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Abstract. Domain decomposition preconditioners for high-order Galerkin methods in two di-
mensions are often built from modules associated with the decomposition of the discrete space into
subspaces of functions related to the interior of elements, individual edges, and vertices. The re-
striction of the original bilinear form to a particular subspace gives rise to a diagonal block of the
preconditioner, and the action of its inverse on a vector has to be evaluated in each iteration. Each
block can be replaced by a preconditioner in order to decrease the cost. Knowledge of the quality
of this local preconditioner can be used directly in a study of the convergence rate of the overall
iterative process.

The Schur complement of an edge with respect to the variables interior to two adjacent elements is
considered. The assembly and factorization of this block matrix are potentially expensive, especially
for polynomials of high degree. It is demonstrated that the diagonal preconditioner of one such block
has a condition number that increases approximately linearly with the degree of the polynomials.
Numerical results demonstrate that the actual condition numbers are relatively small.
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1. Introduction. Polynomials of high degree have been used extensively to ap-
proximate second-order elliptic partial differential equations in the plane. Two well-
known discretization schemes are the p-version finite element method [23] and the
spectral element method [13, 14].

In the conforming formulation of these schemes, the domain is partitioned into
a union of elements so that the intersection between two distinct elements is either
empty, one vertex, or a whole edge. In each element, the discretization space consists
of polynomials of degree N ; the discrete solution approaches the exact one when N
increases. Previous theoretical and practical work shows that these methods take
full advantage of the regularity of the solution of the partial differential equation;
see [2, 3, 11, 14, 23]. The basis of this polynomial space is usually chosen so that it
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can be partitioned into sets of functions associated with the interior of the element,
individual edges, or the vertices.

Let the stiffness matrices corresponding to the p-version and spectral element
methods for the homogeneous Dirichlet problem defined in one element be denoted
by Kp and KN , respectively. Let the usual bases for these methods, which will
be described in section 2, be used to generate these matrices. Then, the condition
numbers satisfy

κ(Kp) � N4 and κ(KN ) � N3;(1.1)

see [5] and [22]. Here, and in what follows, � means that the ratio of the quantities
being compared is bounded from above and below by constants independent of the
degree N . These conditioning results are even worse for a domain partitioned into
many elements, and they suggest that an unpreconditioned conjugate gradient method
is likely to require many iterations; this is actually seen in numerical tests. Diagonal
preconditioning of these full matrices has also been used, but the condition number
still increases quadratically with N ; see [5, 22].

Many domain decomposition preconditioners can be viewed as block-Jacobi pre-
conditioners after an appropriate change of basis has been made. Each block is de-
termined by a subspace of the discrete space and by an exact or inexact solver; see
[10]. The decomposition into subspaces corresponds to the elimination of the cou-
pling between different sets of basis functions. We note that it has been determined
experimentally that there is a very strong coupling between the interior and the stan-
dard interface basis functions [4]. A block-Jacobi preconditioner that eliminates the
problem associated with this strong coupling has been proposed by Babuška, Craig,
Mandel, and Pitkäranta [2] for the p-version finite element method. A change of basis
is performed by computing the Schur complement with respect to the interior degrees
of freedom; the new interface basis functions are orthogonal to the interior ones. In
this new basis, the preconditioner is built from one block of relatively small dimen-
sion associated with a global problem, one block for each edge of the triangulation
into elements, and one block for the interior of each element; exact solvers are used
for all blocks. The condition number of this algorithm is bounded from above by
C(1 + log(N))2; see [2]. The same result holds for the spectral element method with
a possibly different constant C.

However, for all the implementations that we know of, the Schur complement
blocks associated with the edges are preconditioned by their diagonals; in other words,
inexact solvers are used to totally decouple the edge degrees of freedom. This sub-
stantially reduces the amount of work in constructing and evaluating the action of the
preconditioner because it eliminates the need to assemble and factor the edge Schur
complement blocks or, alternatively, the need to solve, in each iteration, Dirichlet
problems in the unions of pairs of subregions; see [2, 10]. The use of this diagonal
preconditioner has been found not to increase the condition number of the overall
iterative process appreciably, if at all; see [2, 3, 4, 15]. No theoretical result is derived
in [2] to support this particular variant of the algorithm.

