a variety of possible directio
evidently entails an increase in entropy. Thus the emissio
favored by the second law.

Recall that according to Eq.~4b!, when v2v•k,0 ab-
sorption of a photon is possible only if accompanied by
de-excitationof the object (M 82M,0). Thus a superlumi-
nally moving object in the ground state is forbidden fro
absorbing in certain modes.

A further case is absorption or emission by a superlumi
object of photons with the directions given precisely
cosq5@n(v)uvu#21. According to Eqs.~4a,b! both are pos-
sible anddo notrequire a change in the object. In fact, bo
processes can occur consecutively, thus constituting sca
ing of a photon with no change in the object. Consequen
for superluminal motion, scattering with both initial and fin
directions specified by cosq5@n(v)uvu#21 can be coheren
scattering. In particular, all these processes are possible
structureless particle which, of course, has only one s
~structureless is a relative concept; we mean the part
looks structureless at the relevant energy scale!.

B. Superradiant amplification

Section II A deals withspontaneous superradianceby an
elementary object; Ginzburg@2# has in mind a two level
atom ~a dipole!. The condition for superradiance is that th
emitted quantum’s energy in the moving object’s fram
\(v2v•k), be negative. Then its emission may be inte
preted, in the medium’s frame, as absorption of a posit
energy quantum with consequent excitation of the obje
When the object has complicated structure, it is simpler
derive the condition for amplification directly from the se
ond law of thermodynamics. We thus assume here that
4-2
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THE MANY FACES OF SUPERRADIANCE PHYSICAL REVIEW D58 064014
object may dissipate energy internally. This allows us to
velop the following classical argument.

Suppose that the incident radiation is exclusively
modes with frequency nearv and propagating withinDn of
the directionn. Let I (v,n) denote the corresponding inten
sity ~power per unit area, unit solid angle and unit ban
width!. Experience tells us that the body will absorb pow
a(v,n)S(n)I (v,n)DvDn, where S~n! is the geometric
cross section normal ton, anda(v,n),1 is a characteristic
absorptivity of the body. Simultaneously the object will sc
ter power@12a(v,n)#S(n)I (v,n)DvDn. By conservation
of energy

dE

dt
5aSIDvDn2W ~6!

whereW is the overall power spontaneously emitted by t
body ~including any thermal emission!. We ignore energy
going into scattered photons because it will not show up
Eq. ~9! below.

Now the linear momentum conveyed by the radiation
nn(v) times the energy conveyed. The easiest way to
this is to think of the radiation as composed of quanta, e
with energy\v and momentum\k with vn(v)5uku. How-
ever, the result also holds classically, and can be derived
instance, by comparing the temporal-spatial and spa
spatial components of the energy-momentum tensor for
field. Thus absorption and spontaneous emission cause
linear momentumP of the body to change at a rate

dP

dt
5nn~v!aSIDvDn2U ~7!

whereU signifies the rate of spontaneous momentum em
sion. We have not included the transfer of momentum du
scattering because this has no influence on Eq.~9! below.

As already hinted, in calculating the rate of change of r
mass of the body,M , we may forget the effects of elasti
scattering. For in the frame of the body waves are scatte
with no Doppler shift ~since there is no motion!, which
means that they contain the same energy before and afte
scattering. Thus the scattering cannot contribute todM/dt.
BecauseM is just the body’s energy in its own frame, th
rest mass changes at a rate given by a Lorentz transfo
tion:

dM/dt5g~dE/dt2v•dP/dt! . ~8!

Of course, a change in the proper mass means that the n
ber of microstates accessible to the object has changed
that its entropyS has changed. Defining an effective tem
perature for the body,T5]M /]S, we see by Eqs.~6!, ~7!
that

dS

dt
5

g

T
@v21~v2v•k!aSIDvDn2W1v•U# ~9!

where we have replacednvn(v)→k.
Let us now take into account the rate of change of rad

tion entropy,dS/dt. We get an upper bound on it by igno
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ing any entropy carriedinto the object by the waves. Now
the entropy in a single mode of a field containing on t
meanN quanta is at most@13#

Smax5~N11!ln~N11!2N ln N' ln N ~10!

where the approximation applies forN@1. The scattered
waves carry a mean number of quanta proportional
I (v,n). Hence, for largeN, the outgoing waves’ contribu
tion to dS/dt is bounded from above by a quantity o
O@ ln I(v,n)#. There is an additional contribution todS/dt of
O(W) coming from the spontaneous emission. Hence

dS/dt,O@ ln I ~v,n!#1O~W!. ~11!

If any dissipation takes place, the second law of therm
dynamics demandsdS/dt1dS/dt.0. As I (v,n) is made
larger and larger, the total entropy rate of change beco
dominated by the term proportional toI (v,n) in Eq. ~9!
becauseW and U are kept fixed. Positivity ofdS/dt
1dS/dt then requires

~v2v•k!a~v,n!.0. ~12!

Thus whenever the Ginzburg-Frank condition,

v2v•k,0 ~13!

for the anomalous Doppler effect is fulfilled, we necessar
have a(v,n),0. This result was obtained by assumin
aSIDvDn@W. But since—barring nonlinear effects—a
must be independent of the incident intensity, the result m
be true for any intensity which can still be regarded as cl
sical. Nowa,0 means that the scattered wave, with pow
proportional to 12a, is stronger than the incident on
~which is represented by the ‘‘1’’ in the previous expre
sion!. Thus the moving object amplifies preexisting radiati
in modes satisfying the Ginzburg-Frank condition. We s
that the object superradiates. For modes withv2v•k
.0, a.0 and so the object absorbs on the whole.

As a rule of thumb amplification of waves may be r
garded as the classical counterpart of stimulated emissio
the quantum level. By Einstein’s argument stimulated em
sion goes hand in hand with spontaneous emission in
same mode. The spontaneous emission corresponding t
perradiance amplification is just the Ginzburg-Frank em
sion discussed in connection with Eqs.~4a,b!.

Obviouslya switches sign at the superradiance thresh
v5v•k. This switch cannot take place bya having a pole
sincea,1. If a is analytic inv2Vm, it must thus have the
expansion

a5a~v,n!~v2v•k!1¯ ~14!

in the vicinity of the neutral frequencyv5v•k. However,
we must emphasize that thermodynamics does not req
the functiona to be continuous atv5v•k.

The superradiance discussed here and in Sec. II A
evidently occur also for fields other than the electromagne
All that is required is that the energy and momentum o
quantum be expressible in terms of frequency and wavev
4-3
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JACOB D. BEKENSTEIN AND MARCELO SCHIFFER PHYSICAL REVIEW D58 064014
tor in the usual way. Thus one can replace above ‘‘photon
and ‘‘electromagnetic waves’’ by phonons and sound wav
etc.

