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The Annals of Probability 
2001, Vol. 29, No. 2, 902-937 

LOSS NETWORK REPRESENTATION OF PEIERLS CONTOURS1 

BY ROBERTO FERNANDEZ, PABLO A. FERRARI AND NANcY L. GARcIA 

Universite de Rouen, Universidade de Sdo Paulo and 
Universidade Estadual de Campinas 

We present a probabilistic approach for the study of systems with 
exclusions in the regime traditionally studied via cluster-expansion meth- 
ods. In this paper we focus on its application for the gases of Peierls con- 
tours found in the study of the Ising model at low temperatures, but most of 
the results are general. We realize the equilibrium measure as the invari- 
ant measure of a loss network process whose existence is ensured by a 
subcriticality condition of a dominant branching process. In this regime the 
approach yields, besides existence and uniqueness of the measure, prop- 
erties such as exponential space convergence and mixing, and a central 
limit theorem. The loss network converges exponentially fast to the equi- 
librium measure, without metastable traps. This convergence is faster at 
low temperatures, where it leads to the proof of an asymptotic Poisson dis- 
tribution of contours. Our results on the mixing properties of the measure 
are comparable to those obtained with "duplicated-variables expansion," 
used to treat systems with disorder and coupled map lattices. It works in 
a larger region of validity than usual cluster-expansion formalisms, and it 
is not tied to the analyticity of the pressure. In fact, it does not lead to any 
kind of expansion for the latter, and the properties of the equilibrium mea- 
sure are obtained without resorting to combinatorial or complex analysis 
techniques. 

1. Introduction. In this paper we develop a probabilistic approach to the 
study of the equilibrium measure of systems with exclusions-such as hard- 
core gases, contours, polymers or animals-in the low-density or 
extreme-temperature regime. This regime has traditionally been studied via 
cluster-expansion methods, which relied either on sophisticated combinatorial 
estimations [Malyshev (1980), Seiler (1982) and Brydges (1984)] or on astute 
inductive hypotheses plus complex analysis [Kotecky and Preiss (1986) and 
Dobrushin (1996a, 1996b)]. 

In contrast, we realize the equilibrium measure as the invariant measure 
of a loss network process that can be studied using standard tools and notions 
from probabilistic models and processes. Loss networks, first introduced by 
Erlang in 1917, encompass a rather general family of processes as discussed 
in Kelly (1991) and references therein. Technically, we work with the so-called 
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PEIERLS CONTOURS 903 

fixed-routing loss networks. We build on ideas of Ferrari and Garcia (1998) to 
show (Section 3.4) that the existence of the loss network can be related to 
the absence of percolation in an oriented percolation process. This condition 
also yields other properties of the process and its invariant measure, such 
as uniqueness, convergence through sequences of finite volumes and mixing 
properties (Theorem 4.1). More precise results can be obtained by resorting 
to a dominant multitype branching process (Section 5). Roughly speaking, 
the mean number of branches of this process becomes the driving parameter: 
Subcriticality is a sufficient condition for the construction to work. Time and 
space rates of convergence and mixing rates are explicitly obtained in terms 
of this parameter (Theorem 2.2). 

The approach of this paper was already exploited in Fernandez, Ferrari 
and Garcia (1998). Here we refine and complete the theory presented there, 
extending their region of validity and including proofs of exponential mixing 
and convergence to a Poisson process. 

For concreteness, we analyze in this paper the gases of Peierls contours 
used, for instance, for low-temperature studies of the Ising model [Peierls 
(1936), Dobrushin (1965) and Griffiths (1964)]. The subcriticality condition of 
the corresponding branching process is 

(1.1) sup 1 I0w(0) < 1, 

where jyj indicates the length (perimeter, surface area) of a contour -y, w(y) is 
its weight and "-" stands for the volume-exclusion (=nonintersection) 
condition. 

Condition (1.1) is considerably weaker than those obtained by the most 
developed cluster-expansion approaches [Koteck' and Preiss (1986) and 
Dobrushin (1996a, 1996b)] in which the factor 101 on the right-hand side is 
replaced by a function that grows exponentially with 101. The weakening of 
the condition has a price: Unlike previous approaches, ours does not yield 
analyticity properties of the expectations. Condition (1.1) is similar to condi- 
tions obtained in the study of systems for which nonanalyticity is known [von 
Dreifus, Klein and Perez (1995)] or suspected [Bricmont and Kupiainen (1996, 
1997)]. Our results on space convergence and mixing rates can basically be 
obtained with the "duplicate-system" expansions of Bricmont and Kupiainen 
(1996, 1997). 

The novelty of our approach lies in the following features: First, it offers 
a completely different framework for the study of hard-core measures, based 
on well-known stochastic processes. This can conceivably lead to new insights 
and stronger results. In particular, condition (1.1) can potentially be weakened 
via subcriticality estimates obtained directly for the associated oriented per- 
colation process, without resorting to a dominating branching process. Similar 
improvements have been done for the contact process and oriented percolation; 
see Liggett (1995), for instance. Second, our construction involves a stochastic 
process (the loss network) that converges exponentially fast to the sought- 
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904 R. FERNANDEZ, P. A. FERRARI AND N. L. GARCIA 

after measure. This process is, in principle, easy to simulate and its poten- 
tial as a computational tool deserves to be explored [Fernandez, Ferrari and 
Garcia (1999)]. Its rate of convergence to the equilibrium measure increases as 
the temperature decreases and, unlike spin-flip dynamics, it does not present 
metastable traps (any contour lives an exponential time of mean 1). Finally, 
the construction permits a rather straightforward proof of the asymptotic 
Poisson distribution of contours at low temperature (Theorem 2.3). It is not 
obvious to us how such a result can be obtained through the standard statis- 
tical mechanical expansions. 

The present approach does not lead to a series expansion for the pressure 
(or free-energy density). In particular, it does not yield the "surface-tension 
bounds" that play such a crucial role in some applications of cluster expan- 
sions [see, e.g., Zahradnick (1984) and Borgs and Imbrie (1989)]. In fact, the 
approach is designed so as to bypass expansions of this type. It is a prob- 
abilistic approach designed to answer probabilistic questions-existence of 
expectations, properties of correlation functions-in a direct way, without com- 
binatorial or complex-analysis techniques. It