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1992, Vol. 20, No. 3, 1420-1435 

QUASI-INVARIANCE OF PRODUCT MEASURES UNDER LIE 
GROUP PERTURBATIONS: FISHER INFORMATION AND 

L2-DIFFERENTIABILITY 

BY MAURO S. DE F. MARQUES AND Luiz SAN MARTIN 

Universidade Estadual de Campinas 
A sequence of measures on a topological space is perturbed by a se- 

quence of elements of a Lie group acting on that space. Criteria are given 
for the singularity and equivalence of the corresponding product measures. 
These criteria extend the results of Shepp and Steele. In particular, Fisher 
information comes into the scene and its role is further clarified. 

Introduction. This work investigates the mutual Lebesgue decomposi- 
tion of two product measures, one with a fixed marginal and the other with 
each marginal perturbed by an element of a Lie group. For general product 
measures the problem was studied by Kakutani (1948), who proved the 
following dichotomy: two product measures are either equivalent or singular, 
and his criterion is as follows. Let , 1 2,... AD A 2) ... be measures and 

00 00 

n=1 n=1 

be their product measures. Let H denote the Hellinger product between 
measures, that is, H(A, /1) = J(4/dv)ld 2(d/2 W11/d V)1/2 dv, where v is a v-finite 
measure with Au and /I absolutely continuous with respect to it [see Le Cam 
(1970)]. Kakutani showed that: (i) Au and /I are singular (A I /1) if and only if 
H01H(Un, S un) = 0. (ii) If S and Sun are equivalent (An Sun) for all n, that 
is, they are mutually absolutely continuous, then uA /2 if and only if 
H0 1H(pn Sn) > 0. 

More specific results on equivalence and singularity of product measures 
were considered by Feldman (1961), Shepp (1965), Renyi (1967), LeCam 
(1970), Chatterji and Mandrekar (1977), Steele (1986) and Marques (1987). In 
particular, the problem of translates of product measures in D' was settled by 
Shepp, who brought the role of Fisher information to the scene. Extensions of 
Shepp's result to the groups of rigid motions and affine transformations in 
Euclidean spaces were obtained by Steele and Marques, respectively. 

Here we show that Shepp's result holds under a more general scenario. We 
extend the results to Lie group perturbations acting on certain topological 
spaces, and the role of Fisher information in the problem is further clarified. 

Apart from facts in probability theory, our techniques of proof involve 
mainly differential calculus of maps into Hilbert spaces and some representa- 
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LIE GROUP PERTURBATIONS OF MEASURES 1421 

tion theory of Lie groups. The differential calculus and its relation to Fisher 
information is discussed in Section 2. For group representations, we refer to 
the books of Warner (1972) or Bourbaki (1963). Let us, recall here however, 
some basic notions of this theory. 

A representation of a group G on a vector space E is a homomorphism 
g -* U(g) of G into the group of invertible linear maps of E. In case E is a 
topological vector space and G a Lie group (or even a topological group), the 
representation U is said to be continuous in case the map (g, v) E G x E 
U(g)v E E is continuous. In the body of the paper, only unitary representa- 
tions of Lie groups will appear. These are representations in which E is a 
Hilbert space and each U(g), g E G, is a unitary operator. For representations 
of Lie groups on Hilbert (or Banach) spaces, the above continuity condition is 
equivalent to the weaker one that every v E E be a continuous vector, that is, 
the map g E G -o U(g)v e E is continuous [cf. Bourbaki (1963), Chapter 
VIII, Section 1]. 

If Ui are representations on Ei for i = 1,2 of the same Lie group, a 
continuous operator A: E1 -* E2 is said to be an intertwining operator for U1 
and U2 if AoU1(g) = U2(g)0A for all g E G. The representations U1 and U2 
are equivalent in case there exists an intertwining operator which is also a 
bicontinuous bijection. Of course, U1 and U2 can be regarded as the same 
representation if they are equivalent. 

A vector v in the representation space E (assumed to be a Banach space) of 
a Lie group G is a C' (Ck, continuous, analytic, etc.) vector in case the map 
qif: g E G -) f'(g) = U(g)v E E is Cm (Ck, etc.). The set E,, of C0-vectors in 
E is a dense subspace [cf. Warner (1972), Section 4.4.1]. If v E E. and X is an 
element of the Lie algebra g of G, it makes sense to define 

U.(X)v= lim U(exptX)v - v 
to ~~~t 

The vector U.(X) is also C' and the assignment v E E, -, U.(X)v defines an 
operator of E which is in general unbounded if E is infinite-dimensional. 
Clearly, the derivative of q'(g) = U(g)v at the identity in the direction of 
X is UL(X)v. Also, U(g)v E E. for all g E G, if v E E.,, (dqi,)g(X(g)) = 
(d/dt)(U(getX)v)t = U(g)UL(X)v if X is regarded as a left invariant vector 
field, and (dqif)g(X(g)) = (d/d0(U(etxg)v)t=0 = UL(X)U(g)v in case X is 
regarded as a right invariant vector field. 

Since the image of ULLX), X E g, is contained in E., it is possible to take 
compositions and consider higher order operators, that is, linear combinations 
of operators of the form U.(Xl) o ... o U.(Xk), Xi E g. These are also densely 
defined operators in E. Later on in Section 5, a second order operator of this 
kind will appear. 