III. INERTIAL MOTION SUPERRADIANCE: EXAMPLES

We now give four examples of phenomena that can
understood as manifestations of inertial motion superra
ance. One is novel.

A. Vavilov-Cherenkov effect

A point charge moving at speedv through a transparen
isotropic dielectric medium faster than the phase speed
electromagnetic radiation for some range of frequencies
emit radiation at all those frequencies; for each frequency
radiation front is a cone with opening angle 2QC(v), where

sin QC~v!5@vn~v!#21. ~15!

This Vavilov-Cherenkov effect, discovered experimenta
in 1934, and explained theoretically by Tamm and Fra
@12#, was the first example of coherent radiation from
unaccelerating source. We now elaborate on Ginzburg’s@2#
discussion of the effect in terms of superradiance.

Since the charge has no internal degrees of freedom
rest mass is fixed. We may thus setM 82M50 in Eqs.
~4a,b!. Those conditions cannot thus be satisfied forv
,1/n(v) since their right hand side~RHS! would then be
strictly positive: no absorption or emission is possible from
subluminal particle. However, forv.1/n(v) the RHS van-
ishes when the photon’s direction makes an angleq to the
particle’s velocity, where cosq5@vn(v)#21. But then the
front of photons emitted as the charge goes by forms a c
with opening angle 2(p/22q) which evidently coincides
with 2QC . As argued in Sec. II A, the growth of entrop
associated with the multiplicity of possible azimuthal dire
tions of the emitted photon favors emission; the emitted p
tons constitute the Vavilov-Cherenkov radiation.

In truth the above description is somewhat simplistic. It
well known that the Vavilov-Cherenkov radiation actua
comes from those regions in the dielectric that feel stron
the electromagnetic field of the charge@12#. In effect the
charges carries along with it a polarization cloud of dielec
material. As the charges advances, the atomic constituen
this cloud are replaced continuously by fresh atoms fr
upstream. Because of this renewal, the syst
‘‘charge1cloud’’ is a dissipative one: part of the energy th
goes into exciting an atom in the cloud is inexorably carr
away into the wake of the charge.

The argument of Sec. II B then tells us that the movi
charge~and its polarization cloud! must also amplify ambi-
ent radiation which satisfies condition~13!. Writing v•k
5vvn(v)cosq, it follows that amplification occurs for
cosq.1/vn(v). Thus radiation modes inside the Cherenk
cone~those with wavevector more aligned with the charg
motion than the Vavilov-Cherenkov modes’! must be ampli-
fied. This Vavilov-Cherenkov superradiant amplification h
not yet been observed.
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B. Gravitational generation of electromagnetic waves

We now discuss a new phenomenon. Suppose an ele
cally neutral black hole of massM moves with constant
velocity v through a uniform and isotropic dielectric with a
index of refraction whose real part isn(v). In order to avoid
questions regarding the destructive effect of the hole on
dielectric, it is convenient to imagine that the dielectric
solid, and that the hole travels down a narrow straight ch
nel drilled through the dielectric. Thus the hole does n
accrete material, but its gravitational field certainly infl
ences the dielectric.

Let a spectrum of electromagnetic waves pervade the
electric. Those wave modes for whichv2v•k5v@12v
•nn(v)#,0 can undergo superradiant amplification fro
the black hole. In the argument of Sec. II B the entropy
the object is now replaced by black entropy together w
entropy of the surrounding dielectric. Now black hole e
tropy is proportional to the horizon area, and Hawking’s a
theorem@8# tells us that black hole area will increase in a
classical process, such as absorption of electromagn
waves by the hole. If the dielectric can dissipate, it will al
contribute to the increase in entropy through changes it
dergoes in the vicinity of the passing hole. Thus the ar
ment of Sec. II B tells us that the black hole plus surround
dielectric will amplify the radiation in the mentioned mode
at the expense of the hole’s kinetic energy. Likewise, eve
there are no waves to start with, the argument of Sec. I
tells us that the black hole plus dielectric will spontaneou
emit photons into modes that obey the Ginzburg-Frank
perradiance condition~13!.

In the conversion of kinetic energy to waves, gravitati
must obviously play a role. For the black hole is assum
uncharged, so that the process is distinct from the Vavil
Cherenkov effect. Since the waves cannot classically eme
from within the hole, we must look for their source in th
polarization cloud accompanying the hole. This cloud for
because gravity pulls on the positively charged nuclei in
dielectric stronger than on the enveloping electrons. A
result the array of nuclei sags with respect to the electro
and produces an electrical polarization of the dielectric
companied by an electric field which ultimately balances
tendency of gravity to rip out nuclei from electrons. It is th
electric structure which is to be viewed as the true source
the photons, some of which are absorbed by the black h
and cause the area increase, while the rest constitute e
sion.

In special circumstances the present problem may
mapped onto that of the Vavilov-Cherenkov effect by noti
that the induced electric fieldE is related to the gravitationa
one, g, by eE52dmg where dm'Amp is the nucleus-
electron mass difference (A is the mass number of the atom
mp the proton’s mass!, ande.0 the unit of charge. From the
gravitational Poisson equation it follows that¹•E
54pGM(dm/e)d(r2r0) wherer0 denotes the momentar
black hole position. The electric field accompanying t
black hole is thus that of a pointlike chargeQ
[GAMmp /e. There is a big assumption here that the
electric has time to relax to form the above compensat
4-4
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THE MANY FACES OF SUPERRADIANCE PHYSICAL REVIEW D58 064014
field. Such relaxation does occur for sufficiently smalluvu,
but since we needuvu to be sufficiently large for the
Ginzburg-Frank condition to hold, stringent conditions a
required of the dielectric~high n and fast relaxation!. When
these are satisfied the electromagnetic radiation will be of
Vavilov-Cherenkov form for the equivalent chargeQ mov-
ing with velocity v. Q/e is about 103A times the gravita-
tional radius of the hole measured in units of the class
radius of theelectron. Hence a fast 1015 g primordial black
hole moving in a suitable dielectric would radiate just like
equally fast particle bearing;103A elementary charges
This is relevant for the experimental search for primord
black holes.

When things are looked at this way, the black hole ch
acter of the object is not critical. What matters is that it
endowed with a gravitational field. This tells us that an or
nary object with the same mass would have similar effec
a black hole, so long as both are smaller than the chann
width. It is also worthwhile noting that the effects here d
cussed will be significant only when the wavelengths
volved are large compared to the width of the channel. O
erwise, the object acts as if in vacuum, and we expect
superradiance.

