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Dynamical behavior of the firings in a coupled neuronal system
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The time-interval sequences and the spatiotemporal patterns of the firings of a coupled neuronal net-
work are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time-
interval sequences show a low-frequency firing of bursts of spikes and a reversed period-doubling cascade
to a high-frequency repetitive firing state as the stimulus I is increased. For two neurons coupled to each
other through the firing of the spikes, the complexity of the time-interval sequences becomes simple as
the coupling strength increases. A network with a large number of neurons shows a complex spatiotem-
poral pattern structure. As the coupling strength increases, the number of phase-locked neurons in-

creases and the time-interval diagram shows temporal chaos and a bifurcation in the space. The dynami-
cal behavior is also verified by the behavior of the Lyapunov exponent.

PACS number(s): 87.10.+e, 05.45.+b

I. INTRODUCTION

Aspects of the dynamical behavior of a coupled neu-
ronal system, such as the synchronized patterns of neural
activity which result from the cooperative dynamical
properties, have attracted considerable interest over re-
cent years [1—4]. Some experimental results have been
obtained in the olfactory system, the visual cortex, and
other brain areas. Local groups of neurons responding to
a common stimulus display synchronized activity, and
neurons responding to separate stimuli are also phase
locked [5,6]. It has been suggested that the selective
synchronization of neural activity serves as a mechanism
for binding spatially distributed features into a coherent
object [5,7). It has also been well known for decades that
a major component of sensory information is transmitted
to the brain using a code based on the time intervals be-
tween firings of neurons, that is, action potentials or
spikes [8—11]. Moreover, statistical analyses of experi-
mentally obtained spike trains have concluded that the
time intervals contain a significant irregular component
[12]. It is thus important to investigate how the sensory
information is encoded and how this process is affected
by the irregular firings.

Recently an investigation of synchronized chaos in a
network model of bursting neurons responding to an in-
homogeneous stimulus has been made by Hansel and
Sompolinsky [13]. They found that there are three types
of phases for the network: an asynchronous stationary
state, synchronized oscillations, and synchronized chaos.
They concluded that the mechanism for generating the
synchronized chaotic state in their network model is the

long-range positive interactions in a population of neu-
rons with a distribution of local driving currents.

In this paper, we are interested in the dynamical prop-
erties of the time-interval sequences and the spatiotem-
poral patterns of firings in a coupled neuronal system
which presents a complex dynamical behavior of the
neural activity. The outline of this paper is as follows. In
Sec. II we describe the models of the coupled network.
In Sec. III we present and discuss the results. In Sec. IV
a summary is given.

II. A COUPLED NKURONAL NETWORK

= Y; aX; +bX; Z;—+I, + g J~—SI(t),
j=1

dY;
JXl

' =fz(X, , Y, , Z, )=c —dX; —Y;,

dZ; =f3(X, , Y, , Z, ) = r [s (X;—Xo)—Z; ] . (3)

The Hindmarsh-Rose neuron of the three-variable
model is a modification of Fitzhugh's Bonhoeffer —van
der Pol model [15,16], with the property that each action
potential is separated by a long interspike interval typical
of real neurons. That is, each neuron is characterized by

A network of coupled Hindmarsh-Rose neurons [14] is
represented by the following equations [13]:

dX, N

=f, (X, , Y, , Z, )+I;+ g J)SJ(t)

JWI
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three time-dependent variables: the membrane potential
X;, the recovery variable Y;, and a slow adaptation
current Z;. The external inputs are given by I;. In the
coupled neuronal network, the effect of the firing activity
of the jth neuron on the ith neuron is modeled in Eq. (1)
by an impulse current to the ith neuron, proportional to
the synaptic strength J, , generated when the jth neuron
is active. The neuron is active whenever its membrane
potential exceeds a threshold value X*,