The goal of this paper is to prove that the blocks of the Schur complement as-
sociated with each edge, preconditioned by their diagonal, have condition numbers
that grow approximately linearly with N , both for the p-version and for the spectral
element method. More specifically, Theorems 1 and 2 imply that both these condition
numbers are bounded from above by CN log(N). These theorems also provide lower
bounds on the growth of the condition numbers. We present numerical results for
4 ≤ N ≤ 50 that show a linear growth of these condition numbers and also that the
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actual condition numbers are relatively small, even for N on the order of 50; see Figs.
1, 2, and 3.

There are at least two applications of our results: the first immediate consequence
is that, for the algorithm as actually implemented in [2] and [3], the condition number
of the overall iterative process for the p-version κp grows faster than polylogarithmi-
cally in N . In fact, κp satisfies

CN(1 + log(N)) ≤ κp ≤ CN(1 + log(N))3;

we recall that for this algorithm, the vertex and interior blocks are solved exactly.
The condition number κN of the analogous algorithm for the spectral element method
satisfies

cN(1 + log(N))2 ≤ κN ≤ CN(1 + log(N))3.

Many domain decomposition algorithms have also been developed for problems in
three dimensions; see, e.g., [8, 16, 17, 19, 20, 21]. Again, the Schur complement blocks
associated with the faces play a major role. Diagonal preconditioners for these blocks
can be designed to produce relatively small condition numbers. In [9], the results and
techniques presented here are used as essential tools for the derivation and analysis
of these diagonal face preconditioners.

2. On polynomials and trace norms. Let Ω = [−1,+1]2, with the side
[−1,+1] × {−1} identified with Λ = [−1,+1]. Let PN (Λ) be the space of polyno-
mials of degree less than or equal to N , and let PN0 (Λ) be the set of polynomials in
PN (Λ) that vanish at −1 and 1.

The space PN (Ω) is given by tensorization of PN (Λ); analogously, PN0 (Ω) is the
tensor product of PN0 (Λ) with itself.

The Legendre polynomial basis {Ln}n≥0 results from applying the Gram–Schmidt
procedure to the set 1, x, x2, . . . , and normalizing so that Ln(1) = 1. The following
properties are classical and can be found in [5]:

((1− x2)L′n(x))′ + n(n+ 1)Ln(x) = 0 (n ≥ 0),(2.1)

∫ 1

−1
L2
n(t) dt =

1
n+ 1/2

(n ≥ 0),(2.2)

∫ x

−1
Ln(t) dt =

1
2n+ 1

(Ln+1(x)− Ln−1(x)) (n ≥ 1).(2.3)

For each N , the Gauss–Lobatto–Legendre quadrature of order N is denoted by
GLL(N) and satisfies

∀ p ∈ P 2N−1(Λ),
∫ 1

−1
p(x) dx =

N∑
j=0

p(ξj)ρj .(2.4)

Here, the quadrature points ξj are numbered in increasing order and are the zeros of
(1− x2)L′n(x). The weights ρj are given by

ρj =
2

N(N + 1)L2
N (ξj)

(0 ≤ j ≤ N).(2.5)
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The GLL(N) quadrature has the following important property:

∀ pN ∈ PN (Λ), ||pN ||2L2(Λ) ≤
N∑
j=0

p2
N (ξj)ρj ≤ 3||pN ||2L2(Λ).(2.6)

We next describe the basis functions used in the two methods. Following Szabó
and Babuška [23], a polynomial basis for the p-version finite element method on PN (Λ)
is defined by φ0(x) = (1− x)/2, φ1(x) = (1 + x)/2, and

φi(x) =
1

||Li−1||L2(Λ)

∫ x

−1
Li−1(t) dt (i ≥ 2).(2.7)

A p-version polynomial basis for PN (Ω) is given by tensorization of this one-dimen-
sional basis.