C. Critical speed for superfluidity

A superfluid can flow through thin channels with no fri
tion. However, when the speed of flow is too large, the
perfluidity is destroyed. Landau gave a criterion@14# for the
critical speedvc for removal of superfluidity. Although in
practice superfluidity disappears already at much low
speeds as the superfluid develops turbulence through the
mation of vortices, the Landau critical speed is the top sp
at which superfluidity can survive no matter how carefu
tailored the channel is to the flow. The Landau critical spe
is

vc[min «~p!/upu ~16!

where «~p! is the dispersion relation of the quasiparticl
~phonons and rotons! that can occur as excitations above t
condensate constituting the superfluid. In superfluid He4 vc
'63103 cm s21. Landau’s argument is that at speeds
flow abovevc it becomes energetically permissible for bu
kinetic energy of the superfluid to transform into energy
one internal excitation—a quasiparticle. Once an abunda
of quasiparticles has appeared, there is a normal compo
to the fluid, which, of course, is not a superfluid.

The Landau argument is usually framed in the rest fra
of the fluid with respect to which the walls of the channel a
in motion @14#. In the following argument we also emplo
that frame. Now the walls play the role of the object in o
superradiance argument, and the waves of frequencv
5«/\ and wavenumberk5p/\ associated with the quas
particles, are surrogates of the electromagnetic waves in
arguments of Sec. II. When the walls move with spe
.vc[min «(p)/upu, the quantityv2v•k5(«2v•p)/\ be-
comes negative for at least one quasiparticle mode. It t
becomes entropically preferable for the wall material to
come excitedand simultaneously create a quasiparticle
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that mode, as discussed in Sec. II A. Furthermore, the qu
particles thus created can undergo superradiant amplifica
upon impinging on other parts of the walls~Sec. II B!. As a
consequence an avalanche of quasiparticle formation ens
which acts to convert the superfluid into a normal fluid. It
clear that the transition away from superfluidity is a liter
example of the superradiance phenomenon. In this phen
enon the sound speed, of ordervc , plays the role of the
speed of light in our original arguments.

D. Superradiance in Mach shocks

It is well known that when a solid object travels throug
an originally quiescent fluid with a speedv5uvu exceeding
that of soundcs in the fluid, a shock~density discontinuity!
in the form of a circular cone is formed in its wake@16#. The
interior of this Mach cone is filled by perturbations origina
ing in the object, while the fluid exterior to the cone is st
unperturbed. The opening angle of the cone, 2QM , is easily
determined by considering the locus of sound signals emi
by the object and traveling in all directions at speedcs with
respect to the fluid which convects them downstream@16#:

sin QM5cs /v; 0,QM,p/2. ~17!

The cone’s opening angle is the same in both the obje
and the fluid’s rest frames.

Let us look at Mach shocks from the vantage point
superradiance. In the rest frame of the fluid, the objec
considered structureless—can emitphononsspontaneously
when these satisfy the Ginzburg-Frank condition in the fo

v2v•k5v2vk cosq50. ~18!

Now for phononsv5csk; hence they are spontaneous
emitted at an angleq to the object’s velocityv such that
cosq5cs/v. These phonons thus have components of vel
ity csA12cs

2/v2 andcs
2/v normal and parallel tov, respec-

tively. A Galilean transformation~velocity v! to the rest
frame of the object gives for the angleq8 of superradiance
emission in the new frame

sin q85
csA12cs

2/v2

@~csA12cs
2/v2!21~cs

2/v2v !2#1/2
5

cs

v
;

p/2,q8,p. ~19!

The range ofq8 is so chosen because in the new frame
component of phonon velocity collinear with the objec
velocity, cs

2/v2v, is negative indicating that the emissio
occurs into the back hemisphere, that containing the flu
velocity. Because sinq85sinQM we conclude that the su
perradiant phonons are emitted from the objectalong the
shock discontinuity.

Now as the shock follows the object with velocityv, it
advances normal to itself with speedv•sinQM5cs. Accord-
ing to shock theory@16#, a shock with speedcs is a weak
discontinuity, i.e., the fluid’s density is nearly the same
both its sides. It thus seems possible that the shock itse
entirely made up of superradiant phonons.
4-5
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Further, consider any sound waves, e.g., thermal phon
present in the fluid before the arrival of the object. The o
ject is—by assumption—structureless; however, it is acco
panied in its motion by a boundary layer of fluid that pa
tially ‘‘sticks’’ to it @16#. Because the layer is constant
being renewed as the ‘‘old’’ fluid in it is swept downstream
it is dissipative. Therefore, those waves which satisfy
Ginzburg–Frank condition~13! will be amplified as they are
overtaken by the object. These waves propagate at anglq
to the object’s direction which obey

cosq.v~ ukuuvu!215cs /v ~20!

i.e., they are emitted inside the Mach cone. In addition, if
regard the object with its boundary layer as one with ma
possible energy states, then phonons can be emitted als
Ginzburg and Frank’s anomalous Doppler emission~see Sec.
II B !. These also travel inside the Mach cone. Thus the en
acoustic ‘‘noise’’ originating from supersonic motion in
fluid has a superradiance interpretation.

IV. ROTATIONAL SUPERRADIANCE: PRINCIPLES

We focus on an axisymmetricmacroscopicbody rotating
rigidly with constant angular velocityV about its symmetry
axis which is supposed fixed. The assumption of axisy
metry is critical; otherwise precession of the axis wou
arise. We further assume the body contains many inte
degrees of freedom, so that it can internally dissipate
sorbed energy. We assume it has reached internal equ
rium and has well defined entropyS, rest massM and tem-
peratureT.

The body is exposed to external radiationin vacuum. We
classify the radiation modes by frequencyv and azimuthal
numberm. This last refers to the axis of rotation. Suppo
that in the modes with azimuthal numberm and frequencies
in the range in$v,v1Dv%, powerI m(v)Dv is incident on
the body. Then, as is easy to verify from the energ
momentum tensor, or from the quantum picture of radiati
the radiative angular momentum is incident at ra
(m/v)I m(v)Dv. If I m(v) is large enough, we can think o
the radiation as classical. Experience tells us that the b
will absorb a fractionam(v) of the incident power and an
gular momentum flow in the modes in question, whe
am(v),1 is a characteristic coefficient of the body. A fra
tion @12am(v)# will be scattered into modes with the sam
v andm. We may thus replace Eqs.~6!, ~7! by

dE

dt
5amI mDv2W ~21!

and

dJ

dt
5~m/v!amI mDv2UJ ~22!

where J is the body’s angular momentum andUJ is the
overall rate of spontaneous angular momentum emissio
waves.
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Now the energyDE0 of a small system measured in
frame rotating with angular frequencyV is related to its
energyDE and angular momentumDJ in the inertial frame
by @15#

DE05DE2V•DJ. ~23!