2. Immersions and Fisher information. We start with some elemen- 
tary considerations on maps into Banach spaces. Let U be an open subset of 
Rd and p: U -o E a continuous injection into the Banach space (E, 11 1l). Define 
on U the distance dE(x, y) = 11p(x) - 'p(y)II. Assume that p is differentiable at 
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1422 M. S. DE F. MARQUES AND L. SAN MARTIN 

some x E U and that its differential dqid: 0Rd -* E is injective. Then for 
V E Rd, p(x + v) = p(x) + dfpx(v) + o(v) with limvO(o(v)/lvl) = 0, where 
I * I stands for the Euclidean norm in Rd. Putting M = sup{lldpx(v)ll: Mvi = 1} 
and m = inf{lldpx(v)ll: Mv = 1), we have m > 0 and for small v E Rod and 
E > 0, (m - O)MvI < dE(x, x + v) < (M + O)MvI. Thus if q' is differentiable, dE 
is locally equivalent to the Euclidean distance d(x, y) = Ix - yj restricted to 
U. So E n 1d(x, Yn) < X if and only if E, n ldE(x, Yn)2 < o) for (Yn)n 2 1 a 
sequence in U with Yn -" x. 

Shifting to manifolds, suppose that M is a finite-dimensional smooth 
manifold endowed with some smooth Riemannian metric K , ). Let q' = M -* E 
be a continuous injection. Through the arc length of curves joining points in 
M, a Riemannian metric defines a distance d(x, y) in M. Localizing around 
x E M and taking some coordinate system, the existence of the exponential 
map guarantees the equivalence of this Riemannian distance with the 
Euclidean distance of the open subset of Rd, where the coordinate system is 
defined. This leads us to the previous situation so that d(x, y) becomes locally 
equivalent to dE(x, y) = Ikc'(x) - 'p(y)II. Again we have that for sequences 
Yn ' x, Enld(x Yn)2 < ?? if and only if E l>ldE(x)yYn)2 < 00, in case q' is 
differentiable with dqpx one-to-one. This statement can be slightly improved in 
case q' is a one-to-one immersion of M into E. In fact, by a simple compact- 
ness argument one sees that the distances d(, * ) and dE(, * ) are equivalent 
on compact subsets of M. Therefore, if q' is an immersion, E n >ld(x, yn)2 < 0O 

if and only if E n > ldE(x, yn)2 < oo, provided Yn does not leave a compact. 
Now, let {i-xJx eM be a dominated model parameterized on M. Each Ax, 

x E M, is a probability measure on the measurable space (Q, F) and Ax is 
absolutely continuous with respect to a basic measure A. Write p(x, w) = 
(dpx~/du)(w) for the set of Radon-Nikodim derivatives. For x E M, p(x, ) is 
A-integrable so x -* p(x, * ) defines a map M -* L1(A). Also, since p(x,) is 
A-a.s. positive, q(x, w) = p(x, W)112 makes sense and x -* p(x) = q(x, * ) de- 
fines a map from M into the Hilbert space L2(pu). We say that the model 
is L2-continuous, L2-differentiable and so on in case the specified property 
is satisfied by q'. 

Suppose the model is L2-differentiable at x E M and define the Fisher inner 
product K , )x on the tangent space Tx M at x by putting Ku, vx = 
Kdpx(u), d'px(v)) with u, v E TxM and K, ) on the right-hand side standing 
for the inner product in L2(A). Clearly, K , )x is positive semidefinite and it is 
positive definite if and only if dqpx is injective. We call K , )x the Fisher inner 
product because when it is expressed in coordinate systems, its matrix is 
nothing else than the Fisher information matrix in Ibragimov and Has'minskii 
(1981). Note that in the setting adopted here, the very definition of Fisher 
information requires differentiability of ap. However the usual way of dealing 
with Fisher information is by assuming the differentiability of q(x, a) as a 
function of x and putting 

Ku,v)x = fDuq(x,w)Dvq(x,w)p(dw), 
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LIE GROUP PERTURBATIONS OF MEASURES 1423 

provided the integral exists [here Dvq(x, w) means directional derivative]. In 
this case, under some regularity conditions, usually called Cramer-Wald and 
Hajek's conditions, the existence of Ku, v x, u, v E Tx M, implies the existence 
of dqpx [see Le Cam (1970)]. So in order to fix terminology, we understand that 
the existence of Fisher information at x means the same as the existence of 
dqy. 

Finally, set dH(xy) = pW(x) - 'p(Y)112, where 11 * 112 denotes the L2(0)-norm. 
Then dH(, *) is the so-called Hellinger distance between Ax and Ay, which 
can also be expressed as d2(x, y) = 2(1 - H(ux, Ay)). So taking into account 
Kakutani's theorem and the previous remarks, we have: 

PROPOSITION 2.1. In a dominated model {i-x'x eMm where M is a smooth 
manifold with a distance given by any smooth Riemannian metric, suppose 
that up: M -* L2(pu) (notation as above) is differentiable at x E M and dpx is 
one-to-one. Then for sequences Yn x, 

HAyen ~l HX 
n n 

if and only if E n 1d(x, yn)2 < oo. In case q' is an infective immersion, the 
result holds under the assumption that yn is confined in some compact subset. 

