5iam.

Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization Author(s): Mario A. Casarin
Source: SIAM Journal on Numerical Analysis, Vol. 34, No. 6 (Dec., 1997), pp. 2482-2502
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2951961
Accessed: 09/12/2014 12:17

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Journal on Numerical Analysis.

QUASI-OPTIMAL SCHWARZ METHODS FOR THE CONFORMING SPECTRAL ELEMENT DISCRETIZATION*

MARIO A. CASARIN ${ }^{\dagger}$

Abstract

The spectral element method is used to discretize self-adjoint elliptic equations in three-dimensional domains. The domain is decomposed into hexahedral elements, and in each of the elements the discretization space is the set of polynomials of degree N in each variable. A conforming Galerkin formulation is used, the corresponding integrals are computed approximately with Gauss-Lobatto-Legendre (GLL) quadrature rules of order N, and a Lagrange interpolation basis associated with the GLL nodes is used. Fast methods are developed for solving the resulting linear system by the preconditioned conjugate gradient method. The conforming finite element space on the GLL mesh, consisting of piecewise Q_{1} or P_{1} functions, produces a stiffness matrix K_{h} that is known to be spectrally equivalent to the spectral element stiffness matrix K_{N}. K_{h} is replaced by a preconditioner K_{h} which is well adapted to parallel computer architectures. The preconditioned operator is then $\tilde{K}_{h}^{-1} K_{N}$.

Techniques for nonregular meshes are developed, which make it possible to estimate the condition number of $\tilde{K}_{h}^{-1} K_{N}$, where \tilde{K}_{h} is a standard finite element preconditioner of K_{h}, based on the GLL mesh. Two finite element-based preconditioners: the wirebasket method of Smith and the overlapping Schwarz algorithm for the spectral element method are given as examples of the use of these tools. Numerical experiments performed by Pahl are briefly discussed to illustrate the efficiency of these methods in two dimensions.

Key words. domain decomposition, Schwarz methods, spectral element method, preconditioned conjugate gradients, iterative substructuring

AMS subject classifications. 41A10, 65N30, 65N35, 65N55
PII. S0036142995292281

1. Introduction. The spectral element method has been used extensively to discretize a variety of partial differential equations, and its efficiency has been demonstrated both analytically and numerically; see [22, 23] and references therein. It uses polynomials of high degree in each element, and a particular choice of basis and numerical quadrature rules. In large-scale problems, long-range interactions between the basis elements within each substructure produce quite dense and expensive factorizations of the stiffness matrix, and the use of direct methods is often not economical because of the large memory requirements [15]. In the past decade, many preconditioners have been developed for finite element discretizations of these equations; see e.g. [20, 21, 34]. For both families of discretizations, the design of preconditioners for three-dimensional problems is especially challenging.

Early work on preconditioners for spectral methods was carried out by Canuto and Funaro [8] and Pavarino [28, 29, 30]. The algorithms studied by Pavarino are numerically scalable (i.e., the number of iterations is independent of the number of substructures) and optimal or quasi-optimal (the number of iterations does not grow or grows only slowly with the degree of the polynomials). However, each application of his preconditioners can be very expensive.

[^0]Several iterative substructuring methods, which preserve quasi-optimality and scalability, were later introduced by Pavarino and Widlund [32, 33]. These preconditioners can be viewed as block-Jacobi methods after the stiffness matrix has been transformed by using a certain basis. The subspaces used are the analogues of those proposed by Smith [36] for piecewise linear finite element discretizations. The bound for the condition number of the preconditioned operator grows only slowly with the polynomial degree, and is independent of the number of substructures.

Orzag [25] and Deville and Mund [11] proposed the use of a finite difference and a Q_{1} or P_{1} finite element model, respectively, as preconditioners for the spectral element matrix. The triangulation for this finite element method is based on the hexahedrals of the GLL mesh of one element. This preconditioner has been demonstrated both numerically, in [11], and theoretically, by Canuto [7], to have a condition number independent of the degree of the polynomials. We note that ideas similar to those in [7] and [11] also appear in Quarteroni and Zampieri [35] and references therein. The spectral equivalence results of Canuto [7] and generalizations for other boundary conditions were also obtained independently by Parter and Rothman [27].

Based on these ideas, extended to the case of several elements, Pahl [26] proposed efficient, easily parallelizable preconditioners for the spectral element method using iterative substructuring or overlapping Schwarz methods applied to the GLL finite element model. Pahl also performed experiments for a model problem in two dimensions, demonstrating that this kind of preconditioner can be very efficient. In other words, high-order accuracy is combined with efficient and inexpensive low-order preconditioning. The work of Pahl, however, did not contain any rigorous theoretical justification for the experimental results obtained. There are also other closely related studies on domain decomposition methods for the spectral and p-version finite element method by Gervasio [16] and Gervasio, Ovtchinnikov, and Quarteroni [17].

A triangular finite element mesh with parameter h is said to be regular or shaperegular if the ratio between the radius of the inscribed circle of each triangle and the diameter of the triangle itself is bounded from below by a positive constant independent of h. A quadrilateral mesh is shape-regular if all the subtriangles formed by three vertices of the quadrilaterals of the mesh are shape-regular; see [18, Def. A2 and p. 105]. The previous analysis of Schwarz preconditioners for the h-method has relied upon the shape-regularity of the mesh, see $[4,13,14]$, which does not hold at all for the GLL mesh. In this paper, we analyze some Schwarz finite element preconditioners defined on this mesh, and derive polylogarithmic bounds on the condition number of the preconditioned operators for iterative substructuring methods, and a result analogous to the standard finite element bound for overlapping Schwarz algorithms. Then, by applying Canuto's result, [7], we propose and analyze a new overlapping preconditioner that uses only blocks of the spectral element matrix to define the local contributions of the preconditioner. We also give a new proof of one of the estimates in [32]. In summary, the equivalence between the spectral and finite element matrices, and the tools we develop here, allow us to extend the analysis available for the domain decomposition preconditioners of the standard finite element case to the spectral element case. We remark that our techniques may also be used to estimate the convergence of a large class of domain decomposition preconditioners on some nonregular meshes.

The remainder of the paper is organized as follows. The next section contains some notation and a precise description of the discrete problem. The motivation and strategy of this paper are presented in detail in section 3. In section 4, we state and prove our technical results. In sections 5 and 6 , we formulate and analyze several
representative iterative substructuring and overlapping algorithms. Section 7 briefly describes some numerical experiments performed by Pahl [26].
2. Differential and discrete model problems. Let Ω be a bounded polyhedral region in \mathbb{R}^{3} with diameter of order 1 . We consider the following elliptic self-adjoint problem: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=f(v) \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega} k(x) \nabla u \cdot \nabla v d x \text { and } f(v)=\int_{\Omega} f v d x \text { for } f \in L^{2}(\Omega) .
$$

Our results are also valid for mixed Neumann-Dirichlet boundary conditions, but we restrict ourselves to homogeneous Dirichlet conditions. The extension to other self-adjoint cases is routine, and would only add distracting complications to our description. This problem is discretized by the spectral element method (SEM); see [23]. In what follows, the elements of the SEM are denoted by substructures or subdomains. Later on, we will further divide the substructures into hexahedrals, which will then be called elements. They form the triangulation for a finite element space which will be defined momentarily.

We triangulate Ω into nonoverlapping substructures $\left\{\Omega_{i}\right\}_{i=1}^{M}$ of diameter on the order of H. Each Ω_{i} is the image of the reference substructure $\hat{\Omega}=[-1,+1]^{3}$ under a mapping $F_{i}=D_{i} \circ G_{i}$, where D_{i} is an isotropic dilation and G_{i} a C^{∞} mapping such that its Jacobian and inverse of its Jacobian are uniformly bounded by a constant. In section 3, we show that the bounds that we derive depend on this constant, and are better the closer this constant is to one, i.e., the closer the substructures are to a cube. Moreover, we suppose that the intersection between the closures of two distinct substructures is either empty, a vertex, a whole edge, or a whole face. Some additional properties of the mappings F_{i} are required to guarantee an optimal convergence rate. We refer to [1, problem 2] and references therein for further details on this issue but remark that affine mappings are covered by the available convergence theory for these methods. We assume for simplicity that $k(x)$ has the constant value $k_{i}>0$ in the substructure Ω_{i}, with possibly large jumps occurring only across substructure boundaries. The bounds for the iterative substructuring methods are independent of these jumps. For the overlapping methods, we need to introduce more stringent restrictions on $k(x)$ to obtain bounds that are independent of the jumps; see the discussion after Lemma 4.

We define the space $P^{N}(\hat{\Omega})$ as the space of polynomials of degree at most N in each of the variables separately. The space $P^{N}\left(\Omega_{i}\right)$ is the space of functions v_{N} such that $v_{N} \circ F_{i}$ belongs to $P^{N}(\hat{\Omega})$. The conforming discretization space $P_{0}^{N}(\Omega) \subset H_{0}^{1}(\Omega)$ is the space of continuous functions the restrictions of which to Ω_{i} belong to $P^{N}\left(\Omega_{i}\right)$.

The discrete L^{2}-inner product restricted to one substructure Ω_{i} is defined by

$$
\begin{equation*}
(u, v)_{N, \Omega_{i}}=\sum_{j, k, l=0}^{N}\left(u \circ F_{i}\right) \cdot\left(v \circ F_{i}\right) \cdot\left|J_{i}\right|\left(\xi_{j}, \xi_{k}, \xi_{l}\right) \cdot \rho_{j} \rho_{k} \rho_{l}, \tag{2.2}
\end{equation*}
$$

where ξ_{j} and ρ_{j} are, respectively, the GLL quadrature points and weights of degree N in the interval $[-1,+1]$; see [1]. The discrete L^{2}-inner product is given by

$$
\begin{equation*}
(u, v)_{N}=\sum_{i=1}^{M}(u, v)_{N, \Omega_{\imath}} \tag{2.3}
\end{equation*}
$$

We define a discrete bilinear form for $u, v \in H^{1}(\Omega)$ by

$$
\begin{equation*}
a_{Q}(u, v)=\sum_{i=1}^{M} k_{i}(\nabla u, \nabla v)_{N, \Omega_{2}} \tag{2.4}
\end{equation*}
$$

where $(\cdot, \cdot)_{N, \Omega_{i}}$ is computed componentwise.
The discrete problem is as follows: Find $u_{N} \in P_{0}^{N}(\Omega)$, such that

$$
\begin{equation*}
a_{Q}\left(u_{N}, v_{N}\right)=\left(f, v_{N}\right)_{N} \quad \forall v_{N} \in P_{0}^{N}(\Omega) \tag{2.5}
\end{equation*}
$$

We number the GLL nodes of all the substructures, and choose as basis functions the functions ϕ_{j}^{N} of $P_{0}^{N}(\Omega)$ that are one at the GLL node x_{j} and zero at all the others. This basis gives rise, in the standard way, to the linear system $K_{N} x=b$. Note that the mass matrix of this nodal basis, generated by the discrete L^{2} inner product (2.3), is diagonal. The analysis and experimental evidence show that the SEM method just described achieves very good accuracy for reasonably small N for a wide range of problems; see [1, 22, 23] and references therein. The practical application of this method for large-scale problems, however, depends on fast and reliable solution methods for the system $K_{N} x=b$. A direct method is often not an economical choice, because of long-range interactions between the basis elements, and because this is a discretization of a three-dimensional problem, which demands large computer resources even for the seven-point finite difference stencil; see [10].