Thus, when as a result of interaction with the radiation,
energy of our rotating body changes bydE/dt3Dt and its
angular momentum in the direction of the rotation axis
dJ/dt3Dt, its rest mass-energy changes by (dE/dt
2VdJ/dt)3Dt. From this we infer, in parallel to the deri
vation of Eq.~9!, that the body’s entropy changes at a rat

dS

dt
5

1

T Fv2mV

v
amI mDv2W1VUJG . ~24!

As in the discussion involving Eqs.~10!, ~11! we would
now argue that whenI m(v) is large, the term proportional to
(v2mV)am(v) in Eq. ~24! dominates the overall entrop
balance. The second law thus demands that

~v2mV!am~v!.0. ~25!

It follows that whenever the Zel’dovich-Misner condition~1!
is met,am(v),0 necessarily. As in Sec. II A, we can argu
that the sign ofam(v) should not depend on the strength
the incident radiation if nonlinear radiative effects do n
intervene. Hence, independent of the strength ofI m(v), con-
dition ~1! is the generic condition for rotational superrad
ance.

Evidently am(v) switches sign atv5Vm. This switch
cannot take place byam(v) having a pole there since
am(v),1. If am(v) is analytic inv2Vm, it must thus have
the expansion

am~v!5am~V!~v2Vm!1¯ ~26!

in the vicinity of v5Vm. However, we must again stres
that thermodynamics does not demand continuity ofam(v)
at v2Vm50. Specific examples like that of the rotatin
cylinder @Eq. ~56! below# do show continuity.

V. SUPERRADIANCE OF A ROTATING CYLINDER

Devices for making rotational superradiance observa
~see Sec. V E below! are modeled on Zel’dovich’s rotating
cylinder @11#. In this section we compute the classical sup
radiance of a Zel’dovich cylinder. Admittedly, by detaile
balance there must also be~quantum! spontaneous emissio
by the cylinder, but we do not enter into this issue here.

We idealize the cylinder as infinitely long. Let its radiu
be R and let it be rotating rigidly in vacuum with constan
angular frequencyV. We suppose it to be made of materi
with spatially uniform permittivity e~v! and permeability
m~v!; these are not necessarily real because of the possib
of dissipative processes in the material. Alternatively,
material may be electrically conducting in which case
denote its conductivity bys. Although it is possible to rep-
resent conductivity as an imaginary part ofe~v!, we shall not
4-6
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do so here. Ifs is small, e.g. a semiconductor, one can allo
nontrivial e~v! andm~v! alongsides.

A. Constitutive relations and Maxwell equations

In the relativistic treatment we have in mind the elect
magnetic field is described by the antisymmetric tensorFab

composed in the usual way of the electric fieldE and mag-
netic inductionB. The electric displacementD and magnetic
field H form an analogous tensorHab. The usual constitu-
tive relationsD5eE, B5mH and j5sE can be expresse
in covariant form as

Habub5eFabub ~27a!

* Fabub5m* Habub ~27b!

j a5sFabub1%ua. ~27c!

We have written the electric current as a sum of a conduc
part ~recall that electric and magnetic fields are observer
pendent concepts and are here computed in the frame o
material whose 4-velocity isua) and a convective part with
% being theproper charge density. This last is included
give us the flexibility to treat, say, a dielectric bearing a n
charge density~in which case we would sets50). We use
the notation* Fab[ 1

2 «abgdFgd with «abgd the Levi-Civita
tensor. It should be observed thate and m are frequency
dependent in general, so that equations involving them r
to time Fourier components of fields. And the arguments oe
or m should be frequenciesin the frame of the rotating cyl-
inder.

In cylindrical coordinates$x0,x1,x2,x3%5$t,r ,f,z% with
flat metric

ds252dt21dr21r 2df21dz2 ~28!

we obviously have inside the cylinder

ub5~21, 0,Vr 2, 0!g ; g[~12V2r 2!21/2. ~29!

It is easy to generalize this to curved spacetime, but we s
not do so here.

By successively takinga50,1,3 in Eqs.~27a,b! and con-
verting components of duals to components of the origi
fields we get

e21H025F02[r 21Ef ~30a!

mH315F31[Bf ~30b!

e21~H011Vr 2H12!5F011Vr 2F12[g21Er ~30c!

m~H232VH03!5F232VF03[~rg!21Br ~30d!

e21~H032Vr 2H23!5F032Vr 2F23[g21Ez ~30e!

m~H121VH01!5F121VF01[~rg!21Bz . ~30f!

Here Er , Ef , Ez , Br , Bf, and Bz denote the physica
components in the indicated directions of the electric fi
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and magnetic inductionin the rotating frame. Outside the
cylinder one should setV50 ande5m51 in these equa-
tions.

Let us now pass to the Maxwell equations:

F @ab,g#50 ~31a!

Hab
,b54p j a. ~31b!

In view of the symmetries of the problem we shall look f
solutions where the fields vary asf (r )eı(mf1kz2vt) with m
an integer, andv and k real constants. Herev is the fre-
quency in the laboratory frame; in the cylinder’s~rotating!
frame, the azimuthal coordinate isf85f2Vt, and hence
the frequency is v85v2mV. Our choice of modes
means that in writing the equations one can simply repl
]/]f→ım, etc. From Eq.~31a! we get, after raising indices

]~F02r 2!/]r 2ıvr 2F122ımF0150 ~32a!

]~F23r 2!/]r 1ıkr2F121ımF3150 ~32b!

]F03/]r 1ıvF312ıkF0150 ~32c!

ıkF021ıvF232ımr22F0350. ~32d!

Finally we take in Eq.~31b! successivelya50, 1, 2 and
3:

]~H01r !/]r 1ımrH021ıkrH0354psgVr 2Ef1rg% ~33a!

ıvH011ımH122ıkH1354psEr ~33b!

]~H12r !/]r 2ıvrH 022ıkrH23524psgEf2rg%V ~33c!

]~H31r !/]r 2ımrH231ıvrH 0354psEz . ~33d!

Outside the cylinder one should puts50 and%50 in Eqs.
~33a–d!.

B. Axial electric and magnetic modes„k50…

As in any electromagnetic problem of this type, there a
here two distinct modes for each set$v,m,k%. Here we char-
acterize them for the casek50.