REMARK 1. In case q' is a one-to-one smooth immersion, the Fisher infor- 
mation defines a smooth Riemannian metric. In this case, Fisher information 
itself can be used to measure the intrinsic distance in M. 

REMARK 2. Smoothness of M and <, ) is not essential; C2 would do. 

3. Lie group perturbation of measures. From now on, we consider 
only dominated models obtained by the action of Lie groups on quasi-invariant 
probability measures. Let G be a connected finite-dimensional Lie group and 
X a topological space which is assumed to be locally compact and to satisfy the 
second axiom of enumerability. Let (g, x) -* gx or g(x) denote a continuous 
action G x X -) X of G on X and lift it to the space M(X) of Borel measures 
on X by putting (gA)(A) = p(g-'A) for any Borel subset A c X and A E 
M(X). The mapping (g, A) -* gA defines in fact an action of G on M(X), 
which is moreover continuous when M(X) is provided with the vague topol- 
ogy. 

We recall that a G quasi-invariant measure is a measure u Ee M(X) for 
which gA is equivalent to Au for every g E G. Thus a dominated model 
{gAugG is defined if Au is a quasi-invariant probability. In this model a 
dominant measure may be taken to be A itself. This is the combined transfor- 
mational model in Barndorff-Nielsen (1987). In the sequel we shall put 

dgpA 1/2 
(3.1) p(g,x) = (x) and q(g,x) =p(g,x) ; g E G,x cX, 

dpu 

from which the map qi: g E G -* q(g, *) E L2(pA) is defined. The parameter 
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1424 M. S. DE F. MARQUES AND L. SAN MARTIN 

manifold of this model is G. When defined this way, the model need not be 
one-to-one. So in order to avoid duplication of parameters it is convenient to 
replace G by its quotient with a subgroup. Set 

H = {g E G: gap = A. 

Since (g, A) -* gA is a continuous action, h is a closed subgroup of G. It is 
thus a Lie subgroup of G so that the coset space G/H has a structure of an 
analytic manifold on which G acts analytically. Since for h e H, (gh)A = gA, 
we have that q(gh, x) = q(g, x) Au a.s. hence the map /: G -* L2(A) defines a 
one-to-one map p: gH E G/H -+ qf(g) E L2( L). We take G/H as our parame- 
ter manifold. For the mapping p, assumptions like that appearing in Proposi- 
tion 2.1 are acceptable. 

In G/H, take an arbitrary smooth Riemannian metric <, ) with associated 
Riemannian distance d(, * ). By definition, the set of sequences (g )n ? C G 
that are square summable in G/H is 

(3.2) 12 
= {(gn)n~ i C G: E d(gnH, H)2 < ox) H gn ) n::,- 1 

2 

We put 

E(I) =((n)n>l c G: IlgnA -) 
n n 

and 

Eo(A) = e(gn)n>l E E(A); d(gnH, H) -" 0). 

It is easily checked that E(A) is a subgroup of the group GN of sequences 
in G. 

Now the main result can be stated. 

THEOREM 3.1. With G and X as above, let tL be a quasi-invariant probabil- 
ity in M(X) and H the closed subgroup which fixes Au. Then: 

(a) EO(pA) C 12 if q' is continuous, 
(b) EO(pA) = l1, if qp is differentiable at the origin H E G/H, 
(c) 'p is continuous and differentiable on G/H, if EO(pu) = 12I 

REMARK. In (c) it is not necessary to assume in advance that A is quasi- 
invariant. In fact, gA - A for every g E G, if EO(,u:)D 12, that is, Au is quasi- 
invariant. 

The proof of this theorem follows in this and later sections. Part (b) is 
essentially Section 2 above. It involves only the notion of differentiability, 
which will be clarified soon. Parts (a) and (c) are more delicate and form the 
contents of later sections. By now we introduce a representation of G associ- 
ated with q(g, x), from which we derive our main techniques. 
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LIE GROUP PERTURBATIONS OF MEASURES 1425 

An alternative way of defining gl is by requiring 

|f(x)g(dx) = ff(gx)A(dx) 

for integrable f. From this equality one gets quickly that g9 1 gu A2 if 
Al - 

P2 and that 
dg 1 Al d _ 

dg /L (x)= x), A2-a.s. 

Hence, if we put as before p(g, x) = (dg A/dA)(x), then p satisfies (for every 
g, h E G and pu-a.a. x) 

(3.3) p(gh, x) = p(h, g-1x)p(g, x), 

that is, p is a cocycle on G over X. If H is the subgroup that fixes A, then p is 
H-invariant in the sense that p(h, x) = 1 if h e H (this and other equalities 
appearing below are to be taken A-a.s.). Moreover p(h, x) = 1 if h E H. Note 
that H-invariance and (3.3) imply that p(gh, x) = p(g, x), if h E H as was 
already remarked before. 

Clearly by putting q(g, x) = p(g, X)112, q also becomes a cocycle over X. 
This fact permits the introduction of the following representation of G: For 
g E G and f E L2( A), define the function 

(3.4) (U(g) f )(x) = q(g, x) f(g-1x). 