The condition number of K_{N} is very large even for moderate values of N; see [1]. Our approach is to solve this system by a preconditioned conjugate gradient algorithm. The following low-order discretization is used to define several preconditioners in the next sections.

The GLL points of degree N, denoted by GLL(N), define, in a natural way, a triangulation $\mathcal{T}^{\hat{h}}$ of $\hat{\Omega}$ into N^{3} parallelepipeds, and on this triangulation we define the space $P^{\hat{h}}(\hat{\Omega})$ of continuous functions that are trilinear $\left(Q_{1}\right)$ in each parallelepiped of $\mathcal{T}^{\hat{h}}$. The spaces $P^{h}\left(\Omega_{i}\right)$ and $P_{0}^{h}(\Omega)$ are defined by mapping in the same way as for $P^{N}\left(\Omega_{i}\right)$ and $P_{0}^{N}(\Omega)$. The finite element discrete problem associated with (2.1) is as follows: Find $u_{h} \in P_{0}^{h}(\Omega)$, such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \quad \forall v_{h} \in P_{0}^{h}(\Omega) . \tag{2.6}
\end{equation*}
$$

The standard nodal basis $\left\{\hat{\phi}_{j}^{\hat{h}}\right\}$ of $P^{\hat{h}}(\hat{\Omega})$ is mapped by the F_{i} into a basis for $P^{h}\left(\Omega_{i}\right)$, for $1 \leq i \leq M$. These bases and the bilinear form $a(\cdot, \cdot)$ give rise to a system $K_{h} x=b$.

We could also define a finite element system generated by dividing each hexahedral of $\mathcal{T}^{\hat{h}}$ into tetrahedrals, and using P_{1} finite elements on this new triangulation. The analysis for P_{1} elements carries over immediately from the analysis for Q_{1} elements, since the L^{2} - and H_{1}-norms are equivalent element by element. We remark that the P_{1} elements have been shown to produce smaller condition numbers when used as a preconditioner, and should be preferred in a practical implementation. For the sake of simplicity, we restrict ourselves to the case of Q_{1} elements.

We use the notations $x \preceq y, z \succeq u$, and $v \asymp w$ to express that there are strictly positive constants C and c such that

$$
x \leq C y, \quad z \geq c u, \quad \text { and } \quad c w \leq v \leq C w, \text { respectively. }
$$

Here and elsewhere c and C are moderate constants independent of H, N, and $k(x)$.

Let \hat{h} be the distance between the two leftmost $\operatorname{GLL}(N)$ points ξ_{0} and ξ_{1} in the interval $[-1,+1] ; \hat{h}$ is on the order of $1 / N^{2}$, while the distance between two consecutive GLL points increases to a maximum, close to the origin, which is on the order of $1 / N$; see [1]. Hence, the aspect ratios of some of the elements of the triangulation $\mathcal{T}^{\hat{h}}$ grow in proportion to N.

For a region of diameter H, such as a substructure Ω_{j}, we use a norm with weights generated by dilation starting from a region of unit diameter,

$$
\|u\|_{H^{1}\left(\Omega_{j}\right)}^{2}=|u|_{H^{1}\left(\Omega_{j}\right)}^{2}+\frac{1}{H^{2}}\|u\|_{L_{2}\left(\Omega_{j}\right)}^{2}
$$

where $|\cdot|_{H^{1}}$ stands for the H^{1}-seminorm.
3. General strategy and simplifications. Let \hat{u}_{N} belong to $P^{N}(\hat{\Omega})$, and let $\hat{u}_{h}=\hat{I}_{N}^{h}\left(\hat{u}_{N}\right)$ be the unique function of $P^{\hat{h}}(\hat{\Omega})$ for which

$$
\hat{u}_{h}\left(x_{G}\right)=\hat{u}_{N}\left(x_{G}\right)
$$

for every $\operatorname{GLL}(N)$ point $x_{G} \in \overline{\hat{\Omega}}$. Then, by [1, Cor. 1.13, p. 75] and the results in [7], we have

$$
\begin{equation*}
\left\|\hat{u}_{h}\right\|_{L^{2}(\hat{\Omega})}^{2} \asymp\left\|\hat{u}_{N}\right\|_{L^{2}(\hat{\Omega})}^{2} \asymp\left(\hat{u}_{N}, \hat{u}_{N}\right)_{N} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{u}_{h}\right|_{H^{1}(\hat{\Omega})}^{2} \asymp\left|\hat{u}_{N}\right|_{H^{1}(\hat{\Omega})}^{2} \asymp a_{\hat{Q}}\left(\hat{u}_{N}, \hat{u}_{N}\right), \tag{3.2}
\end{equation*}
$$

where $a_{\hat{Q}}$ is given by (2.3) and (2.4) with $J_{i} \equiv 1$ and $k_{i}=1$. The basis of the proof of this last result is the H^{1}-stability of the polynomial interpolation operator at the GLL nodes for functions in $H^{1}([-1,+1])$, proved by Bernardi and Maday [2, 1]. The L^{2}-stability of the GLL quadrature of order N for polynomials of degree N, and properties of the GLL nodes and weights are also important in the argument. We remark that the first equivalence of (3.2) and generalizations to other boundary conditions were obtained independently by Parter and Rothman [27].

Consider now a finite element function u defined in a substructure Ω_{i} with diameter of order H. Changing variables to the reference substructure by $\hat{v}(\hat{x})=v\left(F_{i}(\hat{x})\right)$ and using the bounds on the Jacobian of F_{i}, we obtain

$$
\begin{equation*}
\|u\|_{L^{2}\left(\Omega_{\imath}\right)}^{2} \asymp H^{d}\|\hat{u}\|_{L^{2}(\hat{\Omega})}^{2}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|u|_{H^{1}\left(\Omega_{i}\right)}^{2} \asymp H^{d-2}|\hat{u}|_{H^{1}(\hat{\Omega})}^{2}, \tag{3.4}
\end{equation*}
$$

where d is the dimension and is equal to 1,2 , or 3 .
These estimates can be viewed as spectral equivalences of the stiffness and mass matrices generated by the norms and the basis introduced above. Indeed, the nodal basis $\left\{\hat{\phi}_{j}^{\hat{h}}\right\}$ is mapped, by interpolation at the GLL nodes, to the nodal basis of $P^{N}(\hat{\Omega})$. Then, (3.2) can be written as

$$
\begin{equation*}
\underline{\hat{u}}^{T} \hat{K}_{h} \underline{\hat{u}} \asymp \underline{\hat{u}}^{T} \hat{K}_{N} \underline{\hat{u}} \tag{3.5}
\end{equation*}
$$

where $\underline{\hat{u}}$ is the vector of nodal values of both \hat{u}_{N} or \hat{u}_{h}, and \hat{K}_{h} and \hat{K}_{N} are the stiffness matrices associated with $|\cdot|_{H^{1}(\hat{\Omega})}^{2}$ and $a_{\hat{Q}}(.,$.$) .$

Let $K_{h}^{(i)}$ and $K_{N}^{(i)}$ be the stiffness matrices generated by the bases $\left\{\phi_{j}^{h}\right\}$ and $\left\{\phi_{j}^{N}\right\}$, respectively, for all nodes x_{j} in the closure of Ω_{i}, and by using $|\cdot|_{H^{1}\left(\Omega_{i}\right)}^{2}$ and $a_{Q, \Omega_{\imath}}(\cdot, \cdot)$, respectively. Here, $a_{Q, \Omega_{i}}(\cdot, \cdot)$ is the restriction of $a_{Q}(\cdot, \cdot)$ to the subdomain Ω_{i}. If \underline{u} is the vector of nodal values, and $\underline{u}^{(i)}$ is its restriction to $\bar{\Omega}_{i}$, then

$$
\underline{u}^{(i)^{T}} K_{h}^{(i)} \underline{u}^{(i)} \asymp \underline{u}^{(i)^{T}} K_{N}^{(i)} \underline{u}^{(i)}
$$

by (3.2) and (3.4). The stiffness matrices K_{N} and K_{h} are formed by subassembly [13]:

$$
\begin{equation*}
\underline{u}^{T} K_{h} \underline{u}=\Sigma_{i} \underline{u}^{(i) T} K_{h}^{(i)} \underline{u}^{(i)} ; \tag{3.6}
\end{equation*}
$$

an analogous expression holds for K_{N}. These last two relations imply that

$$
\begin{equation*}
\underline{u}^{T} K_{h} \underline{u} \asymp \underline{u}^{T} K_{N} \underline{u} . \tag{3.7}
\end{equation*}
$$

This shows that K_{h} is an optimal preconditioner for K_{N} in terms of number of iterations. All these matrix equivalences, and their analogues in terms of norms, are hereafter called the finite element method-spectral element method (FEM-SEM) equivalence.

We next show that the same results also hold for the Schur complements S_{h} and S_{N}. The interface of the decomposition is defined as $\Gamma=\cup_{i=1}^{M} \partial \Omega_{i} \backslash \partial \Omega$. The Schur complement matrices S_{h} and S_{N} are obtained by the elimination of the interior nodes of each Ω_{i} by Cholesky's algorithm; see [13]. A function u_{N} is said to be (piecewise) Q-discrete harmonic if $a_{Q, \Omega_{\imath}}\left(u_{N}, v_{N}\right)=0$, for all i and all v_{N} belonging to $P^{N}\left(\Omega_{i}\right) \cap H_{0}^{1}\left(\Omega_{i}\right)$. The definition of (piecewise) h-discrete harmonic functions is analogous. It is clear that if \tilde{u}_{h} and u_{N} are, respectively, h - and Q-discrete harmonic with the same values at the nodes on Γ, then $\underline{u}_{\Gamma}^{T} S_{N} \underline{u}_{\Gamma}=a_{Q}\left(u_{N}, u_{N}\right)$ and $\underline{u}_{\Gamma}^{T} S_{h} \underline{u}_{\Gamma}=$ $a\left(\tilde{u}_{h}, \tilde{u}_{h}\right)$, where \underline{u}_{Γ} is the vector of nodal values on Γ of \tilde{u}_{h} and u_{N}; we note that \tilde{u}_{h} and u_{N} do not necessarily agree at the nodes interior to the substructures.

