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SIAM J. NUMER. ANAL. (D) 1997 Society for Industrial and Applied Mathematics 
Vol. 34, No. 6, pp. 2482-2502, December 1997 022 

QUASI-OPTIMAL SCHWARZ METHODS FOR THE CONFORMING 
SPECTRAL ELEMENT DISCRETIZATION* 

MARIO A. CASARINt 

Abstract. The spectral element method is used to discretize self-adjoint elliptic equations in 
three-dimensional domains. The domain is decomposed into hexahedral elements, and in each of the 
elements the discretization space is the set of polynomials of degree N in each variable. A conforming 
Galerkin formulation is used, the corresponding integrals are computed approximately with Gauss- 
Lobatto-Legendre (GLL) quadrature rules of order N, and a Lagrange interpolation basis associated 
with the GLL nodes is used. Fast methods are developed for solving the resulting linear system by 
the preconditioned conjugate gradient method. The conforming finite element space on the GLL 
mesh, consisting of piecewise Ql or P1 functions, produces a stiffness matrix Kh that is known to be 
spectrally equivalent to the spectral element stiffness matrix KN. Kh is replaced by a preconditioner 
Kh which is well adapted to parallel computer architectures. The preconditioned operator is then 
Kh<KN. 

Techniques for nonregular meshes are developed, which make it possible to estimate the condition 
number of Kh 1KN, where Kh is a standard finite element preconditioner of Kh, based on the 
GLL mesh. Two finite element-based preconditioners: the wirebasket method of Smith and the 
overlapping Schwarz algorithm for the spectral element method are given as examples of the use of 
these tools. Numerical experiments performed by Pahl are briefly discussed to illustrate the efficiency 
of these methods in two dimensions. 

Key words. domain decomposition, Schwarz methods, spectral element method, preconditioned 
conjugate gradients, iterative substructuring 

AMS subject classifications. 41A10, 65N30, 65N35, 65N55 

PII. S0036142995292281 

1. Introduction. The spectral element method has been used extensively to 
discretize a variety of partial differential equations, and its efficiency has been demon- 
strated both analytically and numerically; see [22, 23] and references therein. It uses 
polynomials of high degree in each element, and a particular choice of basis and nu- 
merical quadrature rules. In large-scale problems, long-range interactions between the 
basis elements within each substructure produce quite dense and expensive factoriza- 
tions of the stiffness matrix, and the use of direct methods is often not economical 
because of the large memory requirements [15]. In the past decade, many precondi- 
tioners have been developed for finite element discretizations of these equations; see 
e.g. [20, 21, 34]. For both families of discretizations, the design of preconditioners for 
three-dimensional problems is especially challenging. 

Early work on preconditioners for spectral methods was carried out by Canuto 
and Funaro [8] and Pavarino [28, 29, 30]. The algorithms studied by Pavarino are 
numerically scalable (i.e., the number of iterations is independent of the number of 
substructures) and optimal or quasi-optimal (the number of iterations does not grow 
or grows only slowly with the degree of the polynomials). However, each application 
of his preconditioners can be very expensive. 
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SCHWARZ METHODS FOR SPECTRAL ELEMENTS 2483 

Several iterative substructuring methods, which preserve quasi-optimality and 
scalability, were later introduced by Pavarino and Widlund [32, 33]. These precon- 
ditioners can be viewed as block-Jacobi methods after the stiffness matrix has been 
transformed by using a certain basis. The subspaces used are the analogues of those 
proposed by Smith [36] for piecewise linear finite element discretizations. The bound 
for the condition number of the preconditioned operator grows only slowly with the 
polynomial degree, and is independent of the number of substructures. 

Orzag [25] and Deville and Mund [11] proposed the use of a finite difference and a 
Q or P1 finite element model, respectively, as preconditioners for the spectral element 
matrix. The triangulation for this finite element method is based on the hexahedrals 
of the GLL mesh of one element. This preconditioner has been demonstrated both 
numerically, in [11], and theoretically, by Canuto [7], to have a condition number 
independent of the degree of the polynomials. We note that ideas similar to those 
in [7] and [11] also appear in Quarteroni and Zampieri [35] and references therein. 
The spectral equivalence results of Canuto [7] and generalizations for other boundary 
conditions were also obtained independently by Parter and Rothman [27]. 

Based on these ideas, extended to the case of several elements, Pahl [26] pro- 
posed efficient, easily parallelizable preconditioners for the spectral element method 
using iterative substructuring or overlapping Schwarz methods applied to the GLL 
finite element model. Pahl also performed experiments for a model problem in two 
dimensions, demonstrating that this kind of preconditioner can be very efficient. In 
other words, high-order accuracy is combined with efficient and inexpensive low-order 
preconditioning. The work of Pahl, however, did not contain any rigorous theoretical 
justification for the experimental results obtained. There are also other closely re- 
lated studies on domain decomposition methods for the spectral and p-version finite 
element method by Gervasio [16] and Gervasio, Ovtchinnikov, and Quarteroni [17]. 

A triangular finite element mesh with parameter h is said to be regular or shape- 
regular if the ratio between the radius of the inscribed circle of each triangle and the 
diameter of the triangle itself is bounded from below by a positive constant indepen- 
dent of h. A quadrilateral mesh is shape-regular if all the subtriangles formed by 
three vertices of the quadrilaterals of the mesh are shape-regular; see [18, Def. A2 and 
p. 105]. The previous analysis of Schwarz preconditioners for the h-method has relied 
upon the shape-regularity of the mesh, see [4, 13, 14], which does not hold at all for 
the GLL mesh. In this paper, we analyze some Schwarz finite element precondition- 
ers defined on this mesh, and derive polylogarithmic bounds on the condition number 
of the preconditioned operators for iterative substructuring methods, and a result 
analogous to the standard finite element bound for overlapping Schwarz algorithms. 
Then, by applying Canuto's result, [7], we propose and analyze a new overlapping 
preconditioner that uses only blocks of the spectral element matrix to define the local 
contributions of the preconditioner. We also give a new proof of one of the estimates 
in [32]. In summary, the equivalence between the spectral and finite element ma- 
trices, and the tools we develop here, allow us to extend the analysis available for 
the domain decomposition preconditioners of the standard finite element case to the 
spectral element case. We remark that our techniques may also be used to estimate 
the convergence of a large class of domain decomposition preconditioners on some 
nonregular meshes. 

The remainder of the paper is organized as follows. The next section contains 
some notation and a precise description of the discrete problem. The motivation and 
strategy of this paper are presented in detail in section 3. In section 4, we state and 
prove our technical results. In sections 5 and 6, we formulate and analyze several 
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2484 MARIO A. CASARIN 

representative iterative substructuring and overlapping algorithms. Section 7 briefly 
describes some numerical experiments performed by Pahl [26]. 