First assume, in harmony with Eq.~30a! that everywhere
inside and outside the cylinderF025H025Ef50. It will
transpire that this is a consistent choice, and theref
characterizes the first mode. Equation~32a! then gives
vr 2F121mF0150 everywhere, while outside the cylinde
(Hab5Fab; s5%50) Eq. ~33b! gives vF011mF1250.
These simultaneous equations requireF125F015H125H01

50 outside the cylinder. To connect these with the inter
fields we go to Eqs.~33a,c!. There may be a charge layer
r 5R of surface densityDq5*R2

R1%dr. Integrating the two
equations across the layer gives for the jumps in the fie
DH015qg(R) and DH1252qVg(R) so that VH011H12

must be continuous across the surface. If we now addV
times Eq.~33a! to Eq. ~33c! we find thatr (VH011H12) is
independent ofr everywhere, including atr 5R. Since it
vanishes forr .0, it must vanish everywhere. Then b
4-7
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Eq. ~30f! VF011F1250 everywhere. But as we mentione
vr 2F121mF0150 everywhere; these two simultaneo
equations forceF01 andF12 to vanish everywhere. It is now
evident by solving Eqs.~30c,f! simultaneously thatH01 and
H12 must also vanish everywhere.

As we shall show in Sec. V C, one can constructF31 and
F23 out of F03 which obeys an autonomous equation. Th
the ansatzF015F025F125H015H025H1250 defines a
mode of the system. We call it the axial electric~AE! mode
because its electric field~only componentF03) points along
the cylinder’s axis. It corresponds to Zel’dovich’s@11# first
mode.

Now we look for a mode which has@see Eq.~30b!# F31

5H315Bf50. Again, it will transpire that this is a consis
tent choice. From Eqs.~32b,c! it follows that r 2F235C1 and
F035C2 with C1 and C2 independent ofr . Equation~33d!
implies that outside the cylindermF232vF0350. This last is
inconsistent with the previous expressions unless we
C15C25F035F235H035H2350 in the exterior. Now
since F23 is the magnetic field componentnormal to the
cylinder’s surface, it must be continuous there. ThusC1
along with F23 must also vanish inside the cylinder. Th
tangentialelectric fieldF03 must likewise be continuous a
the surface; thusC2 and F03 have to vanish inside as wel
By solving Eqs.~30d,e! simultaneously we find that als
H035H2350 inside.

As we show in the Appendix, one can constructF02, F12

and F01 out of a single function obeying an autonomo
equation. Thus the ansatzF035F315F235H035H315H23

50 defines a second mode. We call it the axial magn
~AM ! mode because its magnetic field~only componentH12)
points along the cylinder’s axis. It corresponds
Zel’dovich’s @11# second mode.

C. Electrodynamic proof of superradiance
for AE modes „k50…

Here we give a new basically electrodynamic proof th
for v2mV,0 the cylinder superradiates. We shall first o
tain the radial equation governing the shape of the AE m
with k50. First we note that according to Eqs.~32c,d!,

F315ıv21]F03/]r ~34a!

F235mv21r 22F03. ~34b!

Next we solve forH03, H23 andH31 from Eqs.~30b,d,e! and
substitute these and Eq.~34a! in Eq. ~33d! to get

r 21]~r ]F03/]r !/]r 1mvg~Br1emVEz!

2v2g~emEz1Vr 2Br !54pısmEz . ~35!

But by combining the definitions ofEz and Br in Eqs.
~30a–f! with Eq. ~34b! we have that

Ez5gv21~v2mV!F03 ~36a!

Br5g~vr 2!21~m2vVr 2!F03. ~36b!
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If we now substitute these in Eq.~35! and cancel out the
common phaseeı(mf2vt) we get

r 2f 91r f 82g2@~m2vVr 2!22em~v2mV!2r 2

24pıg21ms~v2mV!r 2# f 50 ~37!

wheref (r )[F03e2ı(mf2vt) and8 denotes an ordinary radia
derivative. All this is forr ,R. In the cylinder’s exterior we
just setem→1 ands→0. This is the promised exact radia
equation for the AE mode; the fieldsF31 and F23 can be
recovered from Eqs.~34a,b!.

Now we are ready to discuss the energy flux. Both ins
and outside the cylinder theradial energy flux is@12#

Sr5~E3H!r /4p5~F02H122F03H31!/4p. ~38!

But F02 and H12 both vanish, so this reduces t
2F03H31/4p. This is the instantaneous flux; of more intere
is the time-averaged flux which can be obtained by substi
ing @12#

F03→
1

2
@ f eı~mf2vt !1 f * e2ı~mf2vt !# ~39a!

H315F31/m→
1

2v
@ ı~ f 8/m!eı~mf2vt !

2ı~ f * 8/m* !e2ı~mf2vt !# ~39b!

and then averaging. Here we have used Eq.~34a! to simplify.
Note that the complex conjugate of the primary fieldf con-
tributes with weight 1/m* . We thus have for the time
averaged radial flux

S̄r5
1

16pıv
~ f * f 8/m2 f f * 8/m* !. ~40!

In the process two terms involving exponentse62ı(mf2vt)

have averaged out.
We can get a useful equation for the Wronskian-like e

pression in the last equation by first dividing Eq.~37! by rm,
multiplying it by f * , and then subtracting from the result i
complex conjugate:

d

dr
@r ~ f * f 8/m2 f f * 8/m* !#522ır @Au f 8u21~B1C!u f u2#

~41!

with ~I means imaginary part!

A[Im/umu2 ~42a!

B[@Ie~v2mV!21A~m2vVr 2!2r 22#g2 ~42b!

C[4ps~v2mV!g. ~42c!

In the vacuum outside the cylinderIe5Im5s50 so that
according to Eqs.~40!, ~41! Sr}1/r . This just means tha
energy is conserved outside the cylinder, the overall outfl
~inflow! at large distances equaling that atr 5R. Thus to find
4-8
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out which way energy flows at large distances, it is suffici
to determine the sign ofS̄r at r 5R.

Now becausef represents a physical electric field, it mu
be bounded atr 50. And thenf 8 cannot diverge as fast a
1/r . It follows that, barring the exceptional circumstance th
m50, r ( f * f 8/m2 f f * 8/m* )→0 as r→0. Hence by inte-
grating Eq.~41! from r 50 to r 5R we find

S̄r~r 5R!5
21

32pvR E
0

R

r @Au f 8u21~B1C!u f u2#dr. ~43!

To determine the sign of this expression we note that it
lows from the second law of thermodynamics@12# that s
>0, and thatIe andIm are both odd in the frequency an
both positive for positive frequency. Of course, frequen
here means frequency in the frame of the material, nam
v2mV. HenceA, B and C all bear the same sign asv
2mV. Thus regardless of the source of dissipation, ther
an energy outflow to infinity~superradiance! if only if the
Misner-Zel’dovich conditionv2mV,0 is satisfied, as we
might have guessed from the method of Sec. IV.