The matrices S_{h} and S_{N} are spectrally equivalent. Indeed, by subassembly (3.6), it is enough to verify the spectral equivalence for each substructure separately. For the substructure Ω_{i}, we find

$$
\begin{align*}
& \underline{u}_{\Gamma}^{(i)^{T}} S_{N}^{(i)} \underline{u}_{\Gamma}^{(i)}=a_{Q, \Omega_{i}}\left(u_{N}, u_{N}\right) \succeq a_{\Omega_{i}}\left(I_{N}^{h}\left(u_{N}\right), I_{N}^{h}\left(u_{N}\right)\right) \tag{3.8}\\
& \quad \geq a_{\Omega_{2}}\left(\mathcal{H}_{h}\left(I_{N}^{h} u_{N}\right), \mathcal{H}_{h}\left(I_{N}^{h} u_{N}\right)\right)=a_{\Omega_{i}}\left(\tilde{u}_{h}, \tilde{u}_{h}\right)=\underline{u}_{\Gamma}^{(i)^{T}} S_{h}^{i} \underline{u}_{\Gamma}^{(i)},
\end{align*}
$$

where \mathcal{H}_{h} is the h-discrete harmonic extension of the interface values, and I_{N}^{h} is the composition of \hat{I}_{N}^{h} with F_{i}. Here, we have used the FEM-SEM equivalence and the well-known minimizing property of the discrete harmonic extension. The reverse inequality is obtained in the same way.

This equivalence implies that S_{h} is an optimal preconditioner for S_{N}, in terms of number of iterations. However, as before, the action of the inverse of S_{h} is too expensive to produce an efficient preconditioner for large problems.

In his master's thesis [26], Pahl proposed the replacement of K_{h} and S_{h} by preconditioners \tilde{K}_{h} and \tilde{S}_{h}, respectively. If the condition number satisfies

$$
\begin{equation*}
\kappa\left(\tilde{K}_{h}^{-1} K_{h}\right) \leq C(N) \tag{3.9}
\end{equation*}
$$

with a moderately increasing function $C(N)$, then a simple Rayleigh quotient argument shows that $\kappa\left(\tilde{K}_{h}^{-1} K_{N}\right) \preceq C(N)$; an analogous bound can be derived for \widetilde{S}_{h}^{-1}
and $S_{N} . \tilde{K}_{h}$ and \tilde{S}_{h} are domain decomposition preconditioners based on \mathcal{T}^{h}, and are designed so that the action of their inverse on a vector is inexpensive to evaluate.

In the next three sections, we define our preconditioners and then establish (3.9) and its analogue for S_{h} and \tilde{S}_{h}^{-1}. We note that the triangulation \mathcal{T}_{h} is not shaperegular, and that all the bounds of this form for Schwarz preconditioners established in the literature require some kind of inverse condition, or regularity of the triangulation, which, as pointed out in section 2, does not hold for the GLL mesh.
4. Technical results. In this section, we present the technical lemmas needed to prove our results. As is clear from the start, we draw heavily upon the results and techniques of Dryja, Smith, and Widlund [13].
4.1. Some estimates for nonregular triangulations. In this section, we develop all the estimates necessary to extend the technical tools developed in [13] to the case of nonregular hexahedral triangulations. We recall that $\hat{\Omega}=[-1,+1]^{3}$ is the reference substructure, and $\mathcal{T}^{\hat{h}}$ its triangulation generated by the GLL mesh. Let $\breve{K}=[-1,+1]^{3}$ be the reference element, and let $\hat{K} \subset \hat{\Omega}$ be a parallelepiped of $\mathcal{T}^{\hat{h}}$ with sides h_{1}, h_{2} and h_{3}; these mesh parameters are not necessarily comparable in size. The function \hat{u} is a trilinear $\left(Q_{1}\right)$ function defined in \hat{K}. In this subsection, we use hats to represent functions defined in \hat{K}, and no hat superscript for points of \hat{K}.

Our first result concerns expressions of the $L^{2}(\hat{K})$ - and $H^{1}(\hat{K})$-norms of a trilinear function \hat{u} in terms of its nodal values. Let e_{i} be one of the coordinate directions of \hat{K}, and let a, b, c, and d be the vertices of one of the faces that are perpendicular to e_{i}. Let $a^{\prime}, b^{\prime}, c^{\prime}$, and d^{\prime} be the corresponding points on the parallel face. x_{α} denotes a generic vertex of \hat{K}.

Lemma 1. Let \hat{u} be trilinear in \hat{K}. Then,

$$
\begin{equation*}
\|\hat{u}\|_{L^{2}(\hat{K})}^{2} \asymp h_{1} h_{2} h_{3} \sum_{x_{\alpha} \in \hat{K}}\left(\hat{u}\left(x_{\alpha}\right)\right)^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\partial_{x_{\imath}} \hat{u}\right\|_{L^{2}(\hat{K})}^{2} \asymp \frac{h_{1} h_{2} h_{3}}{h_{i}^{2}} \sum_{x_{\alpha}=a, b, c, d}\left(\hat{u}\left(x_{\alpha}\right)-\hat{u}\left(x_{\alpha}^{\prime}\right)\right)^{2} . \tag{4.2}
\end{equation*}
$$

Proof. These formulas follow by changing variables, and by using the equivalence of any pair of norms in the finite dimensional space $Q_{1}(\breve{K})$.

In the next lemma, we give a bound on the gradient of a trilinear function in terms of bounds on the differences of the nodal values. Its proof is routine.

LEMMA 2. Let \hat{u} be trilinear in \hat{K} such that $|\hat{u}(a)-\hat{u}(b)| \leq C|a-b| / r$ for some constant C and parameter r, and for any two vertices a and b belonging to one face of \hat{K}. Then

$$
|\nabla \hat{u}| \leq \frac{C}{r}
$$

where C is independent of the parameter r.
Lemma 3. Let \hat{u} be a trilinear function defined in \hat{K}, and let $\hat{\vartheta}$ be a C^{1} function such that $|\nabla \hat{\vartheta}| \leq C / r$ and $|\hat{\vartheta}| \leq C$ for some constant C and parameter r. Then

$$
\begin{equation*}
\left|\partial_{x_{\imath}} I^{\hat{h}}(\hat{\vartheta} \hat{u})\right|_{L^{2}(\hat{K})}^{2} \leq C\left(|\hat{u}|_{H^{1}(\hat{K})}^{2}+r^{-2}\|\hat{u}\|_{L^{2}(\hat{K})}^{2}\right) . \tag{4.3}
\end{equation*}
$$

Here C is independent of N and r, and $I^{\hat{h}}$ is the Q_{1}-interpolant using the values at the vertices of \hat{K}.

Proof. By equation (4.2), and letting h_{1}, h_{2}, and h_{3} be the sides of the element \hat{K} :

$$
\left\|\partial_{x_{2}} I^{\hat{h}}(\hat{\vartheta} \hat{u})\right\|_{L^{2}(\hat{K})}^{2} \preceq \frac{h_{1} h_{2} h_{3}}{h_{i}^{2}} \sum_{x=a, b, c, d}\left(\hat{u}(x) \hat{\vartheta}(x)-\hat{u}\left(x^{\prime}\right) \hat{\vartheta}\left(x^{\prime}\right)\right)^{2}
$$

Each term in the sum above can be bounded by

$$
\begin{aligned}
& \left(\hat{u}(x) \hat{\vartheta}(x)-\hat{u}(x) \hat{\vartheta}\left(x^{\prime}\right)+\hat{u}(x) \hat{\vartheta}\left(x^{\prime}\right)-\hat{u}\left(x^{\prime}\right) \hat{\vartheta}\left(x^{\prime}\right)\right)^{2} \\
& \quad \leq 2\left((\hat{u}(x))^{2}\left(\hat{\vartheta}(x)-\hat{\vartheta}\left(x^{\prime}\right)\right)^{2}+\left(\hat{u}(x)-\hat{u}\left(x^{\prime}\right)\right)^{2}\left(\hat{\vartheta}\left(x^{\prime}\right)\right)^{2}\right) .
\end{aligned}
$$

The bound on $\nabla \hat{\vartheta}$ implies that $\left|\hat{\vartheta}(x)-\hat{\vartheta}\left(x^{\prime}\right)\right| \preceq h_{i} / r$, and therefore

$$
\begin{align*}
\left\|\partial_{x_{2}} I^{\hat{h}}(\hat{\vartheta} \hat{u})\right\|_{L^{2}(\hat{K})}^{2} & \preceq \frac{h_{1} h_{2} h_{3}}{h_{i}^{2}}\left(\sum_{x=a, b, c, d}\left(\hat{u}(x)-\hat{u}\left(x^{\prime}\right)\right)^{2}+\sum_{x=a, b, c, d}(\hat{u}(x))^{2} \frac{h_{i}^{2}}{r^{2}}\right) \\
& \preceq|\hat{u}|_{H^{1}(\hat{K})}^{2}+r^{-2}\|\hat{u}\|_{L^{2}(\hat{K})}^{2}, \tag{4.4}
\end{align*}
$$

since $\hat{\vartheta}$ is bounded.
4.2. Further technical tools. The iterative substructuring algorithms studied in section 5 are based on subspaces directly related to the interiors of the substructures, and the faces, edges, and vertices. Let $\Omega_{i j}$ be the union of two substructures Ω_{i}, Ω_{j}, and their common face \mathcal{F}_{k}. Let \mathcal{W}_{j} represent the wirebasket of the subdomain Ω_{j}, i.e., the union of all its edges and vertices. We note that a face in the interior of the region Ω is common to exactly two substructures, an interior edge is shared by more than two, and an interior vertex is common to still more substructures. All the substructures, faces, and edges are regarded as open sets.

The following observations greatly simplify our analysis in the next sections. The preconditioner \tilde{S}_{h} that we propose is defined by subassembly of the matrices $\tilde{S}_{h}^{(i)}$; see section 5 . We then restrict our analysis to one substructure. The results for the whole region follow by a standard Rayleigh quotient argument. The assumption that the $\left\{F_{i}\right\}_{i=1}^{M}$ are sufficiently smooth mappings improves the flexibility of the triangulation, but does not make the analysis essentially different from the case of affine mappings. This is seen from the estimates in section 3, where we have used only bounds on the Jacobian and inverse of the Jacobian of F_{i}. Therefore, without loss of generality, we assume, from now on, that the F_{i} are affine mappings. Throughout this subsection, u is a finite element function belonging to P^{h}.

Let the coarse space V^{H} be the space of continuous functions, the restriction of which to each Ω_{i} is the image of a trilinear function under the mapping F_{i}.