2. Differential and discrete model problems. Let Q be a bounded poly- 
hedral region in R' with diameter of order 1. We consider the following elliptic 
self-adjoint problem: Find u E Hol(Q) such that 

(2.1) a (u, v) f f(v) V v EE Ho' (Q), 

where 

a(u,v) jk(x) Vu Vv dx and f(v) fv dx for f E L2(Q). 

Our results are also valid for mixed Neumann-Dirichlet boundary conditions, but 
we restrict ourselves to homogeneous Dirichlet conditions. The extension to other 
self-adjoint cases is routine, and would only add distracting complications to our 
description. This problem is discretized by the spectral element method (SEM); 
see [23]. In what follows, the elements of the SEM are denoted by substructures 
or subdomains. Later on, we will further divide the substructures into hexahedrals, 
which will then be called elements. They form the triangulation for a finite element 
space which will be defined momentarily. 

We triangulate Q into nonoverlapping substructures { Qi}M of diameter on the 
order of H. Each Qi is the image of the reference substructure Q = [-1, +I] under a 
mapping Fi = Di o Gi, where Di is an isotropic dilation and Gi a C? mapping such 
that its Jacobian and inverse of its Jacobian are uniformly bounded by a constant. 
In section 3, we show that the bounds that we derive depend on this constant, and 
are better the closer this constant is to one, i.e., the closer the substructures are to a 
cube. Moreover, we suppose that the intersection between the closures of two distinct 
substructures is either empty, a vertex, a whole edge, or a whole face. Some additional 
properties of the mappings Fi are required to guarantee an optimal convergence rate. 
We refer to [1, problem 2] and references therein for further details on this issue 
but remark that affine mappings are covered by the available convergence theory for 
these methods. We assume for simplicity that k(x) has the constant value ki > 0 
in the substructure Qi, with possibly large jumps occurring only across substructure 
boundaries. The bounds for the iterative substructuring methods are independent 
of these jumps. For the overlapping methods, we need to introduce more stringent 
restrictions on k(x) to obtain bounds that are independent of the jumps; see the 
discussion after Lemma 4. 

We define the space pN (Q) as the space of polynomials of degree at most N in 
each of the variables separately. The space pN (Qi) is the space of functions VN such 
that VN o Fi belongs to pN (Q). The conforming discretization space PRN (Q) c Ho' (Q) 
is the space of continuous functions the restrictions of which to Qi belong to pN (Qi) 

The discrete L2-inner product restricted to one substructure Qi is defined by 
N 

(2.2) (UIV)N,Qi = E (uoFi) *(VOFi) *IJil((j,fk,fl) PjPkPl, 
j,k,l=o 

where (j and pj are, respectively, the GLL quadrature points and weights of degree 
N in the interval [-1, +1]; see [1]. The discrete L2-inner product is given by 

M 

(2.3) (UIV)N = (U,V)N,Q1 
i=l 
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We define a discrete bilinear form for u, v E H1 (Q) by 

M 
(2.4) aQ (U, v) = ki (VU, VV) N,QT, 

i=l1 

where (*, ) is computed componentwise. 
The discrete problem is as follows: Find UN E PJN(Q), such that 

(2.5) aQ(UN,VN)=(f,VN)N VVNE PO (Q). 

We number the GLL nodes of all the substructures, and choose as basis functions 
the functions XN of PON (Q) that are one at the GLL node xj and zero at all the 
others. This basis gives rise, in the standard way, to the linear system KNX = b. 
Note that the mass matrix of this nodal basis, generated by the discrete L2 inner 
product (2.3), is diagonal. The analysis and experimental evidence show that the 
SEM method just described achieves very good accuracy for reasonably small N 
for a wide range of problems; see [1, 22, 23] and references therein. The practical 
application of this method for large-scale problems, however, depends on fast and 
reliable solution methods for the system KNX = b. A direct method is often not an 
economical choice, because of long-range interactions between the basis elements, and 
because this is a discretization of a three-dimensional problem, which demands large 
computer resources even for the seven-point finite difference stencil; see [10]. 

The condition number of KN is very large even for moderate values of N; see [1]. 
Our approach is to solve this system by a preconditioned conjugate gradient algorithm. 
The following low-order discretization is used to define several preconditioners in the 
next sections. 

The GLL points of degree N, denoted by GLL(N), define, in a natural way, a 
triangulation Th of Q into N3 parallelepipeds, and on this triangulation we define the 
space Ph(Q) of continuous functions that are trilinear (Q1) in each parallelepiped of 
Th. The spaces ph(Qi) and Poh(Q) are defined by mapping in the same way as for 
pN(Qi) and PgN(Q). The finite element discrete problem associated with (2.1) is as 
follows: Find Uh E Poh(Q), such that 

(2.6) a(Uh, Vh) f (Vh) V Vh E Po (Q)- 

The standard nodal basis { oh} Of Ph(Q) is mapped by the Fi into a basis for ph(Qi), 
for 1 < i < M. These bases and the bilinear form a(., ) give rise to a system KhX = b. 

We could also define a finite element system generated by dividing each hexahedral 
of Th into tetrahedrals, and using P1 finite elements on this new triangulation. The 
analysis for P1 elements carries over immediately from the analysis for Qi elements, 
since the L2- and H1-norms are equivalent element by element. We remark that the 
P1 elements have been shown to produce smaller condition numbers when used as a 
preconditioner, and should be preferred in a practical implementation. For the sake 
of simplicity, we restrict ourselves to the case of Qi elements. 

We use the notations x - y , z >- u, and v w to express that there are strictly 
positive constants C and c such that 

x < Cy, z > cu, and cw < v < Cw, respectively. 

Here and elsewhere c and C are moderate constants independent of H, N, and k(x). 
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Let h be the distance between the two leftmost GLL(N) points (o and 4j in the 
interval [-1, +1]; h is on the order of 1/N2, while the distance between two consecutive 
GLL points increases to a maximum, close to the origin, which is on the order of 1/N; 
see [1]. Hence, the aspect ratios of some of the elements of the triangulation Th grow 
in proportion to N. 

For a region of diameter H, such as a substructure Qj, we use a norm with weights 
generated by dilation starting from a region of unit diameter, 

IUIIH1(Qj) UIHl(Qj) + H2 L2(Qj 

where I IH1 stands for the H1-seminorm. 

3. General strategy and simplifications. Let iN belong to PN(Q), and let 
Uh - h (fUN) be the unique function of Ph(Q) for which 

Uh(XG) = UN(XG) 

for every GLL(N) point XG c Q. Then, by [1, Cor. 1.13, p. 75] and the results in [7], 
we have 

(3.1) 1 hI L2(QI2) 
^ 

(UN, UN)N 

and 

(3.2) Luh 12( Q IfLN 12( Q a(Q (LN, U N), 

where aQ is given by (2.3) and (2.4) with Ji 1 and ki = 1. The basis of the 
proof of this last result is the H1-stability of the polynomial interpolation operator at 
the GLL nodes for functions in H1([-1, +1]), proved by Bernardi and Maday [2, 1]. 
The L2-stability of the GLL quadrature of order N for polynomials of degree N, 
and properties of the GLL nodes and weights are also important in the argument. 
We remark that the first equivalence of (3.2) and generalizations to other boundary 
conditions were obtained independently by Parter and Rothman [27]. 

