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ABSTRACT

We present a simple analytical formula for an approximated third integral of motion associated with nearly equatorial
orbits in the Galaxy: I3 = ZΣ1/3

I , where Z(R) is the vertical amplitude of the orbit at galactocentric distance R
and ΣI (R) is the integrated dynamical surface mass density of the disk, a quantity which has recently become
measurable. We also suggest that this relation is valid for disk-crossing orbits in a wide variety of axially symmetric
galactic models, which range from razor-thin disks to disks with non-negligible thickness, whether or not the system
includes bulges and halos. We apply our formalism to a Miyamoto–Nagai model and to a realistic model for the
Milky Way. In both cases, the results provide fits for the shape of nearly equatorial orbits which are better than
the corresponding curves obtained by the usual adiabatic approximation when the orbits have vertical amplitudes
comparable to the disk’s scale height. We also discuss the role of this approximate third integral of motion in
modified theories of gravity.
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1. INTRODUCTION

The issue of the “third integral of motion” has captured the
attention of the astrophysics community for decades. At present,
we know the general form of an axially symmetric separable
potential (see de Zeeuw 1988 and references therein) and the
vast majority of axially symmetric galactic models present
stable equatorial circular orbits, as required for consistency.
Although the epicyclic approximation allows us to construct
an approximate third integral near a stable circular orbit by
adiabatic invariance of the corresponding vertical action (Binney
& Tremaine 2008), the range of validity of this integral is
very limited. In particular, as we show below, the adiabatic
approximation (AA) is valid for a region much smaller than
the thickness of the Galactic thin disk. On the other hand,
numerical experiments with orbits in axisymmetric disks have
shown throughout the years that the region of quasi-integrability
around the stable circular orbit is much wider than the region
guaranteed by linear stability or the Kolmogorov-Arnold-Moser
theorem (Binney & McMillan 2011; Hunter 2005; Sanders
2012). Moreover, most methods of obtaining approximate third
integrals involve extensive numerical modeling (Binney &
McMillan 2011; Sanders 2012; Bienaymé & Traven 2013).
Thus, it is difficult to relate the corresponding results to the
physical parameters of the system.

We present a new approximate third integral of motion, valid
for orbits that cross the Galactic thin disk but do not belong
to it. This integral describes the shape of nearly equatorial
orbits in terms of the dynamical surface density of the thin
disk. The approach is based on our recent results about a third
integral of motion for nearly equatorial orbits in razor-thin disks
(Vieira & Ramos-Caro 2012) and is valid for any sufficiently
flattened axisymmetric disk-like configuration. Corrections due
to the presence of additional structures are described, and the
results are compared with numerical simulations, showing good
agreement in regions near the vertical edge of the thin disk. In an
era of growing attention devoted to Galactic (Jurić et al. 2008;

Veltz 2008; Famaey 2012; Steinmetz 2012) and extragalactic
(Bershady et al. 2010a, 2010b) surveys, simple expressions for
third integrals of motion valid beyond the usual AA may be a
crucial ingredient for a deeper understanding of the dynamics
underlying the kinematical data obtained.

2. DYNAMICS OF DISK-CROSSING ORBITS

For an axisymmetric razor-thin disk, adiabatic invariance of
the vertical approximate action Jz next to a stable circular orbit
leads to the fact that the vertical amplitude Z of the perturbed
test-particle orbit is given by (Vieira & Ramos-Caro 2012)

Z(R) = Z(Ro)

[
Σ(Ro)

Σ(R)

]1/3

, (1)

where Σ is the surface density of the mass layer. Here Ro and
R represent two values of the radial coordinate (corresponding
to usual cylindrical coordinates) along the orbit. In order to test
the validity of Equation (1) for nearly equatorial orbits, we must
specify what we mean by the function Σ(R) in the case of non-
negligible thickness. This function must have the following two
properties. (1) It must reduce to the surface density of the thin
disk in the limit of zero thickness, and (2) it must represent a
reasonable surface density profile for the 3D disk. For highly
flattened disks (with a vertical dependence for ρ approaching
a Dirac delta), we expect that the behavior of nearly equatorial
orbits would be similar to the razor-thin case. In particular,
Equation (1) should still be valid for an appropriate function
Σ(R) in this case. Our goal is to describe the appropriate “surface
mass density function” for disks with non-negligible thickness
and to determine the range of validity of Equation (1).