LEMMA 4. Let $Q^{H} u$ be the L^{2} projection of $u \in P^{h}(\Omega)$ onto the coarse space V^{H}. Then,

$$
\left\|u-Q^{H} u\right\|_{L^{2}(\Omega)}^{2} \preceq H^{2}|u|_{H^{1}(\Omega)}^{2},
$$

and

$$
\left|Q^{H} u\right|_{H^{1}(\Omega)}^{2} \preceq|u|_{H^{1}(\Omega)}^{2} .
$$

The first estimate of the lemma is the same estimate satisfied by the H^{1}-projection onto a finite element space defined on a convex region, except that here, the convexity is not needed. The second estimate is the stability of Q^{H} on the space H^{1}. For a proof of this lemma, we refer to Bramble and Xu [6], where a general discussion is also presented. Results of this kind are essential in the analysis of domain decomposition
algorithms, since they allow us to obtain convergence rate estimates that are independent of the number of subdomains. We remark that these bounds are not necessarily independent of the values k_{i} of the coefficient. A sufficient condition to guarantee this independence is that the coefficients k_{i} satisfy a quasi-monotone condition; see [12].

In what follows, some of the results are stated for substructures of diameter proportional to H, but the arguments are given only for a reference substructure. The introduction of the scaling factors into the final formulas is, by the results of section 3, routine.

LEMMA 5. Let $\bar{u}_{\mathcal{W}_{j}}$ be the average value of u on \mathcal{W}_{j}, the wirebasket of subdomain Ω_{j}. Then

$$
\|u\|_{L^{2}\left(\mathcal{W}_{\jmath}\right)}^{2} \preceq(1+\log (N))\|u\|_{H^{1}\left(\Omega_{j}\right)}^{2},
$$

and

$$
\left\|u-\bar{u}_{\mathcal{W}_{\jmath}}\right\|_{L^{2}\left(\mathcal{W}_{\jmath}\right)}^{2} \preceq(1+\log (N))|u|_{H^{1}\left(\Omega_{j}\right)}^{2} .
$$

Similar bounds also hold for an individual substructure edge.
Proof. For general quasi-uniform triangulations, the first estimate is given in [6, Lem. 2.4]. For completeness, we prove the result for the special case of the GLL mesh. In the reference substructure $\hat{\Omega}$, we can obtain $V^{\hat{h}} \supset P^{\hat{h}}$, where $P^{\hat{h}}$ was defined in section 2, and $V^{\hat{h}}$ is a Q_{1} finite element space defined on a quasi-uniform tensor product triangulation with maximum element diameter on the order of \hat{h}, and which is a refinement of $\mathcal{T}^{\hat{h}}$; indeed, it suffices to refine all the elements of $\mathcal{T}^{\hat{h}}$ with edges bigger than, say, $3 \hat{h} / 2$, with planes perpendicular to these edges. Let $(1,1, z)$ be a point on an edge of $\hat{\Omega}$, and let G be the square section $[-1,1] \times[-1,1] \times\{z\}$ of $\hat{\Omega}$. Then, the tensor product mesh of $V^{\hat{h}}$ determines a quasi-uniform triangulation of G with a parameter on the order of \hat{h}, for which the standard discrete Sobolev-like inequality for two dimensions holds: if $u \in V^{\hat{h}}$, then

$$
|u(1,1, z)|^{2} \leq C(1+\log (\hat{h}))\|u\|_{H^{1}(G)}^{2}
$$

see [3] or [6]. We next integrate over z, and then repeat the argument for the other edges. This shows the first estimate of the lemma for $u \in V^{\hat{h}}$, since $\hat{h} \approx 1 / N^{2}$. The second inequality is obtained from the first one by a quotient-space argument. Since $P^{\hat{h}} \subset V^{\hat{h}}$, we conclude that both results are true $\forall u \in P^{\hat{h}}$.

In the abstract Schwarz convergence theory, the crucial point in the estimate of the rate of convergence of a two-level algorithm is the proof that all functions in the finite element space can be decomposed into components belonging to the subspaces, in such a way that the sum of the resulting energies are uniformly, or almost uniformly, bounded with respect to the parameters H and N. The main technique for deriving such a decomposition is the use of a suitable partition of unity. In the next two lemmas, we construct functions that are used to define such partitions of unity.

LEmma 6. Let \mathcal{F}_{k} be the face common to Ω_{i} and Ω_{j}, and let $\theta_{\mathcal{F}_{k}}$ be the function in $P^{h}(\Omega)$ that is equal to one at the interior nodes of \mathcal{F}_{k}, zero at the remaining nodes of $\partial \Omega_{i} \cup \partial \Omega_{j}$, and discrete harmonic in Ω_{i} and Ω_{j}. Then

$$
\left|\theta_{\mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{\imath}\right)}^{2} \preceq(1+\log (N)) H .
$$

The same bound also holds for the other subregion Ω_{j}.
Proof. We define functions $\hat{\theta}_{\mathcal{F}_{k}}$ and $\hat{\vartheta}_{\mathcal{F}_{k}}$ in the reference cube; $\theta_{\mathcal{F}_{k}}$ and $\vartheta_{\mathcal{F}_{k}}$ are obtained, as usual, by mapping; see section 3 . We construct the function $\hat{\vartheta}_{\mathcal{F}_{k}}$

Fig. 1. One of the segments $C C_{k}$.

Fig. 2. Geometry underlying equation (4.5).
with the same boundary values as $\hat{\theta}_{\mathcal{F}_{k}}$, and then prove that the bound given in the lemma holds for $\hat{\vartheta}_{\mathcal{F}_{k}}$. The standard energy minimizing property of discrete harmonic functions then gives the estimate for $\hat{\theta}_{\mathcal{F}_{k}}$. The six functions $\hat{\vartheta}_{k}$ which correspond to the six faces of the cube also form a partition of unity at all nodes belonging to the closure of the substructure except those on the wirebasket; this property is used in the next lemma.

We divide the substructure into 24 subtetrahedra by connecting its center C to all the vertices and to all the six centers C_{k} of the faces, and by drawing the diagonals of the faces of $\hat{\Omega}$; see Fig. 1.

The function $\hat{\vartheta}_{\mathcal{F}_{k}}$ associated with the face \mathcal{F}_{k} is defined to be $1 / 6$ at the point C. The values at the centers of the faces are $\hat{\vartheta}_{\mathcal{F}_{k}}\left(C_{j}\right)=\delta_{j k}$, for $j=1, \ldots, 6$, where $\delta_{j k}$ is the Kronecker symbol. $\hat{\vartheta}_{\mathcal{F}_{k}}$ is linear on the segments $C C_{j}$. The values inside each subtetrahedron formed by a segment $C C_{j}$ and one edge of \mathcal{F}_{j} are defined to be constant on the intersection of any plane through that edge, and are given by the value, already known, on the segment $C C_{j}$. Next, the whole function $\hat{\vartheta}_{\mathcal{F}_{k}}$ is modified to be a piecewise Q_{1} function on $\mathcal{T}^{\hat{h}}$ by interpolating at the GLL nodes; the values of this finite element function at the nodes on the wirebasket are defined to be equal to zero.

We claim that $\left|\nabla \hat{\vartheta}_{\mathcal{F}_{k}}(x)\right| \leq C / r$, where x is a point belonging to any element \hat{K} that does not touch any edge of the cube, and r is the distance from the center of \hat{K} to the closest edge of the cube. Let $\overline{a b}$ be a side of \hat{K}. We analyze in detail the situation depicted in Fig. 2, where $\overline{a b}$ is parallel to $C C_{k}$. Let e be the intersection of the plane containing these two segments with the edge of the cube that is closest to $\overline{a b}$. Then $\left|\hat{\vartheta}_{\mathcal{F}_{k}}(b)-\hat{\vartheta}_{\mathcal{F}_{k}}(a)\right| \preceq D$, by the construction of $\hat{\vartheta}_{\mathcal{F}_{k}}$, where D is the size of the radial projection with center e of $\overline{a b}$ onto $C C_{k}$. By similarity of triangles, we may write

$$
\begin{equation*}
\left|\hat{\vartheta}_{\mathcal{F}_{k}}(b)-\hat{\vartheta}_{\mathcal{F}_{k}}(a)\right| \preceq \frac{\operatorname{dist}(a, b)}{r^{\prime}} \tag{4.5}
\end{equation*}
$$

where r^{\prime} is the distance between e and the midpoint of $\overline{a b}$. Here we have used that the distance between e and $C C_{k}$ is of order 1. If the segment $\overline{a b}$ is not parallel to $C C_{k}$, the difference $\left|\hat{\vartheta}_{\mathcal{F}_{k}}(b)-\hat{\vartheta}_{\mathcal{F}_{k}}(a)\right|$ is even smaller, and (4.5) is still valid. Notice that r^{\prime} is within a multiple of 2 of r. Therefore, Lemma 2 implies that $\left|\nabla \hat{\vartheta}_{\mathcal{F}_{k}}(x)\right| \leq C / r$.

In order to estimate the energy of $\hat{\vartheta}_{\mathcal{F}_{k}}$, we start with the elements \hat{K} that touch an edge \mathcal{E} of the cube. Let h_{3} be the side of \hat{K} which is parallel to \mathcal{E}. Then h_{3} is greater than or equal to the other sides of \hat{K}, by the properties of the GLL nodes, as explained in section 2 . Since the nodal values of $\hat{\vartheta}_{\mathcal{F}_{k}}$ in \hat{K} are bounded by 1 , by the construction of $\hat{\vartheta}_{\mathcal{F}_{k}}$, we have

$$
\left|\hat{\vartheta}_{\mathcal{F}_{k}}\right|_{H^{1}(\hat{K})} \preceq h_{3}
$$

by using equation (4.2). Summing over \hat{K}, we conclude that the energy of $\hat{\vartheta}_{\mathcal{F}_{k}}$ is bounded independently of N for the union of all elements that touch the edges of the cube.

To estimate the contribution to the energy from the other elements of the substructure, we consider one subtetrahedron at a time and introduce cylindrical coordinates using the substructure edge, that belongs to the subtetrahedron, as the z-axis. The bound now follows from the bound on the gradient of $\hat{\vartheta}_{\mathcal{F}_{k}}$ given above and elementary considerations. We refer to [13] for more details, and also to the proof of the next lemma, where a similar computation is performed.

The following lemma corresponds to Lemma 4.5 in [13]. This lemma and the previous one are the keys to avoiding the use of $H_{00}^{1 / 2}$ estimates and extension theorems in the analysis of our algorithms.