Consider now a finite element function u defined in a substructure Qi with diam- 
eter of order H. Changing variables to the reference substructure by v(x') = v(Fj()) 
and using the bounds on the Jacobian of Fi, we obtain 

(3.3) |IUI1L2(Q) 2 H I12 

and 

(3.4) IU12 ) d 
21I2 

where d is the dimension and is equal to 1, 2, or 3. 
These estimates can be viewed as spectral equivalences of the stiffness and mass 

matrices generated by the norms and the basis introduced above. Indeed, the nodal 
basis {qj} is mapped, by interpolation at the GLL nodes, to the nodal basis of pN( Q). 
Then, (3.2) can be written as 

(3.5) A_T A A T A 

where ui is the vector of nodal values of both iN or fih, and Kh and KN are the 
stiffness matrices associated with 1 I(Q) and aQ(.,.). 
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Let K(i) and KN) be the stiffness matrices generated by the bases {qh} and 
respectively, for all nodes xj in the closure of Qi, and by using 1 1(Q) and aQ,Q, (,), 
respectively. Here, aQ,Q, (,.) is the restriction of aQ(,.) to the subdomain Qi. If u is 
the vector of nodal values, and u(i) is its restriction to Qi, then 

U (i)T K(i U() u U(i)T K (i) u(i 

by (3.2) and (3.4). The stiffness matrices KN and Kh are formed by subassembly 
[13]: 

(3.6) UTKhU = Ei U(i)TK( )U(i); 

an analogous expression holds for KN. These last two relations imply that 

(3.7) UTKhU uTKNU 

This shows that Kh is an optimal preconditioner for KN in terms of number of 
iterations. All these matrix equivalences, and their analogues in terms of norms, 
are hereafter called the finite element method-spectral element method (FEM-SEM) 
equivalence. 

We next show that the same results also hold for the Schur complements Sh 
and SN. The interface of the decomposition is defined as r = u &IOQi \ &Q. The 
Schur complement matrices Sh and SN are obtained by the elimination of the interior 
nodes of each Qi by Cholesky's algorithm; see [13]. A function UN is said to be 
(piecewise) Q-discrete harmonic if aQ,Q, (UN, VN) = 0, for all i and all VN belonging 
to pN (Qi) n Ho (Qi). The definition of (piecewise) h-discrete harmonic functions is 
analogous. It is clear that if ith and UN are, respectively, h- and Q-discrete harmonic 
with the same values at the nodes on r, then uT SNUp = aQ(UN, UN) and uTfShU =p 
a(iih, iih), where u p is the vector of nodal values on r of uh and UN; we note that iih 
and UN do not necessarily agree at the nodes interior to the substructures. 

The matrices Sh\ and SN are spectrally equivalent. Indeed, by subassembly (3.6), 
it is enough to verify the spectral equivalence for each substructure separately. For 
the substructure Qi, we find 

(3.8) u(r) SN)U(U) = aQ,Qi(UN,UN) > aQ.(I(UN),hi(UN)) 

> aQ(,h(IhUN),7Yh(I1-hUN)) = aQ(i,hifh) = UT SiU ) 

where 'Hh is the h-discrete harmonic extension of the interface values, and IN is 
the composition of IN with Fi. Here, we have used the FEM-SEM equivalence and 
the well-known minimizing property of the discrete harmonic extension. The reverse 
inequality is obtained in the same way. 

This equivalence implies that Sh is an optimal preconditioner for SN, in terms 
of number of iterations. However, as before, the action of the inverse of Sh is too 
expensive to produce an efficient preconditioner for large problems. 

In his master's thesis [26], Pahl proposed the replacement of Kh and Sh by pre- 
conditioners kh and Sh, respectively. If the condition number satisfies 

(3.9) I (KW- 1Kh) < C(N), 

with a moderately increasing function C(N), then a simple Rayleigh quotient argu- 
ment shows that s(k,71KN) - C(N); an analogous bound can be derived for 5h-7 
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and SN. kh and Sh are domain decomposition preconditioners based on Th, and are 
designed so that the action of their inverse on a vector is inexpensive to evaluate. 

In the next three sections, we define our preconditioners and then establish (3.9) 
and its analogue for Sh and Sh 1- We note that the triangulation Th is not shape- 
regular, and that all the bounds of this form for Schwarz preconditioners established in 
the literature require some kind of inverse condition, or regularity of the triangulation, 
which, as pointed out in section 2, does not hold for the GLL mesh. 

4. Technical results. In this section, we present the technical lemmas needed 
to prove our results. As is clear from the start, we draw heavily upon the results and 
techniques of Dryja, Smith, and Widlund [13]. 

4.1. Some estimates for nonregular triangulations. In this section, we 
develop all the estimates necessary to extend the technical tools developed in [13] to 
the case of nonregular hexahedral triangulations. We recall that Q = [-1, +1]3 is 
the reference substructure, and Th its triangulation generated by the GLL mesh. Let 
K = [-1, I] be the reference element, and let K c Q be a parallelepiped of 7h 

with sides h1, h2 and h3; these mesh parameters are not necessarily comparable in 
size. The function ut is a trilinear (Qi) function defined in K. In this subsection, we 
use hats to represent functions defined in K, and no hat superscript for points of K. 

Our first result concerns expressions of the L2 (K)- and H1 (K)-norms of a trilinear 
function u2 in terms of its nodal values. Let ei be one of the coordinate directions of 
K, and let a, b, c, and d be the vertices of one of the faces that are perpendicular to 
ei. Let a', b', c', and d' be the corresponding points on the parallel face. x, denotes 
a generic vertex of K. 

LEMMA 1. Let ui be trilinear in K. Then, 

(4.1) lIufL2(K) h1h2h3 E (u(X))21 

and 

(4.2) II&axQ2II 2 (K) h1h2h3 E (^(xce) - (X, ))2. 
1 x<> =aAb,c,d 

Proof. These formulas follow by changing variables, and by using the equivalence 
of any pair of norms in the finite dimensional space Qi (K). [ 

In the next lemma, we give a bound on the gradient of a trilinear function in 
terms of bounds on the differences of the nodal values. Its proof is routine. 

LEMMA 2. Let ui be trilinear in K such that lii(a) - fi(b)l < Cla - bl/r for some 
constant C and parameter r, and for any two vertices a and b belonging to one face 
of K. Then 

r 
where C is independent of the parameter r. 

LEMMA 3. Let ui be a trilinear function defined in K, and let t be a Cl function 
such that JV0t < C/r and J9j < C for some constant C and parameter r. Then 

(4.3) lax., I 1)L2(K) < C(IiiI12(k) + r2IIUIIL2(K)). 