D. Gain in superradiance for nonrelativistic rotation: AE
modes

In his pioneering study of superradiance of a rotating c
inder, Zel’dovich@11# concluded that for AE modes withv
2mV,0, m.0 andk50, the gain coefficient@defined pre-
cisely after Eq.~49!# is very small for nonrelativistic rota
tion. The gist of his argument is as follows. Outside t
cylinder the radial equation~37! reduces exactly to

r 2f 91r f 82@m22v2r 2# f 50; r .R ~44!

whose solutions are the Hankel functionsHm
(1)(vr ) and

Hm
(2)(vr ), the first~second! representing outgoing~ingoing!

waves at infinity. Inside the cylinder Zel’dovich takese5m
51, and neglects the effect ofs to argue that one may, to
sufficient accuracy, approximatef by Jm(vr ) which is that
combination ofHm

(1)(vr ) andHm
(2)(vr ) regular atr 50. We

may justify this form by realizing that

@~m2vVr 2!22~v2mV!2r 2#g25~m22v2r 2! ~45!

so that in the stated limit Eq.~37! reduces to Eq.~44! also
inside the medium. This is true even for relativistic rotatio
a point not remarked on by Zel’dovich.

Working nonrelativistically Zel’dovich then calculates v
Ohm’s law the currentj induced in the cylinder by the elec
tric and magnetic fieldsE and B deriving from this f . Be-
cause the medium rotates, he finds thatj z}(v2mV). Thus
the Joule workj zEz is negative: the cylinder does work o
the field and superradiance ensues. Zel’dovich obtains a
coefficient }s•(mV2m)(vR)2m. The factorsvR come
from the small argument approximationJm(x);xm for x
!m; recall that because of the Zel’dovich-Misner conditi
and the assumed nonrelativistic rotation,vr ,mVR!m. As
Zel’dovich remarks, the physical reason for the smallnes
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that R lies deep within the near zone, which circumstan
suppresses the matter-wave coupling.

Is Zel’dovich’s pessimistic conclusion valid also whe
e,mÞ1? One may be skeptic because whenem differs sig-
nificantly from unity, Eq.~37! does not reduce to Eq.~44!,
but rather to the Bessel equation~46a! below whose solution
regular atr 50 is different fromJm(vr ). One also wonders
what happens when the conductivity is large, so that
backreaction of the cylinder on the wave cannot be
glected, and wheng is significantly greater than unity? T
answer these question we shall work with the full Eq.~37!,
and match its interior and exterior solutions. We can then
more specific about the prefactor in Zel’dovich’s express
and the corrections it is subject to for larges.

Let us assume that the ingoing wave generated by s
external agency,Hm

(2)(vr ), has unit coefficient. Then the to
tal radial wave amplitude outside the cylinder will bef out

5Hm
(2)(vr )1rHm

(1)(vr ) wherer is the ~possibly complex!
amplitude for reflection off the cylinder. For superradian
we expecturu2.1.

Inside the cylinder the exactf (r ) is determined by Eq.
~37! which in light of Eq.~45! can be rewritten in the more
convenient form

r 2f 91r f 82@m22k2r 2# f 50; r ,R ~46a!

k2[v21~12em!~v2mV!2g21ı4pgms~v2mV!.
~46b!

This is again a Bessel equation whose solution regularr
50 is Jm(kr ). The radial wave amplitude inside will thus b
f in5tJm(kr ) where t is the ~possibly complex! amplitude
for transmission into the cylinder.

Now we match interior with exterior solutions by th
usual continuity conditions on electric and magnetic fiel
By integrating Eq.~34a! from r 5R2« to r 5R1« and re-
lying on the boundedness ofF31 we conclude thatF03uR1

5F03uR2
. But sinceF035 f (r )eı(mf2vt), it is obvious thatf

must be continuous atr 5R. By similarly integrating Eq.
~33d! and invoking the boundedness ofH23, H03 andEz we
find H31uR1

5H31uR2
. Then from Eqs.~30b! and~34a! it fol-

lows that f 8uR1
5( f 8/m)uR2

. One checks that with thes

matching conditionsS̄r in Eq. ~40! is continuous atr 5R.
With the expressions forf in and f in written out earlier, the

matching conditions are

tJm~kR!5rHm
~1!~vR!1Hm

~2!~vR! ~47a!

~tk/m!Jm8~kR!5rvHm
~1!8~vR!1vHm

~2!8~vR!
~47b!

where 8 here means derivative with respective to the arg
ment. Solving these simultaneously forr and rearranging the
result with help of the identityH (1)

m5Hm
(2)* gives

r52
12mxm~x!hm~y!

12mxm~x!* hm~y!
•

Hm
~2!~x!

Hm
~2!~x!*

~48a!
4-9
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xm~x![xH~2!
m8 ~x!/H ~2!

m~x!; hm~y![Jm~y!/@yJm8 ~y!#
~48b!

with x[vR andy[kR.
When there is no dissipation,e and m are real whiles

50, and soy is real. It follows that numerator and denom
nator of Eq.~48a! are complex conjugates so thaturu51.
This is in harmony with the arguments of Sec. IV that sup
radiance goes hand in hand with dissipation.

Let us now define the dimensionless parametersv[VR
~peripheral velocity of the cylinder in units ofc) and j
[4pmsR in terms of which

y25x21~12em!~x2mv !2g21ı~x2mv !jg. ~49!

The y shall be the square root which is positive in the lim
s→0. A useful approximation for the gain coefficient2am
[uru221 @this is the same as the coefficientam(v) appear-
ing in Sec. IV# can be obtained from Eqs.~48a,b! by passing
to the nonrelativistic limitv!1, g'1 which, for m not too
large, impliesx!1.

First the recursion relation @17# xHm
(2)85xHm21

(2)

2mHm
(2) allows us to write

xm~x!52m1
xHm21

~2! ~x!

Hm
~2!~x!

. ~50!

For x!1 the leading terms of the real and imaginary parts
the Hankel function are@17#

H0
~2!'12

2ı

p S ln
x

2
1gED ~51a!

Hm
~2!~x!'

xm

m!2m 1ı
2m

pxm ; m>1 ~51b!

wheregE'0.577216 is the Euler-Mascheroni constant. S
stituting in Eq.~50! we have to leading real and imagina
orders inx

xm~x!'2m2dm
1 S 1

2
1 ln

x

2
1gED x21

x2

2
2

ıpx2m

~m21!!22m21

1¯ . ~52!