Lemma 7. Let $\vartheta_{\mathcal{F}_{k}}(x)$ be the function introduced in the proof of Lemma 6, let \mathcal{F}_{k} be a face of the substructure Ω_{j}, and let I^{h} denote the interpolation operator associated with the finite element space P^{h} and the image of the GLL points under the mapping F_{j}. Then,

$$
\sum_{k} I^{h}\left(\vartheta_{\mathcal{F}_{k}} u\right)(x)=u(x)
$$

for all nodal points $x \in \bar{\Omega}_{j}$ that do not belong to the wirebasket \mathcal{W}_{j}, and

$$
\left|I^{h}\left(\vartheta_{\mathcal{F}_{k}} u\right)\right|_{H^{1}\left(\Omega_{\jmath}\right)}^{2} \preceq(1+\log (N))^{2}\|u\|_{H^{1}\left(\Omega_{j}\right)}^{2} .
$$

Proof. The first part is trivial from the construction of $\hat{\vartheta}_{\mathcal{F}_{k}}$ made in the previous lemma. For the second part, we work in the reference substructure, and first estimate the sum of the energy of all the elements \hat{K} that touch an edge \mathcal{E} of the wirebasket. We provide a detailed argument only for \hat{K} touching \mathcal{F}_{k}; the other elements that touch an edge are treated similarly. The nodal values of $I^{\hat{h}}\left(\hat{\vartheta}_{\mathcal{F}_{k}} \hat{u}\right)$ in such an element are $0,0,0,0, \hat{u}(a), \hat{u}(b), \hat{\vartheta}_{\mathcal{F}_{k}}(c) \hat{u}(c)$ and $\hat{\vartheta}_{\mathcal{F}_{k}}(d) \hat{u}(d) ; \hat{\vartheta}_{\mathcal{F}_{k}}$ lies between 0 and 1 . Moreover, let h_{3} be the side of \hat{K} that is parallel to \mathcal{E}. Then $h_{3} \succeq h_{1}$ and $h_{3} \succeq h_{2}$, by the geometrical properties of the GLL mesh. Now, equation (4.2) implies

$$
\left|I^{\hat{h}}\left(\hat{\vartheta}_{\mathcal{F}_{k}} \hat{u}\right)\right|_{H^{1}(\hat{K})}^{2} \preceq h_{3}\left(\hat{u}^{2}(a)+\hat{u}^{2}(b)+\left(\hat{\vartheta}_{\mathcal{F}_{k}}(c) \hat{u}(c)\right)^{2}+\left(\hat{\vartheta}_{\mathcal{F}_{k}}(d) \hat{u}(d)\right)^{2}\right) .
$$

Then, applying (4.1) for the segments that are parallel to \mathcal{E}, and Lemma 5, we have

$$
\sum_{\hat{K}}\left|I^{\hat{h}}\left(\hat{\vartheta}_{\mathcal{F}_{k}} \hat{u}\right)\right|_{H^{1}(\hat{K})}^{2} \preceq(1+\log (N))\|\hat{u}\|_{H^{1}\left(\Omega_{j}\right)}^{2},
$$

where this sum is taken over all elements \hat{K} that touch the wirebasket of $\hat{\Omega}$.

We next bound the energy of the interpolant for the other elements. By the proof of the previous lemma, $\left|\nabla \hat{\vartheta}_{\mathcal{F}_{k}}\right| \leq C / r$, where r is the distance between the element \hat{K} and the nearest edge of $\hat{\Omega}$. Then, Lemma 3 implies that

$$
\sum_{\hat{K} \subset \hat{\Omega}}\left|I^{\hat{h}}\left(\hat{\vartheta}_{\mathcal{F}_{k}} \hat{u}\right)\right|_{H^{1}(\hat{K})}^{2} \preceq \sum_{\hat{K} \subset \hat{\Omega}}\left(|\hat{u}|_{H^{1}(\hat{K})}+r^{-2}\|\hat{u}\|_{L^{2}(\hat{K})}^{2}\right),
$$

where the sum is taken over all elements \hat{K} that do not touch the wirebasket of $\hat{\Omega}$.
The bound of the first term in the sum is trivial. To bound the second term, we partition the elements of $\hat{\Omega}$ into groups, in accordance to the closest edge of $\hat{\Omega}$; the exact rule for the assignment of the elements that are halfway between is of no importance. For each edge of the wirebasket, we use a local cylindrical coordinate system with the z axis coinciding with the edge, and the radial direction, r, normal to it. The sum restricted to each of these groups of elements can be estimated by an integral

$$
\sum_{\hat{K} \subset \hat{\Omega}} r^{-2}\|\hat{u}\|_{L^{2}(\hat{K})}^{2} \preceq \int_{r=\hat{h}}^{C} \int_{\theta} \int_{z}(\hat{u})^{2} \frac{r}{r^{2}} d z d \theta d r .
$$

The integral with respect to z can be bounded by using Lemma 5 . We obtain

$$
\sum_{\hat{K} \subset \hat{\Omega}} r^{-2}\|\hat{u}\|_{L^{2}(\hat{K})}^{2} \preceq(1+\log (C / \hat{h}))\|\hat{u}\|_{H^{1}(\hat{\Omega})}^{2} \int_{r=\hat{h}}^{C} r^{-1} d r
$$

and thus

$$
\sum_{\hat{K} \subset \hat{\Omega}}\left|I^{\hat{h}}\left(\hat{\vartheta}_{\mathcal{F}_{k}} \hat{u}\right)\right|_{H^{1}(\hat{K})}^{2} \preceq(1+\log (C / \hat{h}))^{2}\|\hat{u}\|_{H^{1}(\hat{\Omega})}^{2}
$$

We note that this proof is an extension of an argument given in [13] for shaperegular meshes, and that equation (4.3) replaces the use of the inverse inequality, which if used here would introduce the bad aspect ratios of the elements into the estimates.

LEMMA 8. Let $\bar{u}_{\partial \mathcal{F}_{k}}$ and $\bar{u}_{\mathcal{W}_{j}}$ be the averages of u on $\partial \mathcal{F}_{k}$ and \mathcal{W}_{j}, respectively. Then,

$$
\begin{aligned}
\left(\bar{u}_{\partial \mathcal{F}_{k}}\right)^{2} & \preceq \frac{1}{H}\|u\|_{L^{2}\left(\partial \mathcal{F}_{k}\right)}^{2}, \\
\left(\bar{u}_{\mathcal{W}_{J}}\right)^{2} & \preceq \frac{1}{H}\|u\|_{L^{2}\left(\mathcal{W}_{j}\right)}^{2} .
\end{aligned}
$$

The proof is a direct consequence of the Cauchy-Schwarz inequality.
LEMMA 9. Let $u \in P^{h}\left(\Omega_{i}\right)$ be zero on the mesh points of the faces of Ω_{j} and discrete harmonic in Ω_{j}. Then,

$$
|u|_{H^{1}\left(\Omega_{j}\right)}^{2} \preceq\|u\|_{L^{2}\left(\mathcal{W}_{j}\right)}^{2} .
$$

Proof. In the reference substructure, we define an extension \tilde{u} such that $\tilde{u}=u$ on $\partial \hat{\Omega}$, and the value of \tilde{u} at all the interior GLL points are zero. The energy norm of \tilde{u} is nonzero only in the elements of $\mathcal{T}^{\hat{h}}$ which touch the wirebasket, and can easily be estimated, up to a constant independent of the degree N, in terms of the $L^{2}\left(\mathcal{W}_{j}\right)$ -
norm of \tilde{u}, by using (4.2) and the one-dimensional analogue of (4.1). The argument is very similar to that used to estimate the energy of $\hat{\vartheta}_{\mathcal{F}_{k}}$ in the proof of Lemma 6 ; it is based on the observation that for an hexahedral $\hat{K} \in P^{\hat{h}}$ that touches a wirebasket edge, the larger side of \hat{K} is the one parallel to (or coinciding with) that edge. The result now follows by noting that the discrete harmonic extension u has energy smaller than \tilde{u}.
5. Iterative substructuring algorithms. At this point, we can propose and analyze several iterative substructuring methods previously developed for finite elements. We choose the wirebasket algorithm proposed by Smith [36] because it is efficient, and its analysis raises all the important technical issues. In a practical problem, the choice between the many alternatives now known should be made on the basis of the theoretical results that can be derived from our theory, as well as numerical experimentation.

Smith's algorithm is a wirebasket-based method, and it is also described as Algorithm 6.4 in [13] in the context of standard finite elements. It can be viewed as a block-diagonal preconditioner after transforming S_{h} into a convenient basis, and the same is true for our algorithm.

By the abstract framework of Schwarz methods developed for example in [13], we know that in order to describe the algorithm we only need to prescribe subspaces, the sum of which spans the whole space of h-discrete harmonic functions of $P_{0}^{h}(\Omega)$, and one bilinear form for each subspace.

For each internal face \mathcal{F}_{k}, we let $V_{\mathcal{F}_{k}}$ be the space of h-discrete harmonic functions that vanish at all the interface nodes that do not belong to this face. The functions in $V_{\mathcal{F}_{k}}$ have support in $\bar{\Omega}_{i j}$, the union of the two substructures $\bar{\Omega}_{i}$ and $\bar{\Omega}_{j}$ that share the face \mathcal{F}_{k}. The bilinear form used for these spaces is $a(\cdot, \cdot)$.

The wirebasket subspace is the range of the following interpolation operator:

$$
I_{W}^{h} u_{h}=\sum_{x_{k} \in \mathcal{W}_{h}} u_{h}\left(x_{k}\right) \varphi_{k}+\sum_{k}\left(\overline{u_{h}}\right)_{\partial F^{k}} \theta_{F^{k}}
$$

Here, φ_{k} is the discrete harmonic extension of the standard nodal basis functions ϕ_{k}, \mathcal{W}_{h} is the set of nodes in the union of all the wirebaskets, and $\overline{u_{h}} \partial F^{k}$ is the average of u_{h} on ∂F^{k}. The bilinear form for this coarse subspace is given by

$$
b_{0}\left(u_{h}, u_{h}\right)=(1+\log (N)) \sum_{i} k_{i} \inf _{c_{\imath}}\left\|u_{h}-c_{i}\right\|_{L^{2}\left(\mathcal{W}_{\imath}\right)}^{2}
$$

where the c_{i} are constants in each substructure.
These subspaces and bilinear forms define, via the Schwarz framework, a preconditioner of S_{h} that we call $\tilde{S}_{h, W B}$.

Theorem 1. For the preconditioner $\tilde{S}_{h, W B}$, we have

$$
\kappa\left(\tilde{S}_{h, W B}^{-1} S_{N}\right) \preceq(1+\log (N))^{2},
$$

where the constant C is independent of N, H, and the values k_{i} of the coefficient.
Proof. We can apply, word by word, the proof of Theorem 6.4 in [13] to the matrix S_{h}, using now the tools developed in section 4 . For completeness, the important points of the proof are presented here.