We consider the “integrated dynamical surface density” of the
thin disk as (Bershady et al. 2010a, 2010b; Bienaymé & Traven
2013; Efthymiopoulos et al. 2007; Holmberg & Flynn 2004)

ΣI (R) =
∫ ζ

−ζ

ρtot(R, z)dz, (2)
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where ρtot is the “dynamical” density profile of the thin disk:

ρtot =
∑

i

ρi . (3)

The subscript i corresponds to each gravitating component,
such as thin disk, thick disk, bulge, and (dark matter) halo.
Here, ζ is the thickness of the thin disk, which may vary with
galactocentric radius. For sufficiently flattened disks, we can
consider ζ as a constant, and, in practice, we may extend the
corresponding integral of the thin-disk density ρthin to infinity.

The bulge and disk parts of Equation (2) are the surface
densities obtained from photometric studies of disk galaxies
(Binney & Tremaine 2008; van der Kruit & Freeman 2011).
They are related to the luminosity profile by assuming a constant
mass-to-light ratio for the disk (Freeman 1970; Bosma 2002;
de Blok & McGaugh 1997). Furthermore, they reduce to the
surface density of the corresponding razor-thin disk when the
vertical dependence of ρthin on z approaches a Dirac delta. In this
way, the above expression for Σ(R) satisfies our requirements.
Moreover, recent studies were able to obtain estimates for the
total surface mass density (2) in the solar position, including dark
matter (see Holmberg & Flynn 2004 and references therein).
The dynamical surface density of several spiral galaxies was
also recently obtained via the ongoing DISKMASS survey
(Bershady et al. 2010a, 2010b). Besides that, since the star’s
trajectory has no preference for the gravitational field of any
specific component in Equation (3), we will adopt the complete
expression (2) further on.

Therefore, we expect that expressions (1) and (2) work well
for orbits whose amplitudes are comparable to the vertical
thickness ζ of the thin disk (which may depend on R). If
we consider orbits inside the thin disk, a more reasonable
approximate third integral would be given by the usual AA
(Binney & Tremaine 2008, Equation 3.279). If the orbit has a
vertical amplitude much smaller than ζ , a non-negligible part
of the disk’s density distribution (the portion with values of z
higher than the orbit’s amplitude) will generate a gravitational
force which tends to repel the particle from the equatorial plane.
However, Equation (1), together with the integrated surface
density (2), considers that every mass element of the disk
generates a gravitational field which tends to bring the particle
back to the equatorial plane. In this way, Equations (1) and (2)
give us values of Z which are smaller than the ones obtained
from the AA. Therefore, in regions close to the equatorial plane
where the AA works well, Equations (1) and (2) underestimate
the orbit’s vertical amplitude. However, the error obtained is
usually small. Furthermore, orbits with large vertical amplitudes
are mostly affected by the bulge or halo gravitational fields,
depending on their mean galactocentric radius.

In fact, this is exactly what we obtain for a Miyamoto–Nagai
potential (Miyamoto & Nagai 1975; see Equation (4) with
m = v = 0) and is illustrated in Figure 1. These density
distributions pervade all space. Nevertheless, we can define
a cutoff height by requiring that most of the disk mass be
concentrated below this height. Although this last statement
is not precise, we see that for flattened disks (Equation (4)
with values of b/a around 1/10) a good choice for the cutoff
height is ζ ≈ 3b, not depending on R. The region between
−ζ and ζ contains more than 95% of the disk mass for any
galactocentric radius (the exact number varies with the ratio
b/a). It is interesting to note that, for the Miyamoto–Nagai
model, Equation (1) gives practically the same results when
Σ is the surface density of the corresponding razor-thin disk