From 

11U(g) f 112 = fq(g x)21f(g-1x)I2(dx) = f If(g-1X)12gA(dX) = If 112, 

we see that f -- U(g) f defines a unitary operator in L2(pu). Moreover, the 
cocycle condition (3.3) for q leads to U(gh) = U(g)U(h), g, h e G, so that the 
mapping g U(g) becomes a unitary representation of G on L2(A). 

Note that q/(g) = U(g)1, where 1 denotes the constant function 1(x) = 1, 
so the family q(g, x) is nothing else than the orbit of 1 under the action of G 
on L2(A) defined by the representation U. 

Combining all this we can complete the proof of (b) in Theorem 3.1. Suppose 
that p is differentiable at the origin of G/H. By Section 2, it is enough to 
show that its differential is injective. In terms of the representation U, 
differentiability of p at the origin means differentiability of the vector 1 e 
L2(L), that is, differentiability at the identity of G of the mapping 4f(g)= 
U(g)1. As is known, this is enough to assure that 4i is everywhere differen- 
tiable. In fact, dfig = U(g)o dqi1. Let A E g be such that dif1(l) = 0, that is, 
such that (d/dt)U(etA)(l)lt=o = 0. Then 

(d/dt)U(etA)(1) = U(etA)((d/ds)U(esA)(1)IS.o) 
= 0. 

Hence U(e tAXi) = 1 for all t E DR and therefore A E h, the Lie algebra of H. 
This suffices to show that the differential of p at the origin of G/H is 
injective, which in turn completes the proof of (b). 
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1426 M. S. DE F. MARQUES AND L. SAN MARTIN 

We now present some cases in which the continuity of q' or 4i can be taken 
for granted, thus clarifying the condition in (a). First note that, since +/(g) = 
U(g)1, qi and hence q' is continuous if U is a continuous representation. 
Actually, continuity of 4i is equivalent to continuity of U, as is shown by: 

PROPOSITION 3.2. qi: G -* L2(1) is continuous if and only if the representa- 
tion U is continuous. 

PROOF. Suppose if is continuous and let f E L2(pu). To show the continu- 
ity of U it suffices to show that g -* U(g) f is continuous when f is assumed 
to be continuous with compact support [cf. Bourbaki (1963), Chapter VIII, 
Section 2]. In turn it suffices to show the continuity at the identity of G. In 
this case 

IU(g) f - f 112 = JIq(g, x) f(g-1x) - f(x)112 

< II(q(g, x) - 1) f(x)112 + JIq(g, x)( f(g-1x) - f(x))112, 

which converges to zero as g -) 1. El 

PROPOSITION 3.3. If either: 

(a) q(g, x) is jointly continuous in (g, x), or 
(b) q(g, x) is bounded, 

then 4i is continuous. 

PROOF. (a) is Proposition 8 and (b) is Proposition 9 in Bourbaki [(1963), 
Chapter VIII, Section 2]. n 

Here is another case of guaranteed continuity of U. 

PROPOSITION 3.4. If G acts transitively on X, that is, X = G/L for some 
closed subgroup L, then the representation U is continuous. 

PROOF. It is known [cf. Bourbaki (1963), Chapter VII, Section 2] that two 
quasi-invariant measures on homogeneous spaces are equivalent. It is also 
known [see, for instance, Bruhat's Lemma A.1.1 in Warner (1972)] that in 
G/L, a quasi-invariant measure v with CO cocycle (dg v/dv)(x) = s(g, x), 
g e G, x e G/L exists. Put p(x) = dtu/dv. Then p > 0, v-a.s. and 

A g X) dg u ( = dg(pv) p(g-1x) dg v 
p~g~x) = d~ (x) = 

(x)d= (X) 

(3.5) dudp v p(x) dv 
p(g 1x) 

- s(g, x). 
p(x) 

Let A: L2(,u) -~L2(v) be the operator defined by A( f) - pl/2f. It is easy to 
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LIE GROUP PERTURBATIONS OF MEASURES 1427 

check that A is an isometry. Moreover, 

(Ao U(g) f)(x) = p'12(x)q(g, x) f(g-x) 

= s(g, X)l/2(pl/2f )(g- 1x) 

= (J(g) A( f))(X), 
where (Uf Xx) = s(g, x)112f(g- 1x) is the representation associated with the 
cocycle s(g, x)112. Therefore A intertwines the representation U and U. 
Hence U is continuous if and only if U is. The continuity of U follows from 
Proposition 3.3(a) above. El 

Finally, let us make some comments about the Fisher information of the 
model. As observed at the end of the last section, the metric that measures 
intrinsic distances on the parameters manifold can be taken to be Fisher 
information itself in case so is smooth. For the model {gju}g G considered 
before, the Fisher information metric on G/H, necessarily nondegenerate, 
may become very convenient. One reason is the formula dfig- U(g)o d~ij, 
which shows that Fisher information is G-invariant, that is, ( dg(v), dg,( w)>gC = 
(v, w>c, where ( , >c is Fisher information at E E G/H, v, w E T,(G/H) and 
dg is the differential of the mapping g: G/H G/H induced by g E G. 