We follow the Schwarz framework to estimate $\lambda_{\min }\left(\tilde{S}_{h, W B}^{-1} S_{h}\right)$ from below by C_{0}^{-2}. Here, C_{0} is a constant for which $\forall u_{h} \in P_{0}^{h}(\Omega)$, there are $u_{0} \in V^{H}$ and $u_{\mathcal{F}_{k}} \in V_{\mathcal{F}_{k}}$ and
such that

$$
\begin{equation*}
u_{h}=u_{0}+\sum_{\mathcal{F}_{k}} u_{\mathcal{F}_{k}} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}\left(u_{0}, u_{0}\right)+\sum_{\mathcal{F}_{k}} a\left(u_{\mathcal{F}_{k}}, u_{\mathcal{F}_{k}}\right) \leq C_{0}^{2} a\left(u_{h}, u_{h}\right) \tag{5.2}
\end{equation*}
$$

see [13, Thm. 2.2].
Let $u_{0}=I_{W}^{h} u_{h}$, and let $u_{\mathcal{F}_{k}}=\mathcal{H}_{h}\left(I^{h}\left(\vartheta_{\mathcal{F}_{k}}\left(u_{h}-u_{0}\right)\right)\right)-\left(\overline{u_{h}}\right)_{\mathcal{F}_{k}} \theta_{\mathcal{F}_{k}}$. It is then clear that (5.1) is satisfied.

We next bound the first term of (5.2) using Lemma 5:

$$
\begin{aligned}
b_{0}\left(u_{0}, u_{0}\right) & \leq(1+\log (N)) \sum_{i} k_{i}\left\|u_{0}-\left(\overline{u_{0}}\right) \mathcal{W}_{i}\right\|_{L^{2}\left(\mathcal{W}_{\imath}\right)}^{2} \\
& \leq C(1+\log (N))^{2} \sum_{i} k_{i}\left|u_{h}\right|_{H^{1}\left(\Omega_{2}\right)}^{2} \\
& =C(1+\log (N))^{2} a\left(u_{h}, u_{h}\right) .
\end{aligned}
$$

In the second inequality, we used that $u_{h} \equiv u_{0}$ on the wirebasket.
Let $\Omega_{i j}$ be the union of the two subregions Ω_{i} and Ω_{j}, which share the face \mathcal{F}_{k}. We note that the values of u_{0} are irrelevant in the first term of the expression defining $u_{\mathcal{F}_{k}}$, since $\vartheta_{\mathcal{F}_{k}}$ vanishes at the wirebasket nodes. Then,

$$
\begin{aligned}
& a\left(u_{\mathcal{F}_{k}}, u_{\mathcal{F}_{k}}\right) \leq C\left(k_{i}\left(\left|I^{h}\left(\vartheta_{\mathcal{F}_{k}}\left(u_{h}-u_{0}\right)\right)\right|_{H^{1}\left(\Omega_{\imath}\right)}^{2}+\left(\overline{u_{h}} \partial \mathcal{F}_{k}\right)^{2}\left|\theta_{\mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{2}\right)}^{2}\right)\right. \\
& \left.+k_{j}\left(\left|I^{h}\left(\vartheta_{\mathcal{F}_{k}}\left(u_{h}-u_{0}\right)\right)\right|_{H^{1}\left(\Omega_{\jmath}\right)}^{2}+\left(\overline{u_{h}} \partial \mathcal{F}_{k}\right)^{2}\left|\theta_{\mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{j}\right)}^{2}\right)\right) \\
& \leq C(1+\log (N))^{2}\left(k_{i}\left\|u_{h}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2}+k_{j}\left\|u_{h}\right\|_{H^{1}\left(\Omega_{\jmath}\right)}^{2}\right),
\end{aligned}
$$

by using Lemma 7 to bound the first and third terms, and Lemmas 5,6 , and 8 to bound the second and fourth terms. The full H^{1}-norm on the right-hand side can be reduced to the seminorm by using a quotient-space argument, since $u_{\mathcal{F}_{k}}$ is invariant under the addition of a constant to u_{h}. We next sum over all the faces \mathcal{F}_{k}, and note that each point of Ω is covered at most six times by the $\Omega_{i j}$. This concludes the verification of (5.2), and therefore $\lambda_{\min }\left(\tilde{S}_{h, W B}^{-1} S_{h}\right) \geq c /(1+\log (N))^{2}$.

The estimate of $\lambda_{\max }\left(\tilde{S}_{h, W B}^{-1} S_{h}\right)$ (by a constant independent of the parameters H and N) is again a consequence of the results of subsection 4.2 and the abstract convergence theorem. Therefore,

$$
\kappa\left(\tilde{S}_{h, W B}^{-1} S_{h}\right) \preceq(1+\log (N))^{2} .
$$

The harmonic FEM-SEM equivalence (3.8) and a Rayleigh quotient argument complete the proof of the theorem; see section 3 .

The next algorithm is obtained from the previous one by the discrete harmonic FEM-SEM equivalence, by which we find a preconditioner $\tilde{S}_{N, W B}$ from $\tilde{S}_{h, W B}$. The subspaces that define the preconditioner are now contained in the space of Q-discrete harmonic functions of $P_{0}^{N}(\Omega)$.

Each face subspace, related to a face \mathcal{F}_{k}, consists of the set of all Q-discrete harmonic functions that are zero at all the interface nodes that do not belong to the interior of the face \mathcal{F}_{k}. The bilinear form for these spaces is $a_{Q}(\cdot, \cdot)$.

The wirebasket subspaces are defined as before, by prescribing the values at the $\operatorname{GLL}(N)$ nodes on a face as the average of the function on the boundary of the face. The bilinear form used for the wirebasket subspace is $b_{0}^{Q}(\cdot, \cdot)$, obtained from $b_{0}(\cdot, \cdot)$ by applying the $\operatorname{GLL}(N)$ quadrature to compute the L^{2}-norm on each edge of the wirebasket. This is exactly the wirebasket method based on GLL quadrature described in [32].

The following lemma shows the equivalence of the two functions u_{h} and u_{N} with respect to the bilinear forms $b_{0}(\cdot, \cdot)$ and $b_{0}^{Q}(\cdot, \cdot)$, respectively.

LEMmA 10. Let u_{h} be a Q_{1} finite element function on the $G L L(N)$ mesh on the interval $I=[-1,+1]$, and let u_{N} be its polynomial interpolant using the nodes of this mesh. Then,

$$
\inf _{c}\left\|u_{h}-c\right\|_{L^{2}(I)}^{2} \asymp \inf _{c} \sum_{j=0}^{N}\left(u_{N}\left(\xi_{j}\right)-c\right)^{2} \rho_{j},
$$

where the inf is taken over all real constants.
Proof. The $\operatorname{GLL}(N)$ quadrature has the following important property: For any polynomial u_{N} of degree N defined on I,

$$
\left\|u_{N}\right\|_{L^{2}(\Lambda)}^{2} \leq \sum_{j=0}^{N} u_{N}^{2}\left(\xi_{j}\right) \rho_{j} \leq 3\left\|u_{N}\right\|_{L^{2}(\Lambda)}^{2}
$$

see [1, p. 75]. Therefore, it is enough to prove that

$$
\inf _{c}\left\|u_{h}-c\right\|_{L^{2}(I)}^{2} \asymp \inf _{c}\left\|u_{N}-c\right\|_{L^{2}(I)}^{2}
$$

We prove only the \preceq part of this last estimate, since the opposite inequality is analogous. The inequality without the infimum is valid for the constant c_{r} that realizes the inf in the right-hand side by the FEM-SEM equivalence. By taking the inf of the left-hand side the inequality is preserved.

THEOREM 2. For the preconditioner $\tilde{S}_{N, W B}$, we have

$$
\kappa\left(\tilde{S}_{N, W B}^{-1} S_{N}\right) \preceq(1+\log (N))^{2},
$$

where the constant is independent of the parameters H, N, and the values k_{i} of the coefficient.

Proof. In this proof, the functions with indices h and N are h - and Q - discrete harmonic functions respectively, and they agree at the GLL nodes that belong to the interface Γ. As observed in section 3 , it is enough to analyze one substructure Ω_{i} at a time, and prove the following equivalence:

$$
\begin{align*}
& b_{0, \mathcal{W}_{2}}^{Q}\left(u_{N}, u_{N}\right)+\sum_{\mathcal{F}_{k} \subset \bar{\Omega}_{\imath}} k_{i}\left|u_{N}-\bar{u}_{N, \partial \mathcal{F}_{k}} \theta_{N, \mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{\imath}\right)}^{2} \tag{5.3}\\
& \asymp b_{0, \mathcal{W}_{\imath}}\left(u_{h}, u_{h}\right)+\sum_{\mathcal{F}_{k} \subset \bar{\Omega}_{\imath}} k_{i}\left|u_{h}-\bar{u}_{h, \partial \mathcal{F}_{k}} \theta_{h, \mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{2}\right)}^{2},
\end{align*}
$$

where the subscript \mathcal{W}_{i} means that only the contribution from the wirebasket of Ω_{i} is used to define the bilinear form. We prove only the \preceq part; the proof of the reverse inequality is analogous. We first note that Lemma 10 bounds the first term on the left-hand side by the first term on the right-hand side.

Each term in the sum on the left-hand side can be bounded from above by

$$
2 k_{i}\left|u_{N}-\bar{u}_{h, \partial \mathcal{F}_{k}} \theta_{N, \mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{2}\right)}^{2}+2 k_{i}\left|\left(\bar{u}_{h, \partial \mathcal{F}_{k}}-\bar{u}_{N, \partial \mathcal{F}_{k}}\right) \theta_{N, \mathcal{F}_{k}}\right|_{H^{1}\left(\Omega_{i}\right)}^{2} .
$$

The first term of this expression can be bounded from above by the corresponding term on the right-hand side by using the harmonic FEM-SEM equivalence. The second term is bounded by

$$
\begin{aligned}
& C k_{i} H(1+\log (N))\left|\bar{u}_{h, \partial \mathcal{F}_{k}}-\bar{u}_{N, \partial \mathcal{F}_{k}}\right|^{2} \\
& \quad=C k_{i} H(1+\log (N)) \mid\left(u_{h}-c_{h, \mathcal{W}_{2}}\right)_{\partial \mathcal{F}_{k}}-{\left.\overline{\left(u_{N}-c_{h, \mathcal{W}_{2}}\right)_{\partial \mathcal{F}_{k}}}\right|^{2}}^{2}
\end{aligned}
$$

where $c_{h, \mathcal{W}_{2}}$ is the average of u_{h} over \mathcal{W}_{i}. Here we have used that the estimate on the energy norm of $\theta_{h, \mathcal{F}_{k}}$, given in Lemma 6, implies a similar estimate for $\theta_{N, \mathcal{F}_{k}}$, by (3.8). Applying the Cauchy-Schwarz inequality, as in Lemma 8, and the FEMSEM equivalence, we can bound this last expression in terms of the first term of the right-hand side of equation (5.3).