Here C is independent of N and r, and 1h is the Qi -interpolant using the values at 
the vertices of K. 
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Proof. By equation (4.2), and letting hi, h2, and h3 be the sides of the element 
K: 

II&xjh(~ ) 1I12()< hih2h3 S (2xOx I |XTIh(0) |L2 (K) h2 IC 1 E ((X) W(X)-U(X/(X)2. 
Z x=a,b,c,d 

Each term in the sum above can be bounded by 

f (x)' (x) - u2(x)t9(x') + ui(x)tI(x') -i(x')9(x')) 

? 2 (QbjX))2Q(L(X) -(Xf))2 + (Ui(X)-i(x))2(xf))2) 

The bound on VW implies that Ad(x) - i(x')I hilr, and therefore 

I I qx'Ih L (Kf ) h2 ( Ei(u(x)- i('))2 + Eac (X())2 hr) 
i x=a,b,c,d x=a,b,c,d 

(4.4) 
I 

1 + r Ifil2 
IH1(k) + LI~I2 (k) ' 

since V is bounded. [1 

4.2. Further technical tools. The iterative substructuring algorithms studied 
in section 5 are based on subspaces directly related to the interiors of the substruc- 
tures, and the faces, edges, and vertices. Let Qij be the union of two substructures 
Qi, Qj, and their common face YFk. Let Wj represent the wirebasket of the subdomain 
Qj, i.e., the union of all its edges and vertices. We note that a face in the interior of 
the region Q is common to exactly two substructures, an interior edge is shared by 
more than two, and an interior vertex is common to still more substructures. All the 
substructures, faces, and edges are regarded as open sets. 

The following observations greatly simplify our analysis in the next sections. The 
preconditioner Sh that we propose is defined by subassembly of the matrices see 
section 5. We then restrict our analysis to one substructure. The results for the whole 
region follow by a standard Rayleigh quotient argument. The assumption that the 
{Fi}ML are sufficiently smooth mappings improves the flexibility of the triangulation, 
but does not make the analysis essentially different from the case of affine mappings. 
This is seen from the estimates in section 3, where we have used only bounds on the 
Jacobian and inverse of the Jacobian of Fi. Therefore, without loss of generality, we 
assume, from now on, that the Fi are affine mappings. Throughout this subsection, 
u is a finite element function belonging to ph. 

Let the coarse space VH be the space of continuous functions, the restriction of 
which to each Qi is the image of a trilinear function under the mapping Fi. 

LEMMA 4. Let QHu be the L2 projection of U E ph(Q) onto the coarse space VH. 
Then, 

- IU-QHUI2 (Q) H H (Q) 

and 
QHUI12 IU1I2(Q) 

The first estimate of the lemma is the same estimate satisfied by the H1-projection 
onto a finite element space defined on a convex region, except that here, the convexity 
is not needed. The second estimate is the stability of QH on the space H1. For a proof 
of this lemma, we refer to Bramble and Xu [6], where a general discussion is also 
presented. Results of this kind are essential in the analysis of domain decomposition 
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algorithms, since they allow us to obtain convergence rate estimates that are indepen- 
dent of the number of subdomains. We remark that these bounds are not necessarily 
independent of the values ki of the coefficient. A sufficient condition to guarantee this 
independence is that the coefficients ki satisfy a quasi-monotone condition; see [12]. 

In what follows, some of the results are stated for substructures of diameter 
proportional to H, but the arguments are given only for a reference substructure. 
The introduction of the scaling factors into the final formulas is, by the results of 
section 3, routine. 

LEMMA 5. Let Uwj be the average value of u on WVj, the wirebasket of subdomain 
Qj. Then 

I IUI 12 2 (W ) (I + log (N)) IIlUI I12(j 

and 

|U-UW31L2(W3) (1 + log(N))IuIH(Q.) 

Similar bounds also hold for an individual substructure edge. 
Proof. For general quasi-uniform triangulations, the first estimate is given in 

[6, Lem. 2.4]. For completeness, we prove the result for the special case of the GLL 
mesh. In the reference substructure Q, we can obtain Vh D Ph, where Ph was defined 
in section 2, and Vh is a Qi finite element space defined on a quasi-uniform tensor 
product triangulation with maximum element diameter on the order of h, and which 
is a refinement of Th; indeed, it suffices to refine all the elements of Th with edges 
bigger than, say, 3h/2, with planes perpendicular to these edges. Let (1, 1, z) be a 
point on an edge of Q, and let G be the square section [-1,1] x [-1,1] x {z} of Q. 
Then, the tensor product mesh of Vh determines a quasi-uniform triangulation of 
G with a parameter on the order of h, for which the standard discrete Sobolev-like 
inequality for two dimensions holds: if u E Vh, then 

Iu(1, 1, z) 12 < (1 + log(h)) I IuI1(G); 

see [3] or [6]. We next integrate over z, and then repeat the argument for the other 
edges. This shows the first estimate of the lemma for u E Vh, since h 1/N2. The 
second inequality is obtained from the first one by a quotient-space argument. Since 
ph C Vh, we conclude that both results are true Vu E ph. D 

In the abstract Schwarz convergence theory, the crucial point in the estimate of 
the rate of convergence of a two-level algorithm is the proof that all functions in the 
finite element space can be decomposed into components belonging to the subspaces, 
in such a way that the sum of the resulting energies are uniformly, or almost uniformly, 
bounded with respect to the parameters H and N. The main technique for deriving 
such a decomposition is the use of a suitable partition of unity. In the next two 
lemmas, we construct functions that are used to define such partitions of unity. 

LEMMA 6. Let .Fk be the face common to Qi and Qj, and let 0fk be the function 
in ph(Q) that is equal to one at the interior nodes of Fk, zero at the remaining nodes 
of &Qj U 9Qj, and discrete harmonic in Qi and Qj. Then 

I OTk 12 _) (I + log (N)) H. 

The same bound also holds for the other subregion Qj. 
Proof. We define functions 0Tk and ~0k in the reference cube; 0Fk and d0k 

are obtained, as usual, by mapping; see section 3. We construct the function '0Tk 
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FIG. 1. One of the segments CCk 

e A Ck 

FIG. 2. Geometry underlying equation (4.5). 

with the same boundary values as 0FkX and then prove that the bound given in the 
lemma holds for 0.k. The standard energy minimizing property of discrete harmonic 
functions then gives the estimate for Qrk. The six functions idk which correspond to 
the six faces of the cube also form a partition of unity at all nodes belonging to the 
closure of the substructure except those on the wirebasket; this property is used in 
the next lemma. 

We divide the substructure into 24 subtetrahedra by connecting its center C to 
all the vertices and to all the six centers Ck of the faces, and by drawing the diagonals 
of the faces of Q; see Fig. 1. 