We now substitute from Eq.~52! into Eq.~48a! and recall
that the ratio ofHm

(2) to its complex conjugate has unit mod
lus. Factoring out 11mmhm(y) from numerator and de
nominator, we find in each the functionhm(y)[mhm(y)@1
1mmhm(y)#21 multiplied in one by a small complex ex
pression and in the other by the conjugate of this express
As a result to leading@O(x2)# order,hm appears inr multi-
plied only by an imaginary factor, so that only the imagina
part of hm remains inuru2. Retaining only dominant term
leads to

am'
8p~x/2!2m

~m21!!
Ihm~y!
06401
-

f

-

n.

5
8p~x/2!2m

~m21!!
I

mJm~y!

~m21!mJm~y!1yJm21~y!
~53!

where the last form follows from the recursion relation@17#
yJm8 5yJm212mJm . Since2am is proportional to the smal
factor x2m, superradiance is mostly confined to them51
mode~unless the ingoing wave only hasm.1).

We went through the derivation of Eq.~53! with possibly
complexe andm as a matter of principle, and because it w
be required for the discussion in the Appendix. But in pra
tice little need can arise to consider complexe or m. For low
frequencies both these quantities are real withe becoming
complex in real materials only at frequencies.1011 Hz ~in
ferromagnetsm can become dispersive at somewhat low
frequencies! @12#. Recall that the appropriate argument ofe
or m in our discussion isv2mV which must be negative
But a macroscopic cylinder rotating nonrelativistically w
do so belowV51010 Hz. And as mentioned,m cannot be
large without superradiance being suppressed. Thus in
laboratory we cannot arrange forv2mV to be negative and
sufficiently large in magnitude to access the complex ra
of e or m. Henceforth we consider only reale andm.

As mentioned, for nonrelativistic rotationv!1 and x
!1 and thusux2mvu!1. The low conductivity regime may
be defined by the additional condition

ux2mvuj!1. ~54!

When all these are valid, the argumenty of the Bessel func-
tions is a smallcomplexnumber, and we can expand

Jm~y!5
ym

2mm! F12
y2

4~m11!
1¯ G . ~55!

Substituting this, Eq.~49! and the definitions ofj, x andv in
Eq. ~53! and reinstatingc gives to leading order

am'
16p2m2~vR/2c!2m~v2mV!sR2/c2

m~m11!! ~m11!2
~56!

which shows clearly that for (v2mV),0 there is superra-
diance (am,0). The formula supports Zel’dovich’s asse
tion that for low conductivity the gain coefficient is propo
tional to sR2(mV2v)(vR)2m. Our result gives the
proportionality constant and shows that2am is independent
of e. Numerical work shows that Eq.~56! remains accurate to
within 1% up toux2mvuj'1.

For ux2mvuj.1 we return to Eq.~53!. Because the gain
coefficient falls off with growingm, we discuss here only
the results form51. Clearly the termsx2 and (x2mv)2 in
y2 are negligible becausex,v andv!1. ~We presume that
em is not too large, which is reasonable because for a g
conductore andm are formally unity.! Hence the argumen
y in Eq. ~53! reduces to@(x2v)j#1/2. The imaginary part is
best evaluated numerically. As a function of (x2v)j
it sports single maximum of height 0.1887 located
(x2v)j'26.325. From these last numbers and Eq.~53! we
infer the maximal gain coefficient for givenv:
4-10
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2~a1!max51.185~vR/c!2 at V5v10.503c2/sR2.
~57!

For a copper cylinder withR510 cm, the minimumV re-
quired for the peak to be present is 0.06 s21; this is also the
offset betweenv and theV giving maximum superradiance

E. Rotational superradiance devices

From Eqs.~56!, ~57! it is clear that for superradiance of
nonrelativistically rotating cylinder the gain coefficient2am
is extremely small~basically vR/c is very small!. This
would seem to imply that superradiance cannot be obse
in the laboratory. But in fact this is not the case for tw
reasons. First by surrounding the cylinder with a jacket m
of material where the speed of light is rather small, o
achieves a more favorable ratio of cylinder radius to wa
length with a consequent improvement in2am . Second, a
suitable device can cycle the amplified radiation any num
of times to compound the gain coefficient. This raises
possibility of practical devices for amplification of signals
the expense of mechanical energy.

To explain the reason for the first improvement in t
simplest terms we consider the jacket material to h
m51 but very large andreal permittivity e j . Equations
~30a!–~33d! can obviously be used outside the cylinder if w
put everywheres5%5V50. The arguments of Sec. V B
characterizing the AE and AM modes can be repeated w
like conclusions. For AE modes we need to replace the ra
equation~44! outside the cylinder by@cf. Eq. ~37!#

r 2f 91r f 82@m22e jv
2r 2# f 50; r .R. ~58!

Therefore, the argument of the Hankel functions in Sec. V
is nowAe jvr rather thanvr . And the Hankel andxm func-
tions in Eqs.~47a,b!, ~48a,b! now take argumentAe jx. There
is no change in the matching conditionsf uR1

5 f uR2
and

f 8uR1
5( f 8/m)uR2

sincem has not been changed. In Eq.~47b!

a factorAe j appears alongsidem; it comes from the argu-
ments of the differentiated Hankel functions. No change
curs in y, the argument of the Bessel functions, which
composed exclusively of quantities describing the cylinde

Let us assume that even thoughe j is large,Ae jx!1 ~re-
member we are in the superradiant regime soVR!1). The
assumption means that the rotational velocity is still w
below the speed of light in the jacket. Then we can expa
the Hankel functions for small argument as before and ar
back at formulas~56! and ~57! with the replacementsm
→mAe j and x→Ae jx. Since Ae j is assumed large, them
dependent factor in Eq.~56! is here replaced by unity so tha

am'
16p2~e j!

m~vR/2c!2m~v2mV!sR2/c2

m~m11!!
~59a!

2~a1!max51.185e j~vR/c!2 at V5v10.503c2/sR2.
~59b!
06401
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In Eq. ~59a! the factor v2mV is unchanged because
stems fromy. Thus a jacket of highe j material provides, for
m51, a gain larger by a factore j over the vacuum value.

The second ingredient of the superradiant device is
cling through reflection. Suppose the rotating cylinder and
high-e jacket are placed inside a concentric cylindrical r
flecting cavity of radiusRc.R ~this is similar to Press and
Teukolsky’s idea for the ‘‘black hole bomb’’@18#!. Introduce
in the intervening material an electromagnetic wave with l
m components. One simple way to do this is to apply acr
the ends of the cylinder along one edge a voltage vary
sinusoidally with frequencyv; this will produce preferen-
tially low m waves with their electric field parallel to th
cylinder’s axis~hence AE modes!. Each such wave which
satisfies the Zel’dovich-Misner condition gains in power
per Eqs.~59a,b! as it interacts with the cylinder. Propagatin
out, the amplified wave is reflected back by the cavity fo
second round of amplification, and so on. If the cavity is
perfect reflector, and the material between cylinder and c
ity is perfectly transparent, there will be a net gain in pow
which increases linearly with the number of bounces. Bu
the cavity absorbs~or leaks radiation outward!, the conse-
quent loss in power may quench the process. However,
sorption in the cavity may be turned to our advantage
making the cavity rotate in the same sense as the cylin
with sufficiently large angular frequency so as to cause
also to superradiate for the modes in question. If the ca
walls are thick enough to prevent leakage, then each of
waves mentioned will always gain power in each round tr
and the overall gain is limited only by the time one allow
the process go on.