REMARK 1. The p-version finite element approximation of problem (2.1) corresponding to the partition $\left\{\Omega_{i}\right\}$ can be given by (2.5). A major difference of this method, when compared to the spectral element method, is the use of a hierarchical basis for the local discrete space $P^{N}\left(\Omega_{i}\right)$ based on integrated Legendre polynomials. The method of Theorem 2 may still be used with this basis, since the convergence properties of the algorithm depends only on the spaces being used; the implementation requires a change from the p-version basis to the basis of interpolating polynomials ϕ_{i}^{N}, for the degrees of freedom associated with the wirebasket. We note that this change of basis affects only the coarse space component of the preconditioner. For an analogous method, and a detailed discussion of this point, we refer to [32, 33].

Remark 2. For the p-version defined on tetrahedral substructures, the local discrete space is the space of polynomials of total degree N. A crucial difficulty encountered, when attempting to extend our results to that case, is to obtain a set of nodes in the reference tetrahedral with stability properties analogous to those of the GLL mesh in the cube; see, e.g., equations (3.1) and (3.2). This is an important open question. Quite recently, a study of preconditioners for this discretization has been undertaken from a different perspective; see [37]. Ion Bică is currently preparing a Ph.D. thesis on these topics, under the supervision of Olof Widlund.
6. Overlapping Schwarz algorithms. We now consider the additive overlapping Schwarz method, which is presented, e.g., in $[13,14]$. We recall that an abstract framework, given in Theorem 2.2 of [13], is available for the analysis of this and other types of algorithms. Here we only discuss the additive version, but the analysis can also be extended in a standard way to the multiplicative variant [5], which has proven more effective in many practical problems.

As in the previous section, a preconditioner \tilde{K}_{h} for K_{h} is specified by a set of local spaces together with a coarse space. We also have to provide bilinear forms (approximate solvers) for the elliptic problems restricted to each of these subspaces. Here we work with exact solvers, i.e., the bilinear form is always $a(\cdot, \cdot)$. The extension to approximate solvers is straightforward.

In the context of spectral elements, the following construction was first proposed by Pahl [26]. The domain Ω is covered by substructures Ω_{i}, which are the original spectral elements. We enlarge each of them, to produce overlapping subregions Ω_{i}^{\prime}, in such a way that the boundary of Ω_{i}^{\prime} does not cut through any element of the triangulation \mathcal{T}^{h} generated by the GLL nodes. The overlap δ is the minimum distance between the boundaries of Ω_{i} and Ω_{i}^{\prime}. When δ is proportional to H the overlap is called generous, and when δ is comparable to the size of the elements of \mathcal{T}^{h}, we speak of a small overlap. For the sake of simplicity, we again restrict our analysis to the case when all the mappings F_{i} are affine. The general situation can be treated similarly.

The local spaces are given by $P_{0}^{h}\left(\Omega_{i}^{\prime}\right)$, the set of functions in $P_{0}^{h}(\Omega)$ that vanish at all the nodes on or outside $\partial \Omega_{i}^{\prime}$. The coarse space is the Q_{1} finite element space defined on the mesh generated by the subregions Ω_{i}, the elements of the coarse triangulation, which are shape-regular by assumption; see section 2 . This setting incorporates both small and generous overlap.

Theorem 3. Pahl's additive Schwarz algorithm satisfies

$$
\kappa\left(\tilde{K}_{h, A S}^{-1} K_{N}\right) \preceq(1+H / \delta) .
$$

The constant C is independent of the parameters H, N, and δ.
Proof. We claim that

$$
\begin{equation*}
\kappa\left(\tilde{K}_{h, A S}^{-1} K_{h}\right) \leq C(1+H / \delta) \tag{6.1}
\end{equation*}
$$

We follow the proof of the analogous result for shape-regular finite elements; see Theorem 3 in [14], where the standard additive Schwarz framework is used. For ease of presentation, we only consider the case of generous overlap, for which δ is on the order of H (the general case can be treated analogously, using the techniques of [14]). Let $u_{h} \in P_{0}^{h}(\Omega)$. We define the coarse space component by $u_{0}=Q^{H} u_{h}$. By Lemma $4,\left|u_{0}\right|_{H^{1}(\Omega)} \leq C\left|u_{h}\right|_{H^{1}(\Omega)}$. Let $w_{h}=u-u_{0}$, and let $\left\{\theta_{i}\right\}$ be a partition of unity associated with the covering $\left\{\Omega_{i}^{\prime}\right\}$, and which satisfies $\left|\theta_{i}\right| \leq C$, and $\left|\nabla \theta_{i}\right| \leq C / H$. The local components are defined by $u_{i}=I_{h}\left(\theta_{i} w_{h}\right)$, where I_{h} is the interpolation operator at the degrees of freedom of $P_{0}^{h}(\Omega)$. We next derive the estimate

$$
\sum_{i \geq 1}\left|u_{i}\right|_{H^{1}(\Omega)}^{2} \leq C_{0}^{2}\left|u_{h}\right|_{H^{1}(\Omega)}^{2}
$$

with a constant C_{0}^{2}; by the Schwarz theory, we have then $\lambda_{\min }\left(\tilde{K}_{h, A S}^{-1} K_{h}\right) \geq C_{0}^{-2}$. For an element $K \in \Omega_{i}^{\prime}$, the application of Lemma 3 gives

$$
\left|I_{h}\left(\theta_{i} w_{h}\right)\right|_{H^{1}(K)}^{2} \leq C\left(\left|w_{h}\right|_{H^{1}(K)}^{2}+\frac{1}{H^{2}}\left\|w_{h}\right\|_{L^{2}(K)}^{2}\right)
$$

by using the bounds on θ_{i} and its gradient. Summing this inequality over $K \subset \Omega_{i}^{\prime}$, we obtain

$$
\left|u_{i}\right|_{H^{1}\left(\Omega_{\imath}^{\prime}\right)}^{2}=\left|I_{h}\left(\theta_{i} w_{h}\right)\right|_{H^{1}\left(\Omega_{\imath}^{\prime}\right)}^{2} \leq C\left(\left|w_{h}\right|_{H^{1}\left(\Omega_{\imath}^{\prime}\right)}^{2}+\frac{1}{H^{2}}\left\|w_{h}\right\|_{L^{2}\left(\Omega_{\imath}^{\prime}\right)}^{2}\right) .
$$

We next sum over all subregions, and use that each point of Ω is covered a small number of times by the covering $\left\{\Omega_{i}^{\prime}\right\}$, to obtain

$$
\sum_{i \geq 1}\left|u_{i}\right|_{H^{1}\left(\Omega_{i}^{\prime}\right)}^{2} \leq C\left(\left|w_{h}\right|_{H^{1}(\Omega)}^{2}+\frac{1}{H^{2}}\left\|w_{h}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

By applying Lemma 4, and the estimate for u_{0} stated above, we find

$$
\sum_{i \geq 0}\left|u_{i}\right|_{H^{1}\left(\Omega_{\imath}^{\prime}\right)}^{2} \leq C_{0}^{2}\left(\left|u_{h}\right|_{H^{1}(\Omega)}^{2}\right)
$$

in other words, C_{0}^{2} is a constant independent of H and h. Therefore, the smallest eigenvalue of $\tilde{K}_{h, A S}^{-1} K_{h}$ is bounded from below independently of H and h. The constant
upper bound on the largest eigenvalue follows directly from the Cauchy-Schwarz inequality, since this is a two-level method, and the local and coarse problems are solved exactly; see Theorem 2.2 of [13].

The use of relation (6.1), the FEM-SEM equivalence, and a Rayleigh quotient argument completes the proof.

REMARK 3. Even though the theory does not rule out the possibility of growth of the constant C of Theorem 3 when the coefficient $k(x)$ has large jumps, only a very moderate increase has been observed in numerical experiments; see, e.g., [19]. We also note that when the overlap is generous, the method is optimal in the sense that the condition number is uniformly bounded with respect to N and H.

We now apply the FEM-SEM equivalence to the subspaces that define $\tilde{K}_{h, A S}$, to propose yet another preconditioner; this is the same technique used to derive the preconditioner $\tilde{S}_{N, W B}$ from $\tilde{S}_{h, W B}$. The coarse space is the same as the one for $\tilde{K}_{h, A S}$, while the local spaces are given by

$$
V_{\Omega_{i}^{\prime}}^{N}=\left\{v_{N} \in P_{0}^{N}(\Omega) \text { such that } I_{N}^{h}\left(v_{N}\right) \in P_{0}^{h}\left(\Omega_{i}^{\prime}\right)\right\} .
$$

Notice that the polynomials of $V_{\Omega_{i}^{\prime}}^{N}$ are generally not equal to zero outside Ω_{i}^{\prime}, and therefore $V_{\Omega_{2}^{\prime}}^{N} \not \subset P_{0}^{N}\left(\Omega_{i}^{\prime}\right)$.

These subspaces and the use of the bilinear forms $a_{Q}(\cdot, \cdot)$ and $a(\cdot, \cdot)$ for the local and coarse spaces, respectively, define our new preconditioner $\tilde{K}_{N, A S}$. Theorem 3 and a simple application of the FEM-SEM equivalence for each of the local spaces immediately give the following.

Theorem 4.

$$
\kappa\left(\tilde{K}_{N, A S}^{-1} K_{N}\right) \leq C(1+H / \delta)
$$

REMARK 4. To the best of our knowledge, this preconditioner $\tilde{K}_{N, A S}$ is new. Even though $\tilde{K}_{h, A S}$ is superior to $\tilde{K}_{N, A S}$ for the model problem considered here, because the local problems are much easier to solve, the comparative efficiency in more complicated problems can only be determined by experiments.

Remark 5. In the present algorithm, the local spaces are allowed to be more general than those considered by Pavarino [28, 29, 30]. For each crosspoint x_{ℓ}, Pavarino defines an extended subdomain Ω_{ℓ}^{\prime} as the union of all the subdomains that contain x_{ℓ} as a vertex. Therefore, δ is always on the order of H. Our methods can also be used to provide alternative proofs of some of his results, when the local spaces can be easily described in terms of interpolation polynomials on the GLL mesh.

Remark 6. There does not appear to be, in the literature, any systematic study of overlapping methods for the p-version finite element; see Remarks 1 and 2, for a brief description of this discretization variant. Remark 2 points to a major difficulty encountered when attempting to extend our methods to tetrahedral substructures.
7. Comments on the numerical experiments by Pahl. We describe here part of the experiments performed by Pahl [26], which have motivated our analysis; for a more detailed description, we refer to that very thorough study in two dimensions. Some of the results of these experiments are used here to illustrate the efficiency of the methods considered in the last two sections, and as experimental evidence to show the correctness and predictive value of our theory. Numerical experiments for the three-dimensional case have also been performed for related iterative substructuring algorithms by Einar Rønquist; see [9, Chap. 4] for a preliminary presentation of these results.