S,(t) =6(X,(t) —X*), (4)

where 6(x)=1 if x ~ 0 and e(x) =0 if x (0.
We first consider a network consisting of only two neu-

rons that respond to a common external stimulus I:

dX; =f, (X;, Y;,Z;)+I +JS (t), .
dt

(5)

dF;
=f~(X, , Y, , Z, ),

dI;
(6)

dz
=f3(X;,Y;,Z, ),

dt

where i = 1,2 and j =2, 1, respectively.
To characterize the dynamical behavior of the time-

interval sequences we record the successive times when
the variable X crosses the X =0 line from above. That is,
we define T„by X ( T„)=0 and X ( T„))0. After this,
the time intervals 5, =T„+&—T„can be obtained for all
firings. From these 6„values we can know that if the
firing pattern is a train of bursts of one spike (period-l),
the 6„will have an unique value. For a train of bursts of
n spikes (period-n), we get n diff'erent values for 6„. For a
train of bursts of undetermined number of spikes (chaot-
ic), the 5„will show a spread of values. In this paper we
have also studied the spatiotemporal patterns of the
firings for coupled neuronal network, Eqs. (1)—(3), with
the numbers of neurons N =800. We used a uniform dis-
tribution for the stimulus I;, with 1 ~ I; ~ 5 (i.e.,
I; = I+4i /N). This distribution is the same as that used
in Ref. [13]. The spatiotemporal patterns of the firings
are obtained by plotting the neural activity, i.e., the firing
time t =T„, as defined before, with a point in the time
axis against the space, i.e., the location of the ith neuron.

All the numerical calculations are done by using a
modified fourth-order Runge-Kutta method. In the
study of the time-interval sequences of the firings for a
single and two coupled neurons, the time steps were
chosen as At =0.0125. We first run the program to
t =2300 to discard the transient and then followed the
time to t =3800 or longer. To get the spatiotemporal
patterns of a network with a large number of neurons, the
time step was chosen to be At =0.1. %'e have also done
some calculations with smaller steps, finding that the pat-
terns do not change. All parameters are held constant at
a = 1.0, b =3.0, c = 1.0, d =5.0, s =4.0, r =0.006, and
Xo = —1.6, which are the values used in Ref. [14].

III. RESULTS AND DISCUSSION

A. The firing of a single neuron

First, in this section, we present results for the time-
interval sequences for firing when there is no coupling be-
tween the neurons in the network. In this case, we only
need to study one set of equations, Eqs. (5)—(7), with
J =0. In Fig. 1, we plot the time interval 6„against the
stimulus I. From Fig. 1, we can see that when I (1.32,
there is no spike since the stimulus I is too small to
stimulate the neuron from its stable quiescent state with
X =Xo (0. As I increases there is a train of regularly
spaced spikes, the period-1 state. There is only one 5„
value for each I value when 1.32 &I (1.57. When
1.57 &I &2. 13, there are periodic bursts of two spikes
per burst, i.e., a period-2 state. For this case, in Fig. 1,
there are two values of 5„. Then it follows period-3 and
period-4. At I =2.83, there is an intermittency transition
to chaos. Finally, there follows a reversed period-
doubling cascade to a period-1 state again. This is due to
the fact that for a large stimulus I, the system is in a
high-frequency repetitive firing state. The code for the
information process is different for the differing firing
states.

B. The firing of two coupled neurons

When the neurons in a network are completely syn-
chronized and phase locked, we can use a simplified mod-
el of two coupling neurons to study the network since
from Eqs. (1)—(3) all the states of neurons are equivalent
and all the neurons are fired at the same time.

In Figs. 2(a) —2(c) we show the time intervals of the
firing s 5„against the stimulus I for the coupling
strengths J=0.5, 1.0, and 3.5, repetitive. From these
plots we can see that as the coupling increases, the com-
plexity of the time-interval sequences becomes simpler.
That is, as the coupling increases, the bifurcation regions
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FIG. 1. 6„=T„+l—T„, the time-interval sequences of the
firing for a single neuron vs the external stimulus I. Results
from simulations of one set of equations, Eqs. (5)—(7), with
J=O, and the time step At =0.0125 were used. For each I
value, the time is followed to t =5000 and the first t =2300 are
eliminated for transient.
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become narrower. When the coupling is low, for exam-
ple, in the case of J =0.5, the firing of the system keeps
most of the features of the single neuron, the case of
J=0. There is a bifurcation to a low-frequency repetitive
firing state consisting of a train of regular spaced spikes,

160
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and a region of chaotic firing, as well as a reversed
period-doubling cascades to a period-1 state [see Fig.
2(a)]. However, when J=1.0, the bifurcation region is
small [see (Fig. 2(b)] and there are almost only period-1
and period-2 firing states. Finally, when J =3.5, the bi-
furcation region disappears and there is only a period-1
repetitive firing state [see Fig. 2(c)]. Actually as the cou-
pling increases, the effective stimulus I'=I +JSJ(t) is in-
creased, which enables the neuron to be stimulated with a
repetitive firing. If the coupling is larger than a certain
value, there is no more chaotic firing.
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FIG. 2. 6„=T„+&—T„, the time-interval sequences of the
firing for two coupled neurons with the coupling strength J vs
the external stimulus I. (a) J=0.5; (b) J=1.5; (c) J=3.5. The
time step ht =0.0125 was used. For each value of I, the time is
followed to t =5000 with the first t =2300 eliminated.