The function t.Fk associated with the face Ek is defined to be 1/6 at the point 
C. The values at the centers of the faces are i9Fk (Cj) = 6jk, for j = 1, ..., 6, where 
8jk is the Kronecker symbol. 0Fk is linear on the segments CCj. The values inside 
each subtetrahedron formed by a segment CCj and one edge of Jj are defined to be 
constant on the intersection of any plane through that edge, and are given by the value, 
already known, on the segment CCj. Next, the whole function Qrk iS modified to be 
a piecewise Qi function on Th by interpolating at the GLL nodes; the values of this 
finite element function at the nodes on the wirebasket are defined to be equal to zero. 

We claim that IV0.9k (x)I < C/r, where x is a point belonging to any element K 
that does not touch any edge of the cube, and r is the distance from the center of 
k to the closest edge of the cube. Let ab be a side of K. We analyze in detail the 
situation depicted in Fig. 2, where ab is parallel to CCk. Let e be the intersection of 
the plane containing these two segments with the edge of the cube that is closest to 
ab. Then JQk (b) - Qrk (a) - D, by the construction of QVk, where D is the size of 
the radial projection with center e of ab onto CCk. By similarity of triangles, we may 
write 

(4.5) |0Fk (b) - rk (a) 
dist (a, b) 
- 
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where r' is the distance between e and the midpoint of ab. Here we have used that the 
distance between e and CCk is of order 1. If the segment ab is not parallel to CCk, 

the difference 1dFk (b) - kFk (a) I is even smaller, and (4.5) is still valid. Notice that r' 
is within a multiple of 2 of r. Therefore, Lemma 2 implies that TV0k (X)) < C/r. 

In order to estimate the energy of .Fk, we start with the elements K that touch 
an edge F of the cube. Let h3 be the side of K which is parallel to E. Then h3 is 
greater than or equal to the other sides of K, by the properties of the GLL nodes, as 
explained in section 2. Since the nodal values of Z%Fk in K are bounded by 1, by the 
construction of Fk we have 

19Fk IH1(K) h3 

by using equation (4.2). Summing over K, we conclude that the energy of 9Fk is 
bounded independently of N for the union of all elements that touch the edges of the 
cube. 

To estimate the contribution to the energy from the other elements of the sub- 
structure, we consider one subtetrahedron at a time and introduce cylindrical coordi- 
nates using the substructure edge, that belongs to the subtetrahedron, as the z-axis. 
The bound now follows from the bound on the gradient of z9Fk given above and ele- 
mentary considerations. We refer to [13] for more details, and also to the proof of the 
next lemma, where a similar computation is performed. [1 

The following lemma corresponds to Lemma 4.5 in [13]. This lemma and the 
previous one are the keys to avoiding the use of H/2 estimates and extension theorems 
in the analysis of our algorithms. 

LEMMA 7. Let t9Fk (x) be the function introduced in the proof of Lemma 6, let ?k 
be a face of the substructure Qj, and let Ih denote the interpolation operator associated 
with the finite element space ph and the image of the GLL points under the mapping 
Fj7. Then, 

,Ih (19.kU) (X) = u (x) 
k 

for all nodal points x C Qj that do not belong to the wirebasket Wj, and 

Ih (19FkU) 12 1( ) < (I + log (N) )2 I|UI 12H1 

Proof. The first part is trivial from the construction of t9 Tk made in the previous 
lemma. For the second part, we work in the reference substructure, and first estimate 
the sum of the energy of all the elements K that touch an edge S of the wirebasket. 
We provide a detailed argument only for K touching Fk; the other elements that touch 
an edge are treated similarly. The nodal values of 1h(irk') in such an element are 
0,0,0,0, u(a), u(b), W.Fk(c)2a(c) and zFk(d)ui(d); 0.Fk lies between 0 and 1. Moreover, 
let h3 be the side of K that is parallel to E. Then h3 > hi and h3 > h2, by the 
geometrical properties of the GLL mesh. Now, equation (4.2) implies 

IhIh (Fka)() 1 < h3(i9 (a) +u (b) + (.Fk(C)i (C))2 + (kFk(d)ia(d))2). 

Then, applying (4.1) for the segments that are parallel to W, and Lemma 5, we have 

w It (sukm) i1 tae o (a + logu(N)) I I wir e o1 Q. 

where this sum is taken over all elements K that touch the wirebasket of Q 
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We next bound the energy of the interpolant for the other elements. By the proof 
of the previous lemma, IV.yk ? < C/r, where r is the distance between the element 
K and the nearest edge of Q. Then, Lemma 3 implies that 

S Ih ( ki)IH(f) q S (Ifu12 + rH2 IJIL2(K)), 
kcQ KcQ 

where the sum is taken over all elements K that do not touch the wirebasket of Q. 
The bound of the first term in the sum is trivial. To bound the second term, 

we partition the elements of Q into groups, in accordance to the closest edge of Q; 
the exact rule for the assignment of the elements that are halfway between is of no 
importance. For each edge of the wirebasket, we use a local cylindrical coordinate 
system with the z axis coinciding with the edge, and the radial direction, r, normal 
to it. The sum restricted to each of these groups of elements can be estimated by an 
integral 

5 r 21UIHL2(K) <(U) 2 dz do drj 
kc~2 = 

The integral with respect to z can be bounded by using Lemma 5. We obtain 

S r 211112L z (1 + log(C/h)) II !Il(2) j r1dr 
kcQ 

and thus 

S Ij(p.Fkf) I H1 (K) (1 + log (C/h)) 21|1|I|112[1 
kc!~ 

We note that this proof is an extension of an argument given in [13] for shape- 
regular meshes, and that equation (4.3) replaces the use of the inverse inequality, 
which if used here would introduce the bad aspect ratios of the elements into the 
estimates. 

LEMMA 8. Let 'i,&Fk and uw, be the averages of u on &.Fk and W , respectively. 
Then, 

2 
("aTk ) H |I|UI L2(aTk) ) 

(U22qH IIL2 (Ilj). 

The proof is a direct consequence of the Cauchy-Schwarz inequality. 
LEMMA 9. Let u E Ph(Qj) be zero on the mesh points of the faces of Qj and 

discrete harm,onic in Qj. Then, 

lUH1QA) < ||L2 (Jlj). 

Proof. In the reference substructure, we define an extension ii such that ii = u 
on &Q, and the value of iu at all the interior GLL points are zero. The energy norm 
of iu is nonzero only in the elements of TP which touch the wirebasket, and can easily 
be estimated, up to a constant independent of the degree N, in terms of the L2(Wj)- 
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norm of ii, by using (4.2) and the one-dimensional analogue of (4.1). The argument 
is very similar to that used to estimate the energy of V.Fk in the proof of Lemma 6; it 
is based on the observation that for an hexahedral k C Ph that touches a wirebasket 
edge, the larger side of k is the one parallel to (or coinciding with) that edge. The 
result now follows by noting that the discrete harmonic extension u has energy smaller 
than ii. El 

5. Iterative substructuring algorithms. At this point, we can propose and 
analyze several iterative substructuring methods previously developed for finite el- 
ements. We choose the wirebasket algorithm proposed by Smith [36] because it is 
efficient, and its analysis raises all the important technical issues. In a practical prob- 
lem, the choice between the many alternatives now known should be made on the basis 
of the theoretical results that can be derived from our theory, as well as numerical 
experimentation. 