Table 7.1
Iteration counts for iterative substructuring, $N=4$ and increasing M.

Method $/ M$	2	4	5	6	7	8	10	12
$T_{W B}$	4	7	8	8	9	9	9	9
$T_{B D D}$	1	4	4	6	6	7	7	7
I	4	11	13	16	18	20	26	30

Table 7.2
Iteration counts for iterative substructuring, $M=7$ and increasing N.

Method $/ N$	4	5	6	7	8	9	10	12
$T_{W B}$	9	9	10	10	10	11	11	11
$T_{B D D}$	6	6	7	7	7	8	8	8
I	18	20	22	24	25	27	30	34

In Pahl's experiments, the region Ω was taken to be the unit square in the plane, and the tests were based on the two-dimensional analogues of the methods described in the previous two sections. Ω was subdivided into a uniform $M \times M$ mesh of squares, with sides $H=1 / M$. In each square, polynomials of degree N were used. The coefficient $k(x)$ was equal to one, and the right-hand side of (2.1) was chosen so that the exact solution was $u=x y(1-x)(1-y)$. The stopping criterion for the PCG iteration was a reduction of 10^{-5} in the Euclidean norm of the residual, and only iteration counts were reported. The exact solution u is a polynomial of degree 2 , and therefore the spectral element method, if solved exactly, recovers u, for $N \geq 2$. The attention was focused on the number of iterations, which is a reliable measure of the conditioning of the preconditioned operator, since the initial guess for the iteration was chosen as identically zero (and therefore away from the exact solution). The experiments were performed for the finite element based preconditioners of the spectral element stiffness matrix; see our Theorems 1 and 3 .

In a first set of experiments, the iterative substructuring methods were considered. Several preconditioners were studied, including the wirebasket preconditioner $T_{W B}$ analyzed in section 5 , and a two-dimensional analogue of the balancing preconditioner $T_{B D D}$ of Mandel and Brezina [24]. For $N=4$ and M between 2 and 12, the number of iterations was bounded by 11, and grew hardly at all, with increasing M; see Table 7.1, where these two algorithms are compared with the identity preconditioner (I) for the interface variables after elimination of the interior ones.

Table 7.2 shows Pahl's results for $M=7$ and N between 4 and 12. The iteration count increased very slowly with N, and was bounded by 11 for the wirebasket and balancing preconditioners. We remark that the finite element balancing preconditioner for the spectral element method can also be analyzed with our techniques; see also [31] for a related algorithm. Pahl's results corroborate, in a clear cut way, the results of the theory.

The overlapping Schwarz preconditioner was studied in a second set of experiments. Table 7.3 shows the iteration counts for an overlap δ of one mesh size. The distance between the first two GLL points of the interval $[-1,1], \xi_{0}=-1$ and ξ_{1} is on the order of $1 / N^{2}$. It is then easy to see that $\delta \asymp H / N^{2}$, and that therefore the bound on the condition number given by Theorem 3 grows like $(1+H / \delta) \asymp N^{2}$. Hence, our theory predicts an iteration count which is linear in N and independent of M. The experiments performed by Pahl showed that for $N=4$, the number of iterations grows very slowly with M between 2 and 12 , and presents a sublinear growth when N increases from 4 to 12 . The maximum iteration count was 22 , achieved for $M=7$

Table 7.3
Iteration counts for overlapping Schwarz, overlap $=$ one mesh size.

N / M	2	4	5	6	7	8	9	10	12
4	7	9	9	9	9	9	9	9	9
5	8	10	11	11	11	11	11	11	11
6	10	11	13	12	12	12	12	12	12
7	11	13	14	14	14	14	14	14	14
8	12	14	16	15	16	16	16	16	16
9	13	15	17	17	17	17	17	17	17
10	14	16	19	18	19	19	19	19	19
12	16	19	22	22	22	22	22	22	22

and $N=12$; see Table 7.3. Our estimate seems pessimistic in its dependence on N, at least for this range of values, while it describes the dependence on the number of subdomains quite well.

Acknowledgments. I wish to thank my advisor Olof Widlund, for all his support and suggestions, and my colleagues Shannon Pahl, Axel Klawonn, Luca Pavarino, and Marcus Sarkis, for many conversations about this project.

REFERENCES

[1] C. Bernardi and Y. Maday, Approximations Spectrales de Problèmes aux Limites Elliptiques, Math. Appl., 10, Springer-Verlag, France, Paris, 1992.
[2] C. Bernardi and Y. Maday, Polynomial interpolation results in Sobolev spaces, J. Comput. Appl. Math., 43 (1992), pp. 53-80.
[3] J. H. Bramble, A second order finite difference analogue of the first biharmonic boundary value problem, Numer. Math., 9 (1966), pp. 236-249.
[4] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring, IV, Math. Comp., 53 (1989), pp. 1-24.
[5] J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57 (1991), pp. 1-21.
[6] J. H. Bramble and J. Xu, Some estimates for a weighted L^{2} projection, Math. Comp., 56 (1991), pp. 463-476.
[7] C. Canuto, Stablization of spectral methods by finite element bubble functions, Comput. Methods Appl. Mech. Engrg, 116 (1994), pp. 13-26.
[8] C. Canuto and D. Funaro, The Schwarz algorithm for spectral methods, SIAM J. Numer. Anal., 25 (1988), pp. 24-40.
[9] M. A. Casarin, Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids, Ph.D. thesis, Courant Institute of Mathematical Sciences, 1996; Tech. Report 717, Department of Computer Science, Courant Institute, New York.
[10] J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, in Acta Numerica 1993, Cambridge University Press, London, 1993, pp. 111-197.
[11] M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 311-342.
[12] M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313-348.
[13] M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31 (1994), pp. 1662-1694.
[14] M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap, SIAM J. Sci. Comput., 15 (1994), pp. 604-620.
[15] P. F. Fischer and E. Rønquist, Spectral element methods for large scale parallel NavierStokes calculations, Comput. Methods Appl. Mech. Engrg, 116 (1994), pp. 69-76; in Proc. ICOSAHOM 92, Montpellier, France, June 22-26, 1992.
[16] P. Gervasio, Risoluzione di equazioni alle derivate parziali con metodi spettrali in regioni partizionate in sottodomini, Ph.D. thesis, Department of Mathematics, Politecnico di Milano, Italy, 1995.
[17] P. Gervasio, E. I. Ovtchinnikov, and A. Quarteroni, The Spectral Projection Decomposition Method for Elliptic Equations, SIAM J. Numer. Anal., 34 (1997), pp. 1616-1639.
[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1986.
[19] W. D. Gropp and B. F. Smith, Experiences with domain decomposition in three dimensions: Overlapping Schwarz methods, in Domain Decomposition Methods in Science and Engineering, 6th International Conference on Domain Decomposition, A. Quarteroni, Y. A. Kuznetsov, J. Périaux, and O. B. Widlund, eds., Contemp. Math., 157, AMS, 1994, pp. 323-334.
[20] D. E. Keyes, T. F. Chan, G. A. Meurant, J. S. Scroggs, and R. G. Voigt, eds., 5th International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1992.
[21] D. E. Keyes and J. Xu, eds., Domain Decomposition Methods in Science and Engineering, Contemp. Math., 180, AMS, Providence, RI, 1994.
[22] Y. Maday, D. Meiron, A. T. Patera, and E. M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations, SIAM J. Sci. Comp., 14 (1993), pp. 310-337.
[23] Y. Maday and A. T. Patera, Spectral element methods for the Navier-Stokes equations, in State of the Art Surveys in Computational Mechanics, A. Noor and J. Oden, eds., American Society of Mathematical Engineers, New York, 1989.
[24] J. Mandel and M. Brezina, Balancing Domain Decomposition: Theory and Computations in Two and Three Dimensions, Tech. Report UCD/CCM 2, Center for Computational Mathematics, University of Colorado, Denver, CO, 1993.
[25] S. A. Orzag, Spectral methods for problems in complex geometries, J. Comput. Phys., 37 (1980), pp. .70-92.
[26] S. S. Pahl, Schwarz Type Domain Decomposition Methods for Spectral Element Discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, 1993.
[27] S. V. Parter and E. E. Rothman, Preconditioning Legendre spectral collocation approximation to elliptic problems, SIAM J. Numer. Anal., 32 (1995), pp. 333-385.
[28] L. F. Pavarino, Domain Decomposition Algorithms for the p-Version Finite Element Method for Elliptic Problems, Ph.D. thesis, Courant Institute, New York University, New York, 1992.
[29] L. F. Pavarino, Additive Schwarz methods for the p-version finite element method, Numer. Math., 66 (1994), pp. 493-515.
[30] L. F. Pavarino, Schwarz methods with local refinement for the p-version finite element method, Numer. Math., 69 (1994), pp. 185-211.
[31] L. F. Pavarino, Neumann-Neumann algorithms for spectral elements in three dimensions, Tech. Report 979, Istituto dii Analisi Numerica-Consiglio Nazionale delle Richerche, Pavia, Italy, 1995.
[32] L. F. Pavarino and O. B. Widlund, Iterative substructuring methods for spectral elements: Problems in three dimensions based on numerical quadrature, Comput. Math. Appl., 33 (1997), pp. 193-209.
[33] L. F. Pavarino and O. B. Widlund, A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions, SIAM J. Numer. Anal., 33 (1997), pp. 1303-1335.
[34] A. Quarteroni, Y. A. Kuznetsov, J. Périaux, and O. B. Widlund, eds., Domain Decomposition Methods in Science and Engineering, 6th International Conference on Domain Decomposition, Contemp. Math., 157, AMS, Providence, RI, 1994.
[35] A. Quarteroni and E. Zampieri, Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems, SIAM J. Numer. Anal., 29 (1992), pp. 917-936.
[36] B. F. Smith, A domain decomposition algorithm for elliptic problems in three dimensions, Numer. Math., 60 (1991), pp. 219-234.
[37] O. Widlund, Domain decomposition methods for mortar and higher order finite elements, 9th International Conference on Domain Decomposition Methods, Ullensvang, Norway, June 1996, University of Bergen, Norway.

[^0]: *Received by the editors September 22, 1995; accepted for publication (in revised form) July 24, 1996.
 http://www.siam.org/journals/sinum/34-6/29228.html
 ${ }^{\dagger}$ IMECC-UNICAMP, Caixa Postal 6065, 13081-970 Campinas, SP, Brazil (casarin@ime. unicamp.br). This work was supported in part by a Brazilian graduate student fellowship from CNPq, in part by the National Science Foundation under grant NSF-CCR-9204255, and in part by the U. S. Department of Energy under contract DE-FG02-92ER25127 while the author was a graduate student at the Courant Institute of Mathematical Sciences, New York University.