It is worthwhile to compare this approach with the notion of Fisher 
information in the form exploited by Steele (1986). There Lebesgue measure 
on Rd is taken as the dominant measure for the models. These are parameter- 
ized by the group of rigid motions on Rd. Their natural representation is by 
the group G of rigid motions on the L2-space of Lebesgue measure on Rd, say 
L2(Rd), determined by (U(g)f)(x) = f(gx), x E Rd. g E G. f E L2(d). In 
Steele (1986), a density f is said to have finite Fisher information if Lf E 
L2(Rd) for certain operators defined from this representation. In our earlier 
notation, these operators are extensions of UJ(X), X E g, from E.0 to a larger 
space. 

Now it is known [cf. Ibragimov and Has'minskii (1981), page 651 that the 
existence of Fisher information does not depend on the dominant measure. We 
take A itself as the dominant measure. This being so, note that if v E T(G1H)9 
then v = X(Q) for some X E g so that d*p(x) is given by evaluation of UI(X) 
(or rather an extension of it) on spQ). Therefore, existence of Fisher informa- 
tion is equivalent to UJ(X)(Xq(p)) E L2( A) as in Steele (1986). 

4. The i-condition and the proof of (c). In order to prove (c) we make 
use of the i-condition introduced in Le Cam (1970), which for families of the 
from {gpdg i G turns out to be equivalent to differentiability. We take the setup 
of Theorem 3.1 and denote by g the Lie algebra of the group G. In g let I be 
any norm. In this context, the i-condition reads 

jjql(geA) - 'I'(g)112 
(4.1) (1): limsup Al <; g) E GAE=g. 

A-O 
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1428 M. S. DE F. MARQUES AND L. SAN MARTIN 

In principle this condition should be checked at every g E G. However, by 
the unitarity of the representation U, it is fulfilled everywhere if it is satisfied 
at some g E G. In fact, +i(g) = U(g)(1) and if(geA) = U(g)U(eA)(1) so 
Jlq1(geA) - 1(g)II2 = -U(g)(4(eA) 1)112 = Iifr(eA) - 1112 because U is unitary. 
Hence the i-condition at some g is equivalent to the i-condition at the identity 
of G. 

The connection between differentiability and the i-condition is provided by a 
result of Le Cam (1970), which says that 4i is almost always differentiable on a 
measurable set S with respect to the Lesbegue measure of the parameter 
space if the i-condition is satisfied on S. From this result we see that if our 
model satisfies the i-condition at just one point of G, then it is differentiable 
everywhere. In fact, as already observed in the proof of (b), for differentiability 
of 4i everywhere it suffices that 4i be differentiable at some point. Conversely, 
it is clear that the i-condition is satisfied at g E G if i/ is differentiable at g. 
Thus we get the equivalence of the i-condition and differentiability for models 
of the type {gL}g EG. 

This being so, we can prove (c) by showing that 4i satisfies the i-condition in 
case F ngnA - FnA for every sequence (gH). E I. Before proceeding, let 
us note that by the local equivalence of Riemannian distances, eAn E 12 if 
(Ad)n 1 is a sequence in the Lie algebra g with En1IAn 12 < o. For the proof 
of (c) it is possible to handle only sequences of the form e 

We now need a lemma proved in Shepp (1965) as Lemma 4. 

LEMMA 4.1. Let T: R d -[ DR be a positive function satisfying 

lim sup T(a) = mo. 
ago 

Then there exists a sequence (an)n~l C R'8d such that En>1Ian12 < co and 
E n >21an12T(an) = 00. 

To prove (c) in Theorem 3.1, suppose that the i-condition for i/ is not 
satisfied (at the identity of G) and take T: g -S R in the lemma above to be 

I |/'(eA) - 1112 
T(A)-=11( A 2 

Since the i-condition is not satisfied, there exists a sequence (An)n~l C g 
such that En>1IA 12 < Xo and En>1IAnI2T(An) = En?ilf(eAn) - 1112 = 
E n ?ld2(eAnA, A) = 2E n>(1 - H(eAnpu, p)) = 0o, which is equivalent to 
H n,> 1H(e AnIL, A) = 0. By Kakutani's theorem, this implies that Hlne Anp, and 
FInch are singular, which contradicts the hypothesis. 

5. Proof of (a). We now turn to the proof of (a). By Kakutani's theorem, 
we need to show that for sequences gn e G with gnH - H, En> 1IIfr(gn) - 

1112 = E 1211U(gX) - 1I2 = 00 if E21d (gnH. H)2 = co. We know from (b) 
that this holds in the differentiable case, so we try to regularize qi (or sp) by a 
linear operator T: L2(A) -- L2(A) such that: (i) T is bounded; (ii) the mapping 
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g -3 T(U(g)(1)) is smooth (Co); (iii) T(U(g)(1)) = T(1) if U(g)l = 1, that is, 
iff g E H; or (iii') T is one-to-one. 

Suppose such a T exists. By (ii) and (iii), the mapping 0: gH E G/H 
T(qi(g)) is one-to-one and smooth. Therefore by a known fact about differen- 
tiable mappings, there exists an open subset W c G/H such that when 
restricted to W, 0 becomes an immersion. Fix gH E W and take a sequence gn 
with gn H-H and En >d(gnHH)2=oo. Then ggnH->gH and by the 
local equivalence of Riemannian distances we have E n? d(gg nH, gH)2 = 00? 
Hence, from the differentiable case of Section 2 we have that 

E IITU(ggn)(1) - TU(g)(1)112 = ?? 
n?1 

Now by the continuity of T as required in (i), 

IITU(ggn)(1) - TU(g)(1) 112 < lITII IIU(ggn)(1) - U(g)(1)112, 

so that E 2 1IIU(ggn)(1) - U(g)(1)112 = ??, which by the unitarity of the repre- 
sentation is equivalent to En> 1IIU(g9)(1) - = mo. This proves (a). 