C. Spatiotemporal patterns of a coupled network

Now we consider a network consisting of N neurons
with different values of I; coupled globally by excitatory
interactions, J,~ =J/X. Here we are using I; distributed
uniformly between 1 and 5, as before. Simulations of the
network with 0 & J & 6.0 revealed three phases [13]: an
asynchronous stationary state, synchronized oscillations,
and synchronized chaos. Here in. this paper we are in-
terested in the spatiotemporal patterns and the time in-
tervals of the firings of the network as shown in Fig. 3 for
the coupling strengths J =0.5, 3.0, and 6.0, respectively.
From these plots we can see that there are some struc-
tures of the firing state. For the lower stimulated region
(the smaller i region) the firing period is longer, and for
the higher stimulated region the period is shorter and the
points become dense since for the high stimulus I, the
neuron is repetitively fired. In addition, for some small
groups, or clusters, of neurons, the activities have a syn-
chronized behavior as they have the same frequency of
firings, phase locked. Notice, however, that the actual
time of firing within one of these clusters is widely distri-
buted. When the coupling increases, the synchronization
is expanded to a larger group of neurons, and finally to
the whole network of neurons.

When J =0.5, we can see from Fig. 3(a) that the pat-
tern of firings can be divided into four regions: (1)
nonfiring region for (i & 60)—there is no firings since the
local effective stimulus I'=I+ g J&$&(t) is too small
and is not enough to stimulate the neurons from its quies-
cent state; (2) periodic firing region for (60&i & 370)—
the firing is period-1 to period-4 but the time widths of
these period-n bursts are different; (3) chaotic firing re-
gion for (370(i & 500)—the firing is chaotic, the time
interval is irregular and with no structure in the pattern.
The total numbers of chaotic neurons is about n =130,
which takes about n/%=16% for the network; (4) the
repetitive high-frequency firing region for (500
(i &800)—for this region, the pattern is regular. In
Fig. 3(b), we have constructed a time-interval sequence
versus the local neurons from the spatiotemporal pattern
showed in Fig. 3(a). From this figure we can see that the
time interval property is similar to Fig. 2(a). There is a
bifurcation of a train burst consisting of one, two, three,
and four spikes, and an intermittency to chaotic state, as
well as a reversed bifurcation to a period-1 firing state.
The difference is that this bifurcation is in the neuronal
space and not in J as seen before.

As the coupling strength J increases, the number of n
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of neurons being chaotic also increases. For example,
when J = 1.5, the number n is about n =700, which takes
about n/%=90% of the neurons in the network. For
J=2.0 this factor is almost 1, which means that all the
neurons are chaotic. In Fig. 3(c) we have shown the case
for J=3.0, an intermediate coupling. We can see that
the nonfiring region has disappeared and there is a spa-
tially correlated oscillation for the neurons. However,
the oscillation is not phase locked in the whole network

and only in some very small regions there is a phase
locked activity. The synaptic current I, (t) is periodic in t
and very noisy. The activity of most of the neurons tends
to synchronize with this periodic current I,(t). We call
this a quasisynchronization. From the time-interval
figure shown in Fig. 3(d), the bifurcation region is extend-
ed to the whole network and many points are distributed
irregularly near the two main values of 5„ for each neu-
ron. As our conclusion, such an irregular spatiotemporal
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FIG. 3. The spatiotemporal patterns: neuron i vs the time intervals of the firing of spike for a coupled network with different cou-
pling strength J: (a) and (b) J =0.5; (c) and (d) J =3.0; (e) and (f) J =6.0. The time step At =0. 1 and the number of the neurons
N =800 were used.
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behavior is definitely chaotic since the time-interval se-
quences against the local neurons can be recognized as an
attractor for the network.

In Figs. 3(e) and 3(fl we presented the results for
J =6.0. From the spatiotemporal pattern of the activity,
we can see that the spatial structure is more ordered, i.e.,
all the neurons are phase locked together. But for the
temporal behavior, the activity of the neurons is chaotic.