Smith's algorithm is a wirebasket-based method, and it is also described as Al- 
gorithm 6.4 in [13] in the context of standard finite elements. It can be viewed as a 
block-diagonal preconditioner after transforming Sh into a convenient basis, and the 
same is true for our algorithm. 

By the abstract framework of Schwarz methods developed for example in [13], we 
know that in order to describe the algorithm we only need to prescribe subspaces, the 
sum of which spans the whole space of h-discrete harmonic functions of Ph (Q), and 
one bilinear form for each subspace. 

For each internal face .Fk, we let VFk be the space of h-discrete harmonic functions 
that vanish at all the interface nodes that do not belong to this face. The functions 
in V.Fk have support in Qij, the union of the two substructures Ri and Qj that share 
the face Tk. The bilinear form used for these spaces is a(., .). 

The wirebasket subspace is the range of the following interpolation operator: 

IUh= E Uh(Xk)(Pk+ E (Vh )0Fk0Fk. 

XkEWh k 

Here, Pk is the discrete harmonic extension of the standard nodal basis functions qk, 
Wh is the set of nodes in the union of all the wirebaskets, and UhaFk is the average 
of uh on OFk. The bilinear form for this coarse subspace is given by 

bo (Uh, Uh) = (1 + log(N)) k ki inf |uh L - 2(W?) C' 

where the ci are constants in each substructure. 
These subspaces and bilinear forms define, via the Schwarz framework, a precon- 

ditioner of Sh that we call Sh,WB- 

THEOREM 1. For the preconditioner Sh,WB, we have 

r,(Sh WBSN) 
- (1 + log(N))2, 

where the constant C is independent of N, H, and the values ki of the coefficient. 
Proof. We can apply, word by word, the proof of Theorem 6.4 in [13] to the matrix 

Sh, using now the tools developed in section 4. For completeness, the important points 
of the proof are presented here. 

We follow the Schwarz framework to estimate Amin(Sh,WBSh) from below by Co-2. 
Here, Co is a constant for which VUh e PR h(Q), there are uo e VH and urk C Vyrk and 
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such that 

(5.1) Uh=UO+ZUFk 

Fk 

and 

(5.2) bo(uo,uo) +Za(u.Fk,u.Fk) < C0a(Uh, Uh); 

TFk 

see [13, Thm. 2.2]. 
Let uo = Ih uh, and let u.Fk = Hh (Ih (d.Fk (uh - U))) - (VhT)TFk O.Fk. It is then clear 

that (5.1) is satisfied. 
We next bound the first term of (5.2) using Lemma 5: 

bo(uo, uo) < (1 + log(N)) kiHuo - (Uo )iH,2(W.v) 
i 

< C(1 + log(N)) kiIUhH1(Q) 

= 0(1 + log(N) )2a(Uh, Uh) 

In the second inequality, we used that Uh uo on the wirebasket. 
Let Qij be the union of the two subregions Qi and Qj, which share the face Fk. 

We note that the values of uo are irrelevant in the first term of the expression defining 
U.Fk, since t9.Fk vanishes at the wirebasket nodes. Then, 

a(u.rk, urFk) < C (ki(lIh(0(h-UO))I1(Q) +Uh H H 

+kj(|I (k(Uh Hl-U))UHl(Q3) + H A)) 

< C(1 + log(N)) (ki| Uh UIH (Q) + kj Uh HI(HA)), 

by using Lemma 7 to bound the first and third terms, and Lemmas 5, 6, and 8 to 
bound the second and fourth terms. The full H1-norm on the right-hand side can be 
reduced to the seminorm by using a quotient-space argument, since uy-k is invariant 
under the addition of a constant to Uh. We next sum over all the faces Fk, and note 
that each point of Q is covered at most six times by the Qij. This concludes the 
verification of (5.2), and therefore Amin (ShBSh) > c/(1 + log(N))2 

The estimate of Amax(Sh,WBSh) (by a constant independent of the parameters 
H and N) is again a consequence of the results of subsection 4.2 and the abstract 
convergence theorem. Therefore, 

rK(Sh,WBSh) < (1 + log(N))2. 

The harmonic FEM-SEM equivalence (3.8) and a Rayleigh quotient argument 
complete the proof of the theorem; see section 3. [1 

The next algorithm is obtained from the previous one by the discrete harmonic 
FEM-SEM equivalence, by which we find a preconditioner SN,WB from Sh,WB. The 
subspaces that define the preconditioner are now contained in the space of Q-discrete 
harmonic functions of PJV(0). 

Each face subspace, related to a face Fk, consists of the set of all Q-discrete 
harmonic functions that are zero at all the interface nodes that do not belong to the 
interior of the face ,Fk. The bilinear form for these spaces is aQ(. ,.). 
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The wirebasket subspaces are defined as before, by prescribing the values at the 
GLL(N) nodes on a face as the average of the function on the boundary of the 
face. The bilinear form used for the wirebasket subspace is bQ(., .), obtained from 
bo(,.) by applying the GLL(N) quadrature to compute the L2-norm on each edge 
of the wirebasket. This is exactly the wirebasket method based on GLL quadrature 
described in [32]. 

The following lemma shows the equivalence of the two functions Uh and UN with 
respect to the bilinear forms bo(,.) and bQ(,.), respectively. 

LEMMA 10. Let Uh be a Qi finite element function on the GLL(N) mesh on the 
interval I = [-1, +1], and let UN be its polynomial interpolant using the nodes of this 
rnesh. Then, 

N 

inf I |Uh _ 
CL2 inf E (UN ( -j) -C)2pj, 

j=O 

where the inf is taken over all real constants. 
Proof. The GLL(N) quadrature has the following important property: For any 

polynomial UN of degree N defined on I, 
N 

| |UN 1 2 )< E U2N((j) Pj < 3 1 | UNI 
2 
|2 (A); UNL2 (A)?ZNQJ)j? N L2() 

j=o 

see [1, p. 75]. Therefore, it is enough to prove that 

inf I iUh _ C11L2(I) L n UN- 21 

We prove only the - part of this last estimate, since the opposite inequality is anal- 
ogous. The inequality without the infimum is valid for the constant cr that realizes 
the inf in the right-hand side by the FEM-SEM equivalence. By taking the inf of the 
left-hand side the inequality is preserved. [ 

THEOREM 2. For the preconditioner SN,WB, we have 

K(S7 ESN) - (1 + log(N))2, 

where the constant is independent of the parameters H, N, and the values ki of the 
coefficient. 