Figure 1. Typical quasi-circular orbit in the Miyamoto–Nagai potential with
vertical amplitude close to ζ/a = 3b/a. The solid black line corresponds to
the envelope predicted by Equation (1) with surface density (Equation (2)).
The prediction from the adiabatic approximation (dashed line) overestimates
the orbit’s amplitude. We choose units in which G = 1, M = 1, a = 10,
b = 1, E = −0.055, and Lz = 0.8, and the initial conditions are R0 = 5.05,
z0 = 1.1 × 10−1, and PR0 = 0. The curves coincide at the point of maximum
vertical amplitude, which is the starting reference to compute the predictions.

(b = 0) and when it is the integrated surface density given
by Equation (2). This occurs because the system is highly
flattened (b/a ≈ 1/10) in such a way that most of the disk’s
density distribution is concentrated in a very slim region near
the equatorial plane.

If the thin-disk contribution dominates over the other com-
ponents of the system, we can approximate ρtot ≈ ρthin. This
approximation is accurate if the density of the other compo-
nents is very small or absent, as tested in a two-component
Miyamoto–Nagai model representing a superposition of a thin
and a thick disk. (According to Hunter 2005, these disks have
a radial scale length of h = a + b. Our simulations consider
hthin < hthick). However, as we increase the z-component Lz

of the orbit’s specific angular momentum—therefore increas-
ing the radius of the corresponding stable equatorial circular
orbit and, as a consequence, the mean radius of the 3D orbit—
corrections due to the presence of the thick disk must be taken
into account. Furthermore, for higher values of mean galacto-
centric radius (where the thin-disk contribution is very small
compared to the corresponding thick-disk surface density), we
can approximate Equation (3) by the term ρthick. According to
the above numerical simulations, Equation (1) still describes a
very accurate third integral of motion for amplitudes near 3bthin.
We illustrate this behavior in Figure 2 with a typical quasi-
circular orbit of amplitude near the thin-disk cutoff in the region
where the thick-disk contribution begins to dominate. The com-
parison between different expressions for the approximate third
integral shows us that Equations (1)–(3) indeed result in the
most accurate description for the orbit’s envelope.

In all cases, deviations from Equation (1) begin to appear
once we consider orbits with higher energy. It is also important
to note that the above numerical experiments show that our
approximate integral does not work near resonances. In both
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Figure 2. Typical quasi-circular orbit with large Lz in the two-component
Miyamoto–Nagai model with vertical amplitude close to the thin-disk edge
ζ/a = 3b/a. The solid black line corresponds to the envelope predicted by
Equation (1) with surface density (2), while the dashed line is the prediction
from the adiabatic approximation. The dotted line corresponds to Equations (1)
and (2) with the contribution of only the thin disk, ρthin, and the dot-dashed line
corresponds to the contribution of only ρthich. The thin-disk parameters are the
same as in Figure 1. E = −0.11, Lz = 3, Mthick = 2, athick = 12, bthick = 4,
R0 = 9.3, z0 = 1.1 × 10−1, PR0 = 0.

situations, motion deviates significantly from the quasi-circular
approximation, and higher-order terms in the potential become
important.

Although our tests were performed for Miyamoto–Nagai
disks, the above considerations lead us to the hypothesis that this
behavior is more general, working for any pair of axisymmetric
thin+thick disk systems. In order to describe the approximate
third integral of motion (1) in self-gravitating discoidal systems
with more components (such as a bulge and a halo), we must,
in principle, include the contributions from each structure in
Equation (3). These contributions must significantly affect the
shape of nearly equatorial orbits only in regions where their
integrated surface density is comparable to the thin disk’s surface
density.