One way of getting an operator T satisfying (i), (ii) and (iii) is by represent- 
ing Brownian motion on G as convolution operators in L2( A). Actually the 
whole construction to follow is not specific for the representation U on L2( ) 
but works for any continuous unitary representation of G on a Hilbert space. 
Here continuity of the representation is essential for the theory to be applica- 
ble. This is the reason why continuity of so is required. 

For the rest of this section, U denotes a continuous unitary representation 
of G on the Hilbert space (E, ( >). 

Recall that the representation U lifts to the algebra (under convolution) of 
probability measures on the Borel sets of G by putting, for a probability v and 
v e E, 

(5.1) U(v)v = JU(g)vv(dg). 

The integral here is the Bochner integral. Its existence is guaranteed by 
the fact that U is unitary so IIU(g)vIl = lviij. From this we also have that 
IIU(v)vll < lvii, so UGv) is bounded with operator norm IIUG-)II < 1. Thus if we 
take T = UGv) for some v, then condition (i) is automatically satisfied. 

Smoothness [condition (ii)] can also be obtained by operators of the form 
UMO). In fact: 

LEMMA 5.1. Let Tr be a left-invariant Haar measure on G and suppose that 
v is a probability with smooth density f(g) = (dv/d rr)(g). Then for all v E E, 
the mapping g E G -- UW )o U(g)v is Ca. 

PROOF. Define v: G -E by (g) = U(g)v. Since lv(g)l ? lvl, v5 is bounded 
so it is convolvable with any probability in G. Let vi be the image of v under 
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the mapping g E G g- E G. Then vi also has a smooth density and 

v * v(g) = (h-1g)vi(dh) 

- f U(h-1)U(g)vv(dh) 

- U(P)oU(g)V. 
Since convolutions with smooth functions are smooth, we conclude that 
g -- U(v)o U(g)v is smooth [see Warner (1972) for convolutions of vector-val- 
ued functions]. FD 

In order to obtain a v with smooth density and such that U(v) is an 
infective operator on the representation space E, we consider Brownian mo- 
tion on G. 

Let X1,..., Xd be a basis for the Lie algebra g of G. Regarding the 
elements of g as right-invariant vector fields on G, consider the (Stratonovich) 
stochastic differential equation 

(5.2) dgt =X(g) o dWt + +Xd(g) o dWtd, 
where W1, ... , Wd are independent Brownian motions. 

A solution of (5.2) with initial condition go = 1 is called a Brownian motion 
on G. It is known [cf. Kunita (1984), Theorem 5.1] that such a solution exists 
and is defined on the whole ray [0, mo). Take t > 0, denote by P the d-dimen- 
sional Wiener measure and let vt = P o g-1 be the probability law of the 
G-valued random variable gt [vt becomes the transition probability of the 
Markov process associated to solutions of (5.2)]. The infinitesimal generator of 
(5.2) is the second order differential operator L = 1E F, 1Xi. Since this is an 
elliptic operator, each vt has a smooth density with respect to Lebesgue 
measure in G. This follows, for example, from Malliavin calculus [see, for 
instance, Watanabe (1984)]. Therefore vt has also a smooth density with 
respect to any leftinvariant Haar measure wr, so we are in the situation of the 
above lemma. 

We now are going to prove that U(vt) for t > 0 is a one-to-one operator in 
the Hilbert space E. 

Due to the right-invariance of the vector fields that occur as the coefficients 
in (5.2), it follows that a solution with initial condition g is given by gtg with 
gt a solution starting at the identity. From this and the Markov property, it 
follows that if vt is as above, then vt+s = vt * Vs = Vs * vt, t, s ? 0. 

Applying the representation U to vt we obtain a semigroup t -- U(vt) of 
bounded operators in E, in fact a contraction semigroup since IIU(vd)II < 1. 
The infinitesimal generator of U(vt) is of course U(L). Specifically, let v E E 
be a C'-vector for U. Then g -- U(g)v is C' so Ito's formula applies. It gives 

d 

U(gt)V = V + 2 E ftUr(Xj?)(U(gs) v) ds 

(5.3) j=1 

= V + fUoo( L)(U(gs)v) ds, 
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where gt is the solution starting at the identity and U. stands for the 
representation of the right-invariant differential operators of G on the C' 
vectors of E. From the definition of vt, it follows that U(vt)v = E[U(gt)v] for 
v E E, where the expectation is taken with respect to the Wiener measure P. 
Therefore, (5.3) gives 

U(Vt)v = v + ftUoXL)(U(vs)v) ds, 

from which it is readily seen that the infinitesimal generator of U(vt) re- 
stricted to the C'-vectors is exactly UL7(L). Hence this is a closable operator 
and its closure is the infinitesimal generator of the semigroup U(vd). 

