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The photonic band structure as well as the density of photon states of a one-dimensional photonic superlat-
tice comprised of alternate layers of air and GaAs are theoretically investigated within the transfer-matrix
formalism. The existence of photonic superlattices of null gap with band-touching phenomena is demonstrated,
indicating the importance of one-dimensional photonic superlattices for many important practical applications.
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The propagation of light through a periodic medium has
been extensively investigated since the advent of photonic-
crystal �PC� materials proposed by Yablonovitch1 and John,2

who suggested that such structured materials with a periodic
dielectric constant could influence significantly the nature of
the photonic modes analogously to the influence of semicon-
ductor crystals on electronic properties.3–5 In particular, the
existence of photonic bands in the energy spectrum as well
as photonic band gaps, i.e., forbidden frequency regions for
light propagation and optical emission resulting from the
Bragg scattering of electromagnetic waves, have permitted
quite a number of analogies with physical properties of semi-
conductor physics. Thus, in the last two decades, investiga-
tion of PCs has gained a powerful thrust and resulted in a
considerable number of both experimental and theoretical
investigations on photonic systems. The microstructuring
techniques of high quality optical materials available nowa-
days yield to a remarkable flexibility in the fabrication of the
PCs, resulting in the tailoring of the electromagnetic disper-
sion relation and mode structure to suit almost any need,
opening new perspectives for both basic and technological
research purposes.5 Among many others, superrefractive
phenomena such as the superprism effect6 and tunable band
structures7,8 provide exciting possibilities to realize a variety
of optical applications by using PCs.9,10 In that respect, one-
dimensional �1D� photonic band-gap structures11–14 have
been extensively investigated resulting in the proposal of
various devices.

In this work we derive, via a transfer-matrix formalism, a
transcendental equation for the photonic band structure of a
1D periodic structure made of alternating layers of different
materials, such as GaAs and air. In addition to the well
known existence of the band gaps, we show that, depending
on the width relationship between the layer materials, super-
lattices with null photonic band gap may exist and the con-
ditions for such occurrences are also established.

Here we focus on a 1D photonic superlattice in the z
direction, i.e., a periodic photonic heterostructure composed
of alternating layers of different layer materials, such as, e.g.,
GaAs and air. We choose the origin located at the center of a
first slab �with dielectric constant �1 and magnetic permeabil-
ity �1� of width a with period d=a+b, where b is the slab
width of the second material �with dielectric constant �2 and
magnetic permeability �2�. For simplicity, here we restrict
the analysis to electromagnetic �EM� plane waves, although
the generalization to other EM waves is straightforward. Let

us consider the propagation, along the z axis of the superlat-
tice, of an in-plane linearly polarized electromagnetic field of

the form E��z , t�=E�z�e−i�tx̂. By using Maxwell’s equations
for linear and isotropic media, it is not difficult to show that
the amplitude E�z� of the electric field satisfies �Ref. 15�
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where n�z�=���z����z� and Z�z�=���z� /���z� are the re-
fraction index and impedance, respectively, of each layer ma-
terial. The solution of Eq. �1� for the electric field within
each host material may be quite generally written
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1
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where k= 2�
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 and z0 denotes an arbitrary point in each
of the layer materials. By introducing the auxiliary function
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and the transfer matrix M�z−z0� as
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one may write that
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, and one may note that PS−QR=1.
Moreover,
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Similarly,
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and, by using the Bloch condition

��z + d� = eiqd��z� , �16�

where q is chosen within the first Brillouin zone �BZ� of the
photonic superlattice, i.e., −� /d�q�� /d, one may then ob-
tain, with �=eiqd, the secular equation

PS�1 − ��2 − QR�1 + ��2 = 0, �17�

which leads to the two following equivalent relations:

sin2�qd

2
	 = − QR , �18�

cos2�qd

2
	 = PS . �19�

Note that the solutions of either �18� or �19� lead to the �
=��q� dispersion relationship or photonic band structure of
the periodic superlattice, with the corresponding solutions
for the in-plane electric field being straightforwardly ob-
tained through Eqs. �3�–�5�. Based on the dispersion relation
obtained above, one may now proceed to obtain the photonic
density of states,16 by calculating the number of allowed
states for a frequency � that is, by performing the integral
over the BZ and all bands, i.e.,

g��� = 

n
�

BZ

dq��� − �n�q�� , �20�

a quantity which is fundamental in the understanding of sev-
eral properties of a photonic superlattice.

The photonic band structures of a 1D superlattice of pe-
riod d �with a=b=d /2� are depicted in Fig. 1 for various
layer widths, illustrating the presence of gaps in the band
structure. Figure 2 shows the same results for the photonic
band structure, with � in reduced units, together with the
corresponding photon density of states. Band structure re-
sults of Figs. 1 and 2 illustrate the presence of the photonic

FIG. 1. Photonic band structure � vs q, with �=2�f , of a su-
perlattice �period d� with equal alternate layers of air �with thick-
ness a� and GaAs �thickness b and refractive index n2=��2�3.6�.
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band gaps, and are in agreement with previous work by
Longhi and Janner,12 who used a different theoretical ap-
proach.