When estimating the efficiency of such devices, the pr
cipal question is how big can2am be. For an isolated cyl-
inder, andm51 AE modes, Eq.~59b! gives for optimal pa-
rameters that2(a1)max'1.2e j(vR/c)2. For the cylinder-
cavity device, this optimum gain is acquired over the ba
and-forth light travel time 2Ae j(Rc2R)/c; one must still
add to it the gain due to the cavity. As mentioned, for
cylinder made of good conductor, the peak superradia
occurs atV'v. Hence the e-folding time of the cylinder
cavity device isTe,1.67c(Rc2R)/(Ae jV

2R2). With Rc

52R520 cm andV52p3102 s21, Te'(4/Ae j) hour, so
that the effect can become dramatic for largee j . Many ma-
terials made of polar molecules have bige at low frequen-
cies, e.g.e(0)'80 for water ice whilee(0)'300 for lead
telluride @19#. And ferroelectrics just above the Curie poi
have virtually unboundede~0! @12#.

A variation on the above is to have a coaxial cable~with
no filling! rotating about its axis. Wave modes which n
only have angular variation, but also vary along the axis~the
kÞ0 case studied in Sec. V A! will travel along the cable
while bouncing between inner and outer boundaries. So l
as the Zel’dovich-Misner condition is satisfied for such
mode, it will be amplified—rather than damped—as it trav
along the cable. This might prove useful in protecting sign
from degradation. We should stress that similar amplificat
will take place whatever the nature of the wave, sound wa
being another useful candidate.
4-11
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APPENDIX: SUPERRADIANCE IN AXIAL MAGNETIC
MODES

For completeness we now work out the gain coeffici
for the AM modes withk50. We sete5m51 inside the
cylinder to simplify the equations. ThusHab5Fab every-
where. By the definition of the modes we haveF035F31

5F2350.
We combine Eqs.~33a,c! judiciously to cause the charg

density terms~wherever nonvanishing! to cancel:

]~F121VF01!r /]r 1z21rF 0250 ~A1a!

z21[4psg21Q~R2r !2ı~v2mV!. ~A1b!

Here Q denotes the Heaviside step function. The funct
g(r )[(F121VF01)re2ı(mf2vt) shall here play a role analo
gous tof (r ) in Sec. V D. In terms of it Eq.~A1a! gives

F0252zr 21g8eı~mf2vt !. ~A2!

Now for r ,R we eliminateEr between Eqs.~30c! and~33b!
to obtainF01/F12 so that we may expressg in terms ofF12

alone. It follows that

F125~4psg2ıv!zr 21geı~mf2vt ! ~A3a!

F0152~4psgVr 22ım!zr 21geı~mf2vt !. ~A3b!

For r .R we use solely Eq.~33b! to determineF01/F12; the
result is again Eqs.~A3a,b! with s→0. Hence all nonvanish
ing field components can be recovered fromg.

Substituting all these results in Eq.~32a! we get the radial
equation for the AM modes:

~zrg8!82z@m22v2r 22ı4pgs~v2mV!r 2Q~R2r !#

3r 21g50. ~A4!

Becausee5m51 here, this equation is quite similar to th
for f , Eqs.~46a,b!; in fact the only difference between the
is a term involvingdz/dr. This last will vanish in the non-
relativistic limit where z becomes constant~except at r
5R), and in that limit the equations are identical both insi
and outside the cylinder. Indeed

r 2g91rg82@m22v2r 2#g50; r .R ~A5a!

r 2g91rg82@m22k̃2r 2#g50; r ,R ~A5b!
06401
,
f
r
-

t

n

k̃2[v21ı4ps~v2mV!. ~A5c!

By analogy with Sec. V D the solution outside the cyli
der is guR1

5Hm
(2)(vr )1rHm

(1)(vr ) while that inside is

guR2
5tJm(k̃r ). To find the matching conditions atr 5R we

note that the condition of continuity of tangential electr
fields requires thatF02uR1

5F02uR2
. By Eq. ~A2! this means

(zg8)uR1
5(zg8)uR2

. Further, by integrating Eqs.~A1a,b!

over a small radial interval spanningr 5R and realizing that
all quantities are bounded, we see thatguR1

5guR2
. These

matching conditions parallel those forf when one replaces
muR2

→z21uR2
andmuR1

→z21uR1
. Recalling Eq.~A1b! we

see that Eqs.~47a,b!, ~48a,b! and ~53! are applicable here
with the replacementsk→k̃, y→ ỹ andm→m̃, where

ỹ2[x21ıj~x2mv ! ~A6a!

m̃5ı~v2mV!21z21uR2
511ıj~x2mv !21. ~A6b!

We now obtain a formula analogous to~56! valid for
x!1 and when the small conductivity condition~54! holds.
We substitute the expansion~55! into Eq. ~53! and retain
terms toO( ỹ2). The isolation of the imaginary part is easi
if the denominator is put in real form. Neglecting terms
the numerator of higher order inx andx2mv, and reverting
to dimensional quantities we get

am'
8p2~vR/2c!2m

m!

~v2mV!s

~v2mV!214p2s2
. ~A7!

This formula again shows that superradiance occurs o
for v2mV,0, and is in harmony with the expansion~25!.
It supports the insight mentioned in Sec. V D that superra
ance is significant only form51. It corrects Zel’dovich’s
approximate formula for the AM modes,am}(v
2mV)s@(v2mV)2116p2s2)] 21 and supplies the nor
malization. We note that for fixedvR, a1 has the peak

2~a1!max51.571~vR/c!2 at V5v12ps. ~A8!

This peak gain is similar to that for AE modes. But unle
the cylinder’s conductivity is small, theV required to reach
the peak gain will not be a practical one. For example,
coppers'1017 s21. Put another way, for givenv the peak is
accessible only ifj,2v. For largerj we must resort to
numerical evaluation of the imaginary part in Eq.~53! with
the substitutions~A6a,b!; it certifies that the peak gain~A8!
is not even approached. In closing we should note that
smallj faster rotation is necessary to reach the peak gain
AE modes than for AM modes.
4-12
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