Proof. In this proof, the functions with indices h and N are h- and Q- discrete 
harmonic functions respectively, and they agree at the GLL nodes that belong to the 
interface F. As observed in section 3, it is enough to analyze one substructure Qi at 
a time, and prove the following equivalence: 

(5-3) bQW (UN, UN) + E ki UN - UN,&FkON,Fk H1(Q) 
Yk CQO 

bo,W, (Uh v Uh) + 
S ki |Uh Uh,&Fk Oh,Fk H1 (Q,), 

Yk COQ 

where the subscript Wi means that only the contribution from the wirebasket of Qi 
is used to define the bilinear form. We prove only the -< part; the proof of the reverse 
inequality is analogous. We first note that Lemma 10 bounds the first term on the 
left-hand side by the first term on the right-hand side. 

Each term in the sum on the left-hand side can be bounded from above by 

2ki JUN - Uh,&FkON,Fk 1(Q) + 2ki I (-h,ak -OUN,&Fk)N,Fk Hl(Q) 
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The first term of this expression can be bounded from above by the corresponding 
term on the right-hand side by using the harmonic FEM-SEM equivalence. The 
second term is bounded by 

CkiH(1 + log(N)) `Uh,0k - UN,&Fk I 

CkiH(1 + log(N)) (Uh - Ch,W,)ank - (UN -Ch,WTk 1 
2 

where Ch,W^ is the average of uh over Wi. Here we have used that the estimate on 
the energy norm of Oh,rk, given in Lemma 6, implies a similar estimate for ON,Fk, 

by (3.8). Applying the Cauchy-Schwarz inequality, as in Lemma 8, and the FEM- 
SEM equivalence, we can bound this last expression in terms of the first term of the 
right-hand side of equation (5.3). [ 

REMARK 1. The p-version finite element approximation of problem (2.1) cor- 
responding to the partition {Qi} can be given by (2.5). A major difference of this 
method, when compared to the spectral element method, is the use of a hierarchical ba- 
sis for the local discrete space PN(Qi) based on integrated Legendre polynomials. The 
method of Theorem 2 may still be used with this basis, since the convergence properties 
of the algorithm depends only on the spaces being used; the implementation requires 
a change from the p-version basis to the basis of interpolating polynomials O<N, for 
the degrees of freedom associated with the wirebasket. We note that this change of 
basis affects only the coarse space component of the preconditioner. For an analogous 
method, and a detailed discussion of this point, we refer to [32, 33]. 

REMARK 2. For the p-version defined on tetrahedral substructures, the local dis- 
crete space is the space of polynomials of total degree N. A crucial difficulty encoun- 
tered, when attempting to extend our results to that case, is to obtain a set of nodes in 
the reference tetrahedral with stability properties analogous to those of the GLL mesh 
in the cube; see, e.g., equations (3.1) and (3.2). This is an important open question. 
Quite recently, a study of preconditioners for this discretization has been undertaken 
from a different perspective; see [37]. Ion Bicad is currently preparing a Ph.D. thesis 
on these topics, under the supervision of Olof Widlund. 

6. Overlapping Schwarz algorithms. We now consider the additive overlap- 
ping Schwarz method, which is presented, e.g., in [13, 14]. We recall that an abstract 
framework, given in Theorem 2.2 of [13], is available for the analysis of this and other 
types of algorithms. Here we only discuss the additive version, but the analysis can 
also be extended in a standard way to the multiplicative variant [5], which has proven 
more effective in many practical problems. 

As in the previous section, a preconditioner kh for Kh is specified by a set of 
local spaces together with a coarse space. We also have to provide bilinear forms 
(approximate solvers) for the elliptic problems restricted to each of these subspaces. 
Here we work with exact solvers, i.e., the bilinear form is always a(., .). The extension 
to approximate solvers is straightforward. 

In the context of spectral elements, the following construction was first proposed 
by Pahl [26]. The domain Q is covered by substructures Qi, which are the original 
spectral elements. We enlarge each of them, to produce overlapping subregions Qi, 
in such a way that the boundary of Qi does not cut through any element of the 
triangulation Th generated by the GLL nodes. The overlap 6 is the minimum distance 
between the boundaries of Qi and Qi. When 6 is proportional to H the overlap is 
called generous, and when 6 is comparable to the size of the elements of Th, we speak 
of a small overlap. For the sake of simplicity, we again restrict our analysis to the case 
when all the mappings Fi are affine. The general situation can be treated similarly. 

This content downloaded from 143.106.108.185 on Tue, 9 Dec 2014 12:17:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2498 MARIO A. CASARIN 

The local spaces are given by Po' (Q), the set of functions in Poh (Q) that vanish at 
all the nodes on or outside &Q'. The coarse space is the Qi finite element space defined 
on the mesh generated by the subregions Qi, the elements of the coarse triangulation, 
which are shape-regular by assumption; see section 2. This setting incorporates both 
small and generous overlap. 

THEOREM 3. Pahl's additive Schwarz algorithm satisfies 

K(KW,ASKN) -- (I + H16)_ 

The constant C is independent of the parameters H, N, and 8. 
Proof. We claim that 

(6.1) K(KW7?SKh) < C(1 + H/6). 

We follow the proof of the analogous result for shape-regular finite elements; see 
Theorem 3 in [14], where the standard additive Schwarz framework is used. For ease 
of presentation, we only consider the case of generous overlap, for which 6 is on the 
order of H (the general case can be treated analogously, using the techniques of [14]). 
Let Uh C Poh(Q). We define the coarse space component by uo = QHUh. By Lemma 
4, |UOIH1(Q) < ClUhlHl(Q). Let Wh = U- uo, and let {0i} be a partition of unity 
associated with the covering {Qi}, and which satisfies 10il < C, and IVOil < C/H. 
The local components are defined by ui = Ih(Oiwh), where Ih is the interpolation 
operator at the degrees of freedom of Poh(Q). We next derive the estimate 

U, 22 2 Eli I(Q) H Co lU H1 (Q)i 
i>1 

with a constant C02; by the Schwarz theory, we have then Amin(khA?sKh) ? C For 
an element K C Qi, the application of Lemma 3 gives 

Ih(OiWh) H1 (K) < C( lWh H1 (K) + H2 IlWh L2(K))v 

by using the bounds on Oi and its gradient. Summing this inequality over K C Qi, 
we obtain 

lui H(Q/) Ih (OiWh) <HI() ? C( Wlh 2 + 1 
2Wh||L2(Q)) Hl (Q,) (Q,) ~~H(Q)+ H2 

We next sum over all subregions, and use that each point of Q is covered a small 
number of times by the covering {Qi}, to obtain 

i12 < C( Wh H1(Q) + Wh 112 

By applying Lemma 4, and the estimate for uo stated above, we find 

El UiH(Q) < Co(Uh H(Q)); 
i>0 

in other words, C02 is a constant independent of H and h. Therefore, the smallest eigen- 
value of kh-AsKh is bounded from below independently of H and h. The constant 
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upper bound on the largest eigenvalue follows directly from the Cauchy-Schwarz in- 
equality, since this is a two-level method, and the local and coarse problems are solved 
exactly; see Theorem 2.2 of [13]. 