Now we use a result by Nelson and Stinespring [see Warner (1972), Theo- 
rem 4.4.4.3] which assures that for elliptic operators of the form L, the closure 
of UL,(L) is self-adjoint. This result and the following lemma on self-adjoint 
semigroups guarantees that U(vt) is one-to-one. 

LEMMA 5.2. Let (Tt, t ? 0) be a contraction semigroup on a Hilbert space E 
with self-adjoint infinitesimal generator A. Then (Ttv, v> ? 0 for all v E E, 
t > 0, with equality only if v = 0. In particular Tt is injective. 

PROOF. By the spectral theorem, we may suppose that E is the L2-space of 
some measure space (fQ, m) and that there exists a measurable h: ?1 -[1 R such 
that 

dom(A) = (f: f(1 + h(x)2)lf(x)12m(dx) < oo} 

and that 

(Af )(x) =h(x) f(x), f E dom(A) 

[see Davies (1980)]. Since Tt is contracting, A is negative semidefinite and 
hence h(x) < 0, m-a.s. This is enough to assure that 

(Stf)(x) = eth(x)f(x) 

defines a contraction semigroup (St, t 2 0) with A as its infinitesimal genera- 
tor. By the uniqueness of semigroups given their generators, Tt = St. For 
f e L2(m), we have 

(T f f> = f eth(x)( f(x))2m(dx) ? 0 

with equality if f(x) = 0 a.s. The lemma is thus proved. fo 

By this lemma we conclude the constructability of an operator satisfying (i), 
(ii) and (iii') and thus the proof of (a) in Theorem 3.1. 

6. Unbounded sequences. Theorem 3.1 covers only bounded sequences 
in G. It is not difficult, however, to give examples of quasi-invariant probabili- 
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ties for which there are plenty of sequences gn E G that are unbounded (in a 
sense to be made precise below) and such that nngnu - Flu (see Example 
7.3). 

Here we present a result which assures in many situations that every 
unbounded sequence gn separates lIngnu and FInu. In such situations the 
condition in Theorem 3.1 that gn H -- H can be removed. The result we give 
here is inspired by the notion of recurrence, more specifically by Poincare's 
recurrence theorem. 

THEOREM 6.1. Take the previous setting with G acting on X and AL a 
quasi-invariant probability on X. Suppose (gn)n2 1 c G is a sequence with 
FIngnA - FInA. Then for every measurable A with p(A) > 0, there exists an 
integer i > 0 and x E A such that gnx returns infinitely often to gi(A). 

PROOF. First of all, recall that we have also Hg - FI np A so by 
Kakutani's theorem, Em> ?dH(gn-l, H,)2 <00, where dH(gn- ,a, ,) = 
II'r(gnj1) - 1 12 is the Hellinger distance. Then d (g -1, ) 0 as n oo. 
However, {gp} is a model dominated by a probability. In these circumstances it 
is known that the Hellinger distance dominates the variational distance 

p(gA ,,A) = sup JgAu(B) - A(fB)l , 

with the supremum taken over the measurable sets B [cf. Le Cam (1970)]. We 
conclude that limnoo IA(gnB) - A(B)I = 0 for every measurable B. 

Now, let A be as in the statement. Take E > 0 with E <,u(A) and an 
integer N > 0 such that Il(gnA) - ,u(A)I < E if n ? N. We must prove that 
for some integer i > 0, there is an infinite number of n's such that gn-'giA n 
A 0 4, that is, gjA n gnA * 4. 

Suppose on the contrary that for every i > N, the set {j > i: gi A n gjA = 44 
is finite. Then we can select a sequence ik -? ? such that the intersection 
between any two of the sets gikA is empty. Since p.(gikA) > ,u(A) - E > 0, 
this contradicts the hypothesis that A is probability. fl 

In order to demonstrate how to apply this theorem to our original problem, 
we include Corollary 6.2, which involves the following terminology: A sequence 
Yn in a topological space Y is said to converge to Co if this happens in the 
one-point compactification of Y, that is, if for any compact K c Y, Yn 0 K if 
n 2 N for some N > 0. The sequence is unbounded if some subsequence 
convergences to Co. It is bounded otherwise. 

COROLLARY 6.2. Suppose the support of ,u is all of X. Suppose also that for 
every sequence gn E G with gn -? 00, gn X E X is unbounded. Then gn E E(,u), 
only if gn is bounded. In this case Theorem 3.1 applies. 

PROOF. Since X is assumed to be locally compact, there is a compact K 
with ,(K) > 0. Since gnx is unbounded, it can be assumed that gnx -X Co by 
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passing to a subsequence. But this contradicts the fact that gx returns 
infinitely often to the compact gi(K). o 

A particular instance of this corollary is when X = G, where G acts by left 
translations. 

Typically Theorem 6.1 applies when there is no recurrence of sequences 
gn E G with gn -- oo. We do not formulate any general statement about this 
but include some examples of this phenomenon below. 

7. Examples. 

7.1. Take G = Rd = X with the action given by translation: (x,y) e G x 
X -- x + y c X. The case d = 1 is treated in the pioneering work by Shepp 
(1965). Theorem 3.1 above specializes to Theorem 1 of Shepp (1965) except 
that it is restricted to bounded sequences. However Corollary 6.2 applies so 
this restriction can in fact be removed. Note that the action of G on X is 
transitive so the continuity assumption in Theorem 3.1(a) holds by Proposition 
3.4. 