It should be noticed that for very small values of J (and
even for J=0), the synaptic current I,„„is not given by a
constant plus noise. In fact, we have found that a period-
ic component, albeit of very small amplitude, appears for
large values of X. This periodic component simply
represents the effects of the oscillatory behavior of the in-
dependent neurons for most of the values of I included in
the interval 1 & I ~ 5. An average over some set of
periodically evolving variables will have in general at
least quasiperiodic behavior and is only in special cases
that the periodic components balance perfectly and the
average becomes a constant. There is of course a noisy
component, coming from the chaotic neurons, but this
component decays for large N. In addition, the introduc-
tion of the coupling acts as a positive feedback and tend
to increase the periodic component. In Fig. 4 we plotted
the periodicity of the synaptic current for (a) J =0 and (b)
J=0.5, in a network of 10 neurons. It is clearly seen
that the synaptic current is periodic even for J=0. In
Fig. 5 we show the corresponding power spectra of the
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FIG. 5. Power spectra of the synaptic current I„„for a cou-
pled neuronal network with the number of the neurons
N=2400, 4800, 10000 (from the top curve to the bottom one)
and the coupling strengths (a) J=0; (b) J=0.5.
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synaptic current I,„„(t). As the number of neurons is in-

creased, the noisy part decreases, but there still exists a
peak of very low frequency which represents the periodi-
city of the synaptic current. However, in the case of
large values of J, the synaptic current I,„„(t)is impulse-
like. The neurons are synchronized to this impulselike
current. The fronts of the activity of the neuron encode
the information at the same time (except for the high-I
region there are some dilute activities).

Finally, in order to verify the chaotic behavior, we
have also calculated the local maximum Lyapunov ex-
ponent A, ; against the neuron i as shown in Figs. 6(a) and
6(b), respectively. From these two figures, we can see
that there are positive value of I, for the chaotic region
and negative ones for periodic behavior. At the transi-
tions between one phase-locking region and another,
there are some small factors with positive k;.
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FIG. 4. The synaptic current I,~„vs time for a coupled net-
work with the number of the neurons N = 10000 and the cou-
pling strengths (a) J =0; (b) J =0.5.

IV. SUMMARY

Neuronal activity is well known to be noisy. This sto-
chasticity is observed both during information transmis-
sion and spontaneously. One of the most obvious
features of such stochasticity is in the uncertainty arising
in the interspike interval (the time-interval sequences
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FIG. 6. The local maximum Lyapunov exponent A, ; vs the
neuron i. The time is followed to t =9000 and the first t =4000
are eliminated for transient. (a) J =0.5; (b) J=3.0.

ed from a model of coupled neuronal network without
any noise and studied the time-interval sequences and the
spatiotemporal patterns of the activities of the neurons.
We found that (1) for a single neuron, or a network with
zero coupling, the chaotic activities can exist for some
range of the external stimulus [16]; (2) for a coupled two-
neuron model, the chaotic activity is dominated by the
coupling strength. For large coupling, the bifurcation re-
gion can disappear totally; (3) for a coupled network with
an uniform distribution of the external stimulus, the ac-
tivity of the neurons can be regular or irregular (chaotic).
From the spatiotemporal patterns, the strong coupling
results in a spatio-order phase, or synchronized firing
state of the neurons, while the temporal behavior of the
neurons is chaotic. The whole chaotic behavior cannot
be accounted for by the finite-size noise. The three
phases for this coupled neuronal network are (a) an asyn-
chronous stationary state (0 &J & 0.8); (b) quasisynchron-
ized chaos (0.9 &J & 3.2); (c) synchronized chaos
(J)3.2). However, for more strong coupling, we can
also expect to have a nonchaotic activity of neurons, the
fronts of activity appear in a regular time interval, since
(a) the strong coupling increases the spatiocorrelation
which can have a complete synchronization of the neu-
rons and (b) the eifect of this very high coupling or the
synaptic current is shifted to the local neurons, and it can
result in a high-frequency repetitive firing of the neurons.

It is worth noting that for modeling more realistic neu-
ronal network, one must consider the structure of the
network. This can be done assuming the local coupling
and stimulus are a function of the number of neurons,
i.e., differently in the space. However, the qualitative re-
sults for the nonlinear behavior are the same as for the
simple model.

studied in this paper), for example, in the interspike inter-
val distribution for a neuron in the spinal chord of a de-
cerebrate cat, where they may be a variance of the order
of 20% of the mean interval [17]. In this paper, we start-
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