The modifications introduced in the photonic band struc-
ture and photon density of states, when different a and b
layer widths are used, are shown in Fig. 3. One clearly sees
that, for layers of air �a=5 mm� narrower than the GaAs
width �b=15 mm�, the corresponding dispersion curves w
versus q become flatter, and the band gaps at the BZ edge are
quite different than in the case of equal layer widths. One
then is able to infer that the group velocity, which is given by
the slope of the dispersion curve, may become smaller, indi-
cating a longer interaction time between radiation and matter,
an interesting feature for its capability of enhancement of a
variety of optical phenomena. To further investigate the ef-

fect of the variation of relative air and GaAs widths, we have
plotted in Fig. 4 the photonic bands �shaded areas�, in the
case of the a=5 mm air layer, as functions of the GaAs-layer
thickness, obtaining structures, for particular values of the
GaAs-layer width, which may be shown to correspond
to points with null gaps in the corresponding photonic
band structure �see for instance, Fig. 5�d�, for a=5 mm and
b=1.4 mm�. Note that Eq. �18� �Eq. �19�� indicates that the
extrema of the photonic bands at q=0 �q= ± �

d
� occur at the

FIG. 2. Photon density of states g���, with �=2�f , and photo-
nic band structure � vs q of a superlattice �period d� with equal
alternate layers of air �with thickness a� and GaAs �thickness b
and refractive index n2=��2�3.6�, with the angular frequency
�=2�f in reduced units.

FIG. 3. Density of states g��� ��a�, �c�, and �e��, with �=2�f ,
and photonic band structure � vs q ��b�, �d�, and �f�� �period d� with
alternate layers of air �with thickness a� and GaAs �thickness b and
refractive index n2=��2�3.6�.

FIG. 4. Photonic bands �shaded areas� of a superlattice �period
d� with alternate layers of air �with thickness a� and GaAs �thick-
ness b and refractive index n2=��2�3.6�.

FIG. 5. Density of states g��� ��a�, �c�, and �e��, with �=2�f ,
and photonic band structure � vs q ��b�, �d�, and �f�� �period d� with
alternate layers of air �with thickness a� and GaAs �thickness b and
refractive index n2=��2�3.6�.
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zeroes of either R��� or Q��� �P��� or S����, and those
frequencies for which both R��� and Q��� �P��� and S����
vanish simultaneously correspond to null gaps. Therefore,
the touching of the bands occurs when R���=Q���=0 at the
BZ center, and when P���=S���=0 at the BZ edge, imply-

ing the following zero photonic band-gap conditions,
a�n1

c

=N1� and
b�n2

c =N2�, where N1 and N2 are integers, and may
be viewed as labels for the corresponding points of null gap
displayed in Fig. 4 �in Fig. 5�d�, for example, b

a =
n1

n2
=0.28,

and N1=N2=1 �2� is associated with the first �second� null
gap point at q=0�. Alternatively, one may write the condi-
tions as a=N1�1 /2 and b=N2�2 /2, which displays the under-
lying null-gap physics as one of interference effects, and has
clear similarities with the corresponding17 problem of null
gaps in the electronic spectra of semiconductor superlattices.
At the BZ center N1 and N2 are both even or both odd, while
at the BZ edge N1 and N2 are of opposite parities. One then
obtains the occurrence of null gaps if

b

a
=

n1

n2

N2

N1
, �21�

and at frequencies given by

� =
N1�c

n1a
=

N2�c

n2b
. �22�

Here we note that in a recent work, Liscidini and
Andreani18 analyzed the enhancement of second-harmonic
generation in doubly resonant microcavities with periodic
dielectric mirrors, and devoted their attention to the photonic
gaps themselves, whereas the null-gap points have been al-
together ignored, except in a comment on the vanishing of
the second-order gap when the so-called � /4 condition is
fulfilled. The present conditions �Eqs. �21� and �22�� for the
vanishing of photonic gaps provide therefore a generalization
of the related � /4 condition for closed gaps.19 We then turn
to the case of superlattices whose relative widths are in the
neighborhood of those that produce null gaps. Figure 5 illus-

trates the density of photon states as well as the photonic
band structures for 1D superlattices with a=5 mm air layer
and varying GaAs-layer widths. It is clear from Fig. 5�d� that
the dispersion curve may be dramatically modified, exhibit-
ing a band touching at the center of the Brillouin zone, with
a finite derivative, d�

dq = ± d
2�	

, with 	= 1
4
��1+

Z2

Z1
��1+

Z1

Z2
�
2

+ �1−
Z2

Z1
��1−

Z1

Z2
��2�, and 
= 1

2
� an1

c +
bn2

c
� and �= 1

2
� an1

c −
bn2

c
�,

and characterized by a finite peak at the density of photon
states, as it is apparent from Fig. 5�c�. Of course, such ana-
lytical expressions may prove useful in possible applications
of the predicted degeneracies in 1D photonic crystals.

Summing up, within the transfer-matrix technique, we
have analytically studied the photonic band structures as well
as the density of states of a 1D photonic crystal consisting of
a superlattice with two alternating layers of air and GaAs of
widths a and b, respectively. We have demonstrated the ex-
istence of photonic band gaps, as expected. Also, by ad-
equately choosing the width values of the materials consti-
tuting the photonic superlattice, we have found photonic
band structures with null gaps. Moreover, we find that for
particular values of the ratio between these widths, not only
a flattening of the bands occurs, but also a dramatic change is
presented, with a band-touching effect at the center of the
Brillouin zone, which induces a finite peak value at the den-
sity of photon states. The flattening of the bands indicates
that the group velocity may be greatly reduced so that the
interaction time between radiation and matter is longer,
yielding to a myriad of optical phenomena. Furthermore, the
null gap regions may also be quite useful for future develop-
ment of filtering optical devices.
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