The basis for the spectral element method on PN (Λ) is given by {`j}Nj=0, the
Lagrange interpolation basis at the GLL points, i.e., `j(ξi) = δij . The spectral element
basis in two dimensions is also given by tensorization of the one-dimensional basis.

The remainder of this section describes some Schur complement and trace norm
properties. They are valid for both the p-version and the spectral element method. In
each case, the basis can be partitioned into two sets of functions. The first is formed
by the basis functions vanishing on ∂Ω; these are the interior (i) basis functions. The
others are the boundary (b) basis functions. The Schur complement is defined by
S = Kbb−Kt

ibK
−1
ii Kib, where the subscripts refer to blocks of the stiffness matrix K,

ordered appropriately.
Let w be the restriction of a function of PN (Ω) to ∂Ω, let w b be the vector of its

boundary degrees of freedom, and let || · ||H1(Ω) and | · |H1(Ω) be the standard Sobolev
norm and seminorm, respectively. We easily find that

wtbSw b = minu|u|2H1(Ω) = |Hw|2H1(Ω),(2.8)

where the minimum is taken over all functions u ∈ PN (Ω) such that u|∂Ω = w, and
Hw is the function achieving the minimum. It is also easy to see that (wi, w b)t = Hw
satisfies

Kiiwi +Kibw b = 0.

The first expression of (2.8) defines a Schur complement symmetric bilinear form
that only depends on the boundary values of the function, and can be estimated in
terms of a trace norm. Let H1/2(∂Ω) be the trace space of H1(Ω), which can also be
defined by the K-method of interpolation as H1/2(∂Ω) = [L2(∂Ω), H1(∂Ω)]1/2 ; see
[12]. Then, by Theorem 7.4 of [2], for any w ∈ PN (Ω), there is a u ∈ PN (Ω) with
u = w on ∂Ω such that

||u||H1(Ω) ≤ C||w||H1/2(∂Ω).(2.9)

Throughout the paper, we use the standard convention that c > 0 and C < ∞ are
constants independent of N .

The space H1/2
00 (Λ) is the space of functions v ∈ H1/2(∂Ω) that vanish outside Λ,

endowed with the norm ||v||H1/2(∂Ω). This space is isomorphic to the interpolation

space [L2(Λ), H1
0 (Λ)]1/2; see [12]. An equivalent norm for H1/2

00 (Λ) is given by

||v||2∗ =
∫ 1

−1

∫ 1

−1

(
v(x)− v(y)
x− y

)2

dx dy +
∫ 1

−1

v2(x)
1− x2 dx;(2.10)

see [18].



614 TIMELY COMMUNICATION

Let vΛ be the trace on Λ ∼ [−1, 1]× {−1} of a function of PN (Ω) that vanishes
on ∂Ω \Λ. Let v Λ be the vector of degrees of freedom associated with the interior of
Λ, and let SΛ be the Schur complement restricted to these degrees of freedom. Then,
by using (2.8) and (2.9), we obtain, ∀ vΛ ∈ PN0 (Λ)

c||vΛ||2∗ ≤ vtΛSΛv Λ ≤ C||vΛ||2∗.(2.11)

3. Diagonal preconditioning. In what follows, we only work with SΛ, the
Schur complement restricted to Λ, as in (2.11), and we therefore drop the subscript
Λ. Accordingly, the vectors consist of the degrees of freedom associated with the
interior of Λ. The p-version and spectral element Schur complements are denoted by
Sp and SN , respectively.