7.2. Let G be the group of rigid motions on R0d, acting canonically on 
X= Rd. This is the situation covered by Steele (1986). Our Theorem 3.1(a) 
gives a slight extension of Theorem 1 in Steele (1986) (our formulation allows 
basic measures which are invariant by subgroups). Also (b) and (c) of Theorem 
3.1 specializes verbatim to Theorems 2 and 3 of Steele (1986), respectively. We 
note that the restriction that the sequence converges to the identity is not 
necessary [Steele (1986), Theorem 1]. In fact, G and its action on X= Rd are 
easily seen to satisfy the conditions of Corollary 6.2. 

7.3. This is an example (more properly a family of examples) showing a 
way of constructing sequences gn -X o in G that still lie in E(A). Let K be 
a compact group and G a one-parameter irrational flow on K, that is, a 
one-parameter subgroup whose closure has dimension greater than 1. For 
instance K could be the two-torus T2 = DR2/Z2 and G the subgroup 
{(t, at) mod Z2: t E DR, a a fixed irrational}. Let K act by left-translation on 
itself and restrict this action to G. We take for A a probability of the type 
dt = cfdA, where dA is Haar measure on K, f = 1 + A, with p a smooth. 
positive function with support contained in some small neighborhood of the 
identity and c a constant of normalization. With AL taken this way only the 
identity in K fixes A. Theorem 3.1 applies to the family {kIyk}K and since 
there are sequences gm E G with g, -- co (in the topology of G) and g 1 
(in the topology of K), it is clear that there are also sequences gn C G with 
HIg, A H- I, such that gn -X o in the intrinsic topology of G. 

7.4. This example illustrates an application of Theorem 6.1 in a situation 
not covered by Corollary 6.2. Take G = Gl+(d, D ), the group of invertible 
d x d matrices with positive determinant, X = Rd and the linear action of G 
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on X. Let ,t be the normal distribution N(O, 1). Then {g/4ugEG becomes the 
family of zero-mean normal distributions and H in our previous notation is 
the compact group SO(d, DR) of orthogonal matrices. Of course, Theorem 3.1 
applies in full generality. 

In order to handle unbounded sequences, embed G in the space of d x d 
matrices with its Rd -canonical topology. Then it is easy to see that if g" -*00 
in G, then either (i) there is a subsequence g -* oo in Ad2 or (ii) there is a 
subsequence gnk converging in Rd2 to a singular matrix. As to the first case, an 
argument similar to the proof of Corollary 6.2 shows that Hllgnut I Hat. For 
the second case appeal directly to the recurrence approach of Theorem 6.1 to 
show that H, gn,1tt I Hat. For this, suppose that gn is a sequence in Gl (d, iR) 
converging to the singular matrix P. Put V = im P. Clearly, k = dim V < d - 
1. If we check that U g- 1(V) is not dense we are done. In fact, in this case 
there is a compact K c Rd with nonempty interior such that gn K n V = 4 for 
every n. Since gn -* P, gnx -* Px E V for all x E Rhd, so it is impossible for 
gnX, X E K, to return infinitely often to giK for any i > 0. Thus the condition 
of Theorem 6.1 is violated so that (gn)n >1 E(pu). 

To see that U n gn-1(V) is not dense, exploit the Grassmannian of k-planes 
in Rad. Passing to a subsequence if necessary we can assume that gn-1(V) 
converges in the Grassmannian. This is enough to ensure that the set 
(U ng 1(V)) n Sd- 1 C R d is compact, thus showing that U ngn- (V) is not 
dense in md 

We stress that this method of dealing with unbounded sequences does not 
depend on the specific ,ut but only on the way G acts on X. 

7.5. Let G = Gl (d, DR) and X = G/SO(d, DR) the space of positive-definite 
d x d matrices. The action of G on X is given by g(s) = gsgt, s E X (where t 
indicates transposition). It is clear that if gn -*oo in G, then gnSgn is 
unbounded in X, so Corollary 6.2 applies and Theorem 3.1 works for bounded 
or unbounded sequences in G. Here the probability ,ut can be taken to be any 
quasi-invariant measure. 

One specific 1tt is the Wishart distribution W(1, d, n) with n degrees of 
freedom and the identity as scale matrix. The family {gs4AgG becomes the 
Wishart family of distributions W(1, p, n) = glu with X = ggt. 

7.6. The above example is in fact typical for the following class: Let G be a 
semisimple or reductive Lie group and K a maximal compact subgroup. Take 
X = G/K and ,ut any quasi-invariant probability on X. By considering, for 
example, a Cartan decomposition of G, one checks easily that the action of G 
on X satisfies the conditions of Corollary 6.2, so Theorem 3.1 applies for any 
sequence gn E G. Note that because of Proposition 3.4, the assumption in 
Theorem 3.1(a) need not be checked. 

Another example in this class is the hyperboloid model [cf. Barndorff- 
Nielsen (1967)]. For this model G is the semisimple Lie group SO(1, d - 1) 
and K = SO(d - 1, DR) and the symmetric space G/K is the unit hyperboloid 
Hd1 = {(x0, . . R, Xd_1) E d = X2 - (X2 + ... +X_1) = 1}. 
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