The use of relation (6.1), the FEM-SEM equivalence, and a Rayleigh quotient 
argument completes the proof. [ 

REMARK 3. Even though the theory does not rule out the possibility of growth of 
the constant C of Theorem 3 when the coefficient k(x) has large jumps, only a very 
moderate increase has been observed in numerical experiments; see, e.g., [19]. We 
also note that when the overlap is generous, the method is optimal in the sense that 
the condition number is uniformly bounded with respect to N and H. 

We now apply the FEM-SEM equivalence to the subspaces that define Kh,AS, 
to propose yet another preconditioner; this is the same technique used to derive the 
preconditioner SN,WB from Sh,WB- The coarse space is the same as the one for Kh,AS, 
while the local spaces are given by 

V j = {VN C PRO(Q) such that IN(VN) C PO (Q)} 

Notice that the polynomials of V f are generally not equal to zero outside Q', and 

therefore VQN X PRN (QA). 
These subspaces and the use of the bilinear forms aQ(,.) and a(., ) for the local 

and coarse spaces, respectively, define our new preconditioner KN,AS. Theorem 3 
and a simple application of the FEM-SEM equivalence for each of the local spaces 
immediately give the following. 

THEOREM 4. 

,(K' AKN) < C(1 + H/6). 

REMARK 4. To the best of our knowledge, this preconditioner KN,AS is new. Even 
though Kh,AS is superior to KN,AS for the model problem considered here, because the 
local problems are much easier to solve, the comparative efficiency in more complicated 
problems can only be determined by experiments. 

REMARK 5. In the present algorithm, the local spaces are allowed to be more gen- 
eral than those considered by Pavarino [28, 29, 30]. For each crosspoint xe, Pavarino 
defines an extended subdomain Q' as the union of all the subdomains that contain xe 
as a vertex. Therefore, 6 is always on the order of H. Our methods can also be used 
to provide alternative proofs of some of his results, when the local spaces can be easily 
described in terms of interpolation polynomials on the GLL mesh. 

REMARK 6. There does not appear to be, in the literature, any systematic study 
of overlapping methods for the p-version finite element; see Remarks 1 and 2, for a 
brief description of this discretization variant. Remark 2 points to a major difficulty 
encountered when attempting to extend our methods to tetrahedral substructures. 

7. Comments on the numerical experiments by Pahl. We describe here 
part of the experiments performed by Pahl [26], which have motivated our analysis; for 
a more detailed description, we refer to that very thorough study in two dimensions. 
Some of the results of these experiments are used here to illustrate the efficiency of the 
methods considered in the last two sections, and as experimental evidence to show 
the correctness and predictive value of our theory. Numerical experiments for the 
three-dimensional case have also been performed for related iterative substructuring 
algorithms by Einar R0nquist; see [9, Chap. 4] for a preliminary presentation of these 
results. 
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TABLE 7.1 
Iteration counts for iterative substructuring, N = 4 and increasing M. 

Method/M 2 4 5 6 7 8 10 12 

TWB 4 7 8 8 9 9 9 9 
TBDD 1 4 4 6 6 7 7 7 
I 4 11 13 16 18 20 26 30 

TABLE 7.2 
Iteration counts for iterative substructuring, M =7 and increasing N. 

Method/N 4 5 6 7 8 9 10 12 
TWB 9 9 10 10 10 11 11 11 
TBDD 6 6 7 7 7 8 8 8 
I 18 20 22 24 25 27 30 34 

In Pahl's experiments, the region Q was taken to be the unit square in the plane, 
and the tests were based on the two-dimensional analogues of the methods described 
in the previous two sections. Q was subdivided into a uniform M x M mesh of 
squares, with sides H = I/M. In each square, polynomials of degree N were used. 
The coefficient k(x) was equal to one, and the right-hand side of (2.1) was chosen 
so that the exact solution was u = xy(1 - x)(1 - y). The stopping criterion for the 
PCG iteration was a reduction of 10-5 in the Euclidean norm of the residual, and 
only iteration counts were reported. The exact solution u is a polynomial of degree 
2, and therefore the spectral element method, if solved exactly, recovers u, for N > 2. 
The attention was focused on the number of iterations, which is a reliable measure 
of the conditioning of the preconditioned operator, since the initial guess for the 
iteration was chosen as identically zero (and therefore away from the exact solution). 
The experiments were performed for the finite element based preconditioners of the 
spectral element stiffness matrix; see our Theorems 1 and 3. 

In a first set of experiments, the iterative substructuring methods were considered. 
Several preconditioners were studied, including the wirebasket preconditioner TWB 

analyzed in section 5, and a two-dimensional analogue of the balancing preconditioner 
TBDD of Mandel and Brezina [24]. For N = 4 and M between 2 and 12, the number 
of iterations was bounded by 11, and grew hardly at all, with increasing M; see Table 
7.1, where these two algorithms are compared with the identity preconditioner (I) for 
the interface variables after elimination of the interior ones. 

Table 7.2 shows Pahl's results for M = 7 and N between 4 and 12. The iteration 
count increased very slowly with N, and was bounded by 11 for the wirebasket and 
balancing preconditioners. We remark that the finite element balancing precondi- 
tioner for the spectral element method can also be analyzed with our techniques; see 
also [31] for a related algorithm. Pahl's results corroborate, in a clear cut way, the 
results of the theory. 

The overlapping Schwarz preconditioner was studied in a second set of experi- 
ments. Table 7.3 shows the iteration counts for an overlap 6 of one mesh size. The 
distance between the first two GLL points of the interval [-1, 1], Io =-1 and 41 is on 
the order of 1/N2. It is then easy to see that 8 H/N2, and that therefore the bound 
on the condition number given by Theorem 3 grows like (1 + H/6) N2. Hence, our 
theory predicts an iteration count which is linear in N and independent of M. The 
experiments performed by Pahl showed that for N = 4, the number of iterations 
grows very slowly with M between 2 and 12, and presents a sublinear growth when 
N increases from 4 to 12. The maximum iteration count was 22, achieved for M = 7 
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TABLE 7.3 
Iteration counts for overlapping Schwarz, overlap = one mesh size. 

I N/MI 2 4 5 6 7 8 9 10 12] 
4 7 9 9 9 9 9 9 9 9 
5 8 10 11 11 11 11 11 11 11 
6 10 11 13 12 12 12 12 12 12 
7 11 13 14 14 14 14 14 14 14 
8 12 14 16 15 16 16 16 16 16 
9 13 15 17 17 17 17 17 17 17 
10 14 16 19 18 19 19 19 19 19 
12 16 19 22 22 22 22 22 22 22 

and N 12; see Table 7.3. Our estimate seems pessimistic in its dependence on N, 
at least for this range of values, while it describes the dependence on the number of 
subdomains quite well. 
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