THEOREM 1. Let Dp be the diagonal of Sp. Then, ∀ u ∈ PN0 (Λ)

λNmin(utDpu) ≤ utSpu ≤ λNmax(utDpu),(3.1)

with

c ≤ λNmax ≤ C,(3.2)

and
c

N log(N)
≤ λNmin ≤

C log(N)
N

.(3.3)

Proof. Let u(x) =
∑N
i=2 aiφi(x). By using (2.11) and the Courant–Fischer char-

acterization of the extreme eigenvalues via Rayleigh quotients, we only need to prove
estimates of ||u||2∗ in terms of

∑N
i=2 a

2
i ||φi||2∗. We start by showing that ||φi||2∗ � 1/i.

Indeed, from (2.1), we have

φi = −
√
i− 1/2
i(i− 1)

(1− x2)L′i−1.(3.4)

Then, by integrating by parts and using (2.1) again, the second term of (2.10) is easily
seen to be of order 1/i2. To compute the first term of (2.10), we note that it is the
square of the L2-norm of a polynomial of total degree less than or equal to i− 1. We
use the GLL(i− 1) quadrature rule which, by (2.6), gives the value of the integral, to
within a multiplicative constant. The use of this quadrature results in a double sum
that can be reduced to

i−1∑
j=0

(φ′i(ξj))
2ρ2
j ,

since the ξj are zeros of the φi, by (3.4). This last sum can be computed exactly by
using (2.5) and (2.7) for N = i− 1, and we find that ||φi||2∗ � 1/i.

We prove only the right inequality of (3.2), since the left inequality is clear by
taking u = φ2. Given u ∈ PN0 (Λ), we define an extension of u, E(u) ∈ PN (Ω) such
that E(u) = u on Λ, and E(u) vanishes on ∂Ω \ Λ. By (2.8) and (2.11), it suffices to
show that |E(u)|2H1(Ω) ≤ C

∑N
i=2(a2

i /i). We choose E(u)(x, y) =
∑N
i=2 aiφi(x)ψi(y),

for some ψi ∈ PN (Λ), ψi(−1) = 1, ψi(1) = 0, that will be chosen momentarily. A
simple computation shows that

|E(u)|2H1(Λ) =
N∑

i,j=2

aiaj((φ′i, φ
′
j)(ψi, ψj) + (φi, φj)(ψ′i, ψ

′
j)).
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Here, (·, ·) is the L2(−1, 1) inner product. By using (2.2), (2.3), and (2.7), we find

(φi, φi) � 1/i2, (φ′i, φ
′
i) � 1.(3.5)

Moreover, we also have (φ′i, φ
′
j) = 0 if i 6= j, and (φi, φj) = 0 if |i − j| > 2. These

estimates together with the Cauchy–Schwarz inequality imply

|E(u)|2H1(Λ) ≤ C
N∑
i=1

a2
i (||ψi||2L2(Λ) + (1/i2)||ψ′i||2L2(Λ)).

The piecewise linear interpolant using the GLL(N) points IhN is defined for any
vN ∈ PN (Λ) and is given by vh = IhN (vN ), vN (ξj) = vh(ξj), for j = 0, 1, . . . , N . The
inverse of IhN is denoted by INh . By using results of Canuto [7], we have

||vN ||L2(Λ) � ||vh||L2(Λ) and ||v′N ||L2(Λ) � ||v′h||L2(Λ).(3.6)

For i = 2, . . . , N , let ξj(i) be one of the GLL(N) points, with a distance to −1
proportional to 1/i. Let ψi,h(x) be the piecewise linear function that goes from 1 to 0
linearly between −1 and ξj(i), and is zero for x ≥ ξj(i), and choose ψi = INh (ψi,h). By
(3.6), we have ||ψi||2L2(Λ) � 1/i, and ||ψ′i||2L2(Λ) � i, since this is true for ψi,h. Then,

|E(u)|2H1(Λ) ≤ C
N∑
i=1

a2
i ((1/i) + (1/i2)i),

which implies the right inequality of (3.2).
We next prove the left inequality of (3.3). We recall that u(x) =

∑N
i=2 aiφi(x).

Since {φ′i} is an orthonormal set in L2(Λ), we have

ai =
∫ 1

−1
u′(x)φ′i(x) dx.(3.7)

By integration by parts and a duality argument, we get

ai ≤
∣∣∣∣∫ 1

−1
u(x)φ′′i (x) dx

∣∣∣∣
≤ ||u||∗||φ′′i ||(H1/2

00 )′

≤ ||u||∗||φ′i||H1/2

≤ ||u||∗
√
i− 1/2 ||Li−1||H1/2 ,

where the penultimate inequality follows from [12, Proposition 12.1]. The H1/2-norm
of Li has been computed in [1], using Gaussian quadrature rules, and is known to be
bounded from above by C(log(i))1/2. Therefore,

N∑
i=2

a2
i ||φi||2∗ ≤ C

(
N∑
i=2

log(i− 1)

)
||u||2∗,

which implies the left inequality of (3.3).
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We prove the right inequality of (3.3) only for the case of N even. For N odd,
the same proof applies, with N replaced by N − 1. Let u(x) = (LN (x)− 1) ∈ PN0 (Λ).
By (3.7) and integration by parts, we obtain, for 2 ≤ i < N ,

ai =
√
i− 1/2

(∫ 1

−1
L′i−1(x)−

∫ 1

−1
LN (x)L′i−1(x) dx

)
= 2
√
i− 1/2 ,

if i is even, and zero otherwise. Again by results of [1], ||LN − 1||2∗ ≤ C log(N).
Therefore, ∑N

i=2 a
2
i ||φi||2∗

||u||2∗
≥ C

log(N)

N∑
i even, i≥2

1,

which implies the right inequality of (3.3).
THEOREM 2. Let DN be the diagonal of SN . Then, ∀ u ∈ PN0 (Λ),

λNmin(utDNu) ≤ utSNu ≤ λNmax(utDNu),(3.8)

with

c ≤ λNmax ≤ C,(3.9)

and

c

N log(N)
≤ λNmin ≤

C

N
.(3.10)

Proof. Let u(x) =
∑N−1
i=1 u(ξi)`i,N (x), where {`i,N} is the Lagrange interpolation

basis related to the GLL(N) points. By (2.11), we only need to estimate ||u||2∗ in
terms of

∑N
i=2 u

2(ξi)||`i,N ||2∗.
Let vN ∈ PN0 (Λ). A consequence of (3.6) is that not only are the L2- and H1-

norms of vN and vh = IhN (vN ) equivalent, but also

||vN ||∗ � ||vh||∗;(3.11)

a detailed argument can be found in [8].
We start by showing that ||`i,N ||∗ � 1. Let `i,h = IhN (`i,N ), hi = ξi+1 − ξi, and

ηi = arccos(ξi). Then, for 1 ≤ i ≤ N − 1,

(N − i− (1/2))π
N

≤ ηi ≤
(N − i+ 1)π

N
;(3.12)

see [5, p. 76]. This relation implies that hi+1 � hi, for 0 ≤ i ≤ N − 1. A simple
computation shows that for 1 ≤ i ≤ N−1, ||`i,h||2L2(Λ) ≤ Chi and ||`i,h||2H1(Λ) ≤ C/hi.
By interpolating between these two spaces and using (3.6), we obtain ||`i,h||∗ ≤ C.
A rather tedious, yet elementary, computation using (2.10) shows that one of the
positive terms which form ||`i,h||2∗ is greater than a positive constant, and this shows
that ||`i,h||∗ � 1. Then, by (3.11), we find that ||`i,N ||∗ � 1.