3. A THIRD INTEGRAL OF MOTION FOR
DISK STARS IN THE GALAXY

Recently, many models of the Galaxy appeared in the litera-
ture. The need to tackle some fundamental issues, such as the
degree of sphericity in the dark matter halo, led to simplifying
hypotheses on the mass distributions of the different gravitating
components of the Milky Way. More specifically, some recent
works described, for simplicity, the disk-like part of the Galaxy
as a Miyamoto–Nagai profile (Alen & Santillán 1991; Johnston
et al. 1995; Helmi 2004; Irrgang et al. 2013). The potentials
adopted for the halo and for the bulge vary among authors. It
is worthwhile to note that there is still some debate about the
sphericity (Helmi 2004; Ibata et al. 2013) and triaxiality (Law
et al. 2009; Ibata et al. 2013; Deg & Widrow 2013) of the
Galaxy’s dark matter halo.

In this study, we consider the “bulge+disk+halo” model de-
scribed in Helmi (2004). It consists of a Miyamoto–Nagai disk,

Figure 3. Typical quasi-circular orbit in Helmi’s model (Helmi 2004) with
spherical halo. The orbit has Lz = 2000 kpc (km s−1), E = 65,800 (km s−1)2,
R0 = 8 kpc, z0 = 1.1 × 10−1 kpc, and PR0 = 0 and lies near the solar
neighborhood (R ≈ 8 kpc; see McMillan 2011), with a vertical amplitude close
to ζ/a = 3b/a. The solid black line corresponds to the envelope predicted by
Equation (1) with surface density (2), while the dashed line is the prediction
from the adiabatic approximation.

a spherical Hernquist bulge (Hernquist 1990), and a logarithmic
potential for the halo. In light of the above discussion, we con-
sider a spherical halo, case in which the gravitational potential
due to the Galaxy can be written as

Φ = − GM√
R2 +

(
a +

√
z2 + b2

)2
− Gm

r + c
+ v2 ln(r2 + d2), (4)

where r2 = R2 + z2, M = 1011 M� (disk mass), a = 6.5 kpc,
and b = 0.26 kpc are the disk parameters; m = 3.4 × 1010 M�
(bulge mass), c = 0.7 kpc are the bulge parameters; and
v = 131.5 km s−1, d = 12 kpc are the halo parameters. The
parameters were taken from Helmi (2004).

Simulations in the corresponding “disk+bulge” system (i.e.,
by setting v = 0) show us that the bulge has a significant impact
on the shape of disk-crossing orbits with amplitudes near ζ only
in regions where its contribution to Equation (2) is comparable to
the disk’s contribution. In these regions, both expression (1) and
the AA give poor predictions for the shape of orbits because the
flattened component no longer dominates. As the orbits become
farther from the bulge, the results described above become valid
again. These results do not seem to depend on the specific form
of the bulge. We also performed tests with a Plummer bulge
(Binney & Tremaine 2008), in place of the Hernquist profile,
and obtained the same qualitative scenario.

Numerical experiments show that the halo does not signif-
icantly affect the prediction of Equations (1) and (2), and our
predictions are a good approximation for orbits which do not
come close to the bulge (see Figure 3). We also considered orbits
in a Miyamoto–Nagai disk superposed by two Plummer spheres
that represent the bulge and the halo. The results obtained are
in accordance with the general picture described above. Energy
conservation was checked for all calculations performed, with
an accuracy characterized by a maximum relative error of 10−8.
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3.1. Comparison with Other Approximations

We examine whether there is a relation between our formula
and the recently proposed correction to the AA (Binney &
McMillan 2011), where a term proportional to the vertical
action, γ Jz, is added to the azimuthal angular momentum |Lz|
in order to more accurately incorporate the centrifugal force
contribution to off-equatorial orbits. The centrifugal term used
to estimate the radial action would depend, in that case, on L2

instead of L2
z , where L = |Lz| + γ Jz and γ is a constant.

As described in Binney & McMillan (2011), there is in
general a value of γ for which the corresponding correction
describes well the vertical amplitude of a given off-equatorial
orbit. However, this value varies for different orbits in the same
potential, even in the case where the orbits have the same
value of energy and angular momentum (and a similar radial
span). In particular, it does not only depend on the flatness
of the disk. In our tests with a Miyamoto–Nagai potential
(b/a = 0.1), we found that γ should vary at least by one order
of magnitude in order to correctly model orbits with different
vertical amplitudes, from 0.5ζ to 1.5ζ (keeping E and Lz fixed
for all orbits).

The factor γ does not seem to present any clear correlation
with the value of the vertical action, although it seems to
decrease as we consider orbits with higher vertical amplitude
(however, orbits with the same amplitude but with different Lz

are described by different values of γ ). For the orbit in Figure 1,
for instance, one must have γ ≈ 6 in order to accurately describe
the orbit’s envelope (which coincides visually with the solid
curve given by Equation (1)). However, it should be noted that
the above correction can give accurate results for orbits that are
“inside” the disk (where the AA overestimates the amplitude
and Equation (1) underestimates it) and also “outside” it (with
amplitudes of roughly two times the disk thickness), once the
corresponding value of γ is found.

Although vertical amplitudes can be described with accuracy
in this case, the procedure of correcting the centrifugal con-
tribution by also considering the orbit’s vertical action (as in
Binney & McMillan 2011) seems more intricate than prescrib-
ing a unique value of γ for all orbits. Therefore, a more powerful
prescription using this method would need to describe the de-
pendence of γ on the orbit’s parameters in such a way that a
priori estimates of the orbit’s vertical amplitudes could be made.

3.2. Tests with Completely Integrable Models

In order to rigorously test the validity of Equation (1), we
have to deal with potentials with an exactly conserved third
integral of motion. An important and well-known example is
the case of Stäckel models, which have a simple separable
form in spheroidal coordinates (see Batsleer & Dejonghe 1994;
Binney & Tremaine 2008). For simplicity, we will focus on
the Kuzmin–Kutuzov potential, which can be written as (see
Dejonghe & de Zeeuw 1988 for the density profile and more
details)

Φ = − GM√
R2 + z2 + a2 + c2 + 2

√
a2c2 + c2R2 + a2z2

, (5)

where a and c are real constants. As occurs in any Stäckel model,
its orbits are bounded vertically by coordinate hyperbolae. In
this case, they are defined by

2λ = a2 + c2 + R2 + z2

−
√

z4 − 2(a2 − c2 − R2)z2 + (a2 − c2 + R2)2 (6)

for each constant value of λ. Moreover, the orbits are bounded
radially by coordinate ellipses given by

2ν = a2 + c2 + R2 + z2

+
√

z4 − 2(a2 − c2 − R2)z2 + (a2 − c2 + R2)2 (7)

for each constant value of ν. Therefore, we have to compare the
predictions of Equation (1) with the values of vertical amplitudes
determined by relation (6). We will show that the choice of
ζ → 0, in the integrated density of Equation (2), gives good
numerical results.

It is reasonable to expect that Equation (1) works well
for vertical amplitudes of the order of the disk thickness. In
the model described by Equation (5), the thickness can be
represented approximately by the parameter c, so we can expect
good predictions for orbits with Z/a ∼ c/a or less. This
fact is confirmed by numerical experiments, as in Figure 4,
showing three typical cases of increasing vertical amplitude:
(a) Z/a ∼ c/(5a), (b) Z/a ∼ 2c/a, and (c) Z/a ∼ 4c/a.
We see that the difference between the envelope determined by
Equation (1) and the one formed by the coordinate hyperbolae
increases with the vertical amplitude. The maximum percentage
difference between black and gray envelopes is approximately
0.5%, 2%, and 4% for cases (a), (b), and (c), respectively.

The predictions of Equation (1) improve for increasingly flat-
tened disks. This can be seen, for example, by decreasing the
value of c/a to 0.05 (half of the value in Figure 4). Figure 5(a)
shows an orbit with a vertical amplitude 10 times larger than
the thickness of the disk but with an envelope very near the
coordinate hyperbola. The next orbit of Figure 5(b), with an
amplitude of the order of c/a, exhibits an envelope coincid-
ing completely with the coordinate hyperbola. The maximum
percentage difference between black and gray envelopes in
Figure 5(a) is approximately 0.3%, whereas for Figure 5(b)
there is no difference. For smaller values of the ratio c/a, this
behavior holds, tending to decrease the percentage difference in
orbits with great amplitudes.

4. PERSPECTIVES

4.1. Other Realistic Mass Models

It would be instructive to check the validity of expressions (1)
and (2) for orbits just outside the thin disk in mass models with
two-component stellar disks that take into account the exponen-
tial dependence of Σ on galactocentric radius (McMillan 2011),
as well as vertical profiles which are more consistent with recent
kinematic observations (Veltz 2008; Jurić et al. 2008; Steinmetz
2012). For example, the luminosity density distribution within
a galactic disk can be written in the general form (van der Kruit
& Freeman 2011; van der Kruit 1988)

L(R, z) = Loe
−R/hsech2/n

(
nz

2hz

)
, (8)

where Lo is the central luminosity density, h is the scale length,
hz is the scale height, and n = 1, 2, . . . , i.e., ranging from
the isothermal distribution (n = 1) to the exponential disk
(n → ∞). By assuming that the mass-to-light ratio is constant,
the above mathematical expression can also be used to represent
the stellar mass distribution, which is dominant in regions
within the optical disk and far from the bulge. In these regions,
the contribution of bulge and halo can be neglected and ΣI will
be proportional to hze

−R/h. Observational results suggest that

4



The Astrophysical Journal, 786:27 (8pp), 2014 May 1 Vieira & Ramos-Caro

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.01

0.00

0.01

0.02

R a

z
a

0.20 0.25 0.30 0.35 0.40
0.0200

0.0205

0.0210

0.0215

0.0220

0.0225

R a

z
a

(b)

0.2 0.4 0.6 0.8 1.0
0.3

0.2

0.1

0.0

0.1

0.2

0.3

R a

z
a

0.2 0.3 0.4 0.5 0.6
0.20

0.21

0.22

0.23

0.24

0.25

R a

z
a

(c)

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

R a

z
a

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.36

0.38

0.40

0.42

0.44

0.46

R a

z
a

Figure 4. Sequence of three orbits with Lz/
√

GMa = 0.1 in the Kuzmin–Kutuzov potential with c/a = 0.1. Left: the orbit in the meridional plane along with
the envelope formed by the curves coordinates (gray) and the envelope predicted by relation (1) (black). Right: a detail of the figures on the left which shows that
the difference between the gray and black envelopes increases with the vertical amplitude. The parameters for each orbit are (a) Ea/GM = −0.7, R(0)/a = 0.85,
z(0)/a = 0.01; (b) Ea/GM = −0.6, R(0)/a = 1.0, z(0)/a = 0.1; and (c) Ea/GM = −0.55, R(0)/a = 1.0, z(0)/a = 0.1. All orbits have PR0 = 0.

5



The Astrophysical Journal, 786:27 (8pp), 2014 May 1 Vieira & Ramos-Caro

(a)

0.8 0.9 1.0 1.1 1.2 1.3

0.3

0.2

0.1

0.0

0.1

0.2

0.3

R a

z
a

0.78 0.80 0.82 0.84 0.86 0.88 0.90
0.25

0.26

0.27

0.28

0.29

R a

z
a

(b)

0.80 0.85 0.90 0.95 1.00 1.05

0.04

0.02

0.00

0.02

0.04

R a

z
a

0.80 0.85 0.90 0.95 1.00
0.034

0.035

0.036

0.037

0.038

0.039

R a

z
a

Figure 5. Two orbits with Lz/
√

GMa = 0.5 in the Kuzmin–Kutuzov potential with c/a = 0.05. In case (a), where Ea/GM = −0.46, R(0)/a = 1.3, and z(0)/a = 0.1,
and PR0 = 0, the envelope determined by Equation (1) (black) is very near the coordinate hyperbola (see the detail in the right panel); however, the vertical amplitude
is large compared to the thickness of the disk. A case with a smaller amplitude of the order of c/a, as in case (b), reveals a very good prediction of Equation (1). In
this case Ea/GM = −0.55, R(0)/a = 1.05, z(0)/a = 0.01 and PR0 = 0.

hz is independent of the galactocentric radius (van der Kruit &
Freeman 2011), but, for the sake of generality, we consider it as
a function of R. Thus, Equation (1) reduces to

Z3(R)

Z3(Ro)
= hz(Ro)

hz(R)
e(R−Ro)/h (9)

once we assume ζ (R) ∝ hz(R) in Equation (2). Equation (9)
relates the vertical amplitude of disk-crossing orbits with the
scale height (depending on R) and the scale length. If hz is as-
sumed to be constant, the prediction for the vertical amplitude
is given by Z(R) = Z(Ro)e(R−Ro)/3h. It is worth pointing out
that Equation (9) is valid for any value of n in the luminosity
profile (8). In fact, Equation (9) is valid for any “separable”
luminosity profile with a well-defined scale height hz(R). If
the radial profile is not strictly exponential, the exponential in
Equation (9) should be substituted by L(Ro, 0)/L(R, 0).
In regions where the thick-disk contribution becomes rel-

evant, the corresponding third integral (9) will depend on
hz,thin/hz,thick—as well as on n—in a nontrivial manner.

On the other hand, it is possible to relate the vertical
amplitude of disk-crossing orbits with the z-velocity dispersion
by combining Equation (1) with the equation of hydrostatic
equilibrium (van der Kruit & Freeman 2011),

σz(R) =
√

cπGΣI (R)hz, (10)

where σz(R) is the z-velocity dispersion integrated over z and
c is some constant which varies from 3/2 (exponential disk,
n → ∞) to 2 (isothermal distribution, n = 1), depending on
the vertical profile. If we again assume that hz is a function of
R, then

Z3(R)

Z3(Ro)
= hz(R)

hz(Ro)

σ 2
z (Ro)

σ 2
z (R)

, (11)

which relates the vertical amplitudes of disk-crossing or-
bits to two measurable quantities, hz and σz. For the case
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of galactic disks represented by the luminosity profile (8),
ΣI (R) ∝ hz(R) exp(−R/h) and the above expression reduce to
Equation (9). In this case, σz(R)/hz(R) will have an exponential
dependence on R with an e-folding of twice the luminosity scale
length, a result pointed out by van der Kruit & Freeman (2011)
in the case of constant scale height.

4.2. Modified Theories of Gravity

We now briefly describe the shape of orbits predicted by
modified theories of gravity as an extension of the formalism
presented in Vieira & Ramos-Caro (2012). If the motion of test
particles is described by a modified potential Ψ (as in Bekenstein
& Milgrom 1984; Rodrigues et al. 2010) with

∂Ψ
∂|z|

∣∣∣∣
z=0

= f Σ(R) (12)

for a razor-thin disk, where f (R, z) is a function depending on the
parameters of the modified theory and Σ is the surface density of
the thin disk, then the extension of the razor-thin disk formalism
to three-dimensional disks will generate an approximate third
integral of motion for nearly equatorial orbits that describes
their envelope in the meridional plane by

Z(R) = Z(Ro)

[
ΣΨ(Ro)

ΣΨ(R)

]1/3

,

with ΣΨ defined by

ΣΨ(R) =
∫ ζ

−ζ

f (R, z)ρ(R, z)dz. (13)

Here, ρ(R, z) is the disk’s density distribution. If ρ is con-
centrated near the galactic equatorial plane and if it falls off
very rapidly with z, we can approximate f in the integrand of
Equation (13) by its value at z = 0. With this approximation,
the prediction for the envelopes in the meridional plane reduces
to

Z(R) = Z(Ro)

[
f (Ro, 0)ΣI (Ro)

f (R, 0)ΣI (R)

]1/3

, (14)

with ΣI given by Equation (2). Equation (14) has the same
form as its analogue in the case of razor-thin disks (Vieira &
Ramos-Caro 2012); the only difference is the use of the
integrated surface mass density (2) in place of the 2D surface
density.

For MOND (Bekenstein & Milgrom 1984), Equation (14) is
given by (see Vieira & Ramos-Caro 2012)

Z3(R)

Z3(Ro)
= μR

μRo

ΣI (Ro)

ΣI (R)
, (15)

where μR = μ(|∇Ψ(R, 0)|/ao) is the MOND interpolating
function, whereas for RGGR (Rodrigues et al. 2010) we have

Z3(R)

Z3(Ro)
= 1 − V 2

∞/ΦN (Ro, 0)

1 − V 2∞/ΦN (R, 0)

ΣI (Ro)

ΣI (R)
, (16)

where ΦN is the Newtonian potential, given by Poisson’s
equation, and V∞ is the circular velocity at infinity.

5. CONCLUSIONS

We extend the relation (1), valid for axially symmetric razor-
thin disks, to more general galactic models, including several
components that are usually identified as bulge, thin disk, thick
disk, and halo. For this class of models, we can write

Z(R)Σ1/3
I (R) = Z(Ro)Σ1/3

I (Ro), (17)

where ΣI is the integrated dynamical surface density given by
Equations (2) and (3). Such a relation expresses the fact that
disk-crossing orbits are determined by an approximated third
integral of motion of the form I3 = ZΣ1/3

I . By performing
numerical calculations on a realistic model for the Milky
Way (combinations of Miyamoto–Nagai models were also
considered), we show that the predictions of Equation (17) are
highly accurate for orbits far from the bulge and with vertical
amplitudes of the order of the disk’s scale height. This fact
suggests that Equation (17) can be applied to the old stars
belonging to the thick disk.

The above considerations may also be regarded as a dynami-
cal counterpart to distinguish between thin-disk and thick-disk
stars in models of the Galaxy, complementary to kinematic and
photometric studies (Pauli et al. 2003; Veltz 2008; Jurić et al.
2008; see also Steinmetz 2012 and references therein). More-
over, the approximate third integral obtained here can be used
as an effective “vertical action” (Jz = 8G(1/2)/(3π1/2)I (3/2)

3 ; see
Vieira & Ramos-Caro 2012) in self-consistent models for the
Galaxy’s distribution function depending on all action variables
(e.g., Binney 2010; Binney & McMillan 2011).

Finally, the predictions of Equations (15) and (16) may be
used in the future as an additional test of modified theories
of gravity (MG) when sufficient data concerning the vertical
amplitudes of orbits near the equatorial plane of spiral galaxies
become available. Even if predictions for the rotation curves are
the same as in Newtonian gravity + dark matter (DM) models,
the behavior of off-equatorial orbits may be a further probe to
distinguish between DM and MG models for spiral galaxies.

R.S.S.V. thanks Fundação de Amparo à Pesquisa do Estado de
Sào Paulo (FAPESP), grant 2010/00487-9, for financial support.
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Jurić, M., Ivezic, Z., Brooks, A., et al. 2008, ApJ, 673, 864
Law, D. R., Majewski, S. R., & Johnston, K. V. 2009, ApJL,

703, L67
McMillan, P. J. 2011, MNRAS, 414, 2446
Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533
Pauli, E. M., Napiwotzki, R., Altmann, M., et al. 2003, A&A, 400, 877
Rodrigues, D. C., Shapiro, I. L., & Letelier, P. S. 2010, JCAP, 04, 020
Sanders, J. 2012, MNRAS, 426, 128
Steinmetz, M. 2012, AN, 333, 523
van der Kruit, P. C. 1988, A&A, 192, 117
van der Kruit, P. C., & Freeman, K. C. 2011, ARA&A, 49, 301
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