The left inequality of (3.9) follows by taking u = `2,N , and using that ||u||∗ � 1.
To prove the right inequality, we use (3.11) and restrict ourselves to piecewise linear
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functions. Let E(uh)(x, y) =
∑N
i=2 uh(ξi)`i,h(x)ψi,h(y), for some ψi,h with ψi,h(−1) =

1 and ψi,h(1) = 0. We go through the same steps as in the previous proof, and since
the mass and stiffness matrices corresponding to the `i,h are tridiagonal, we obtain,
as before,

|E(uh)|2H1(Λ) ≤ C
N−1∑
i=1

(uh(ξi))2((1/hi)||ψi,h||2L2(Λ) + (hi)||(ψi,h)′||2L2(Λ)).

By (3.6), we can choose the ψi,h so that the coefficients of (uh(ξi))2 can be bounded
above by a constant, thus proving (3.9).

Our task now is to prove (3.10), and we start with the left inequality. For u ∈
PN0 (Λ), it is well known that

||u||2L∞(Λ) ≤ C(1 + log(N))||u||2∗;(3.13)

see Theorem 6.2 of [2]. Then,

N−1∑
i=1

|u(ξi)|2 ≤ C
N−1∑
i=1

(1 + log(N))||u||2∗,

and this, in turn, implies the left inequality of (3.10).
For the right inequality, let uh(x) = 1 − |x|, and let uN = INh (uh). A standard

argument of interpolation between L2(Λ) and H1
0 (Λ) and a simple computation shows

that ||u||∗ � 1. We also have

N−1∑
i=1

(u(ξi))2 ≥
N−1∑

i=dN/2e
(u(ξi))2

=
N−1∑

i=dN/2e
(1− ξi)2

= N
N−1∑

i=dN/2e

1
N

(1− cos(ηi))2,

where, by (3.12), the ηi are asymptotically equidistant on the interval [0, π/2]. This
last sum is a Riemann sum for (1/π)

∫ π/2
0 (1− cos(η))2 dη, and, therefore,

N−1∑
i=1

(u(ξi))2 ≥ CN,

completing the proof of (3.10).
Remark 1. The Schur complement associated with an edge for a finite element

space based on a quasi-uniform triangulation with a parameter h has a condition
number on the order of 1/h; see [6]. The techniques used to prove Theorem 2 can be
used to establish that this condition number is between 1/h and | log(h)|/h. Although
this is a slightly weaker result, our methods can be used in a context more general
than for quasi-uniform meshes, e.g., for the GLL mesh of Theorem 2.

We have performed numerical experiments to determine the actual values of the
eigenvalues of Theorems 1 and 2. The Schur complement matrices are obtained from
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FIG. 1. λmax(D−1
p Sp) = ◦, λmax(D−1

N SN ) = ×.
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FIG. 2. 1/λmin(D−1
p Sp) = ◦, 1/λmin(D−1

N SN ) = ×.

the stiffness matrices corresponding to the Poisson problem on Ω = [−1, 1]2. The
results for 4 ≤ N ≤ 50 are given in Figs. 1 and 2. They agree, in a clear cut way,
with the theoretical results developed here. We remark that for these values of N , the
approximate linear growth of the inverse of the smallest eigenvalue is clear, and that
the graph of the largest eigenvalue appears to approach a horizontal asymptote. We
note that the relatively small values of the resulting condition numbers help explain
the good convergence rates experienced with the algorithm implemented in [2].

To assess the sharpness of estimates (3.3) and (3.10), we have plotted exp(λ−1
min/N)

as a function of N, both for the p-version and the spectral element method; the results
are virtually constant in this range of N, and are shown in Fig. 3. This graph suggests
that the smallest eigenvalues are on the order of 1/N ; it would be interesting to know
if our estimates could be improved by removing the seemingly unnecessary factors
log(N).
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FIG. 3. Graph of f(N) = exp(λ−1
min(N)/N). p-version = ◦, spectral = ×.
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[3] I. BABUŠKA AND H. C. ELMAN, Some aspects of parallel implementation of the finite-element
method on message passing architectures, J. Comput. Appl. Math., 27 (1989), pp. 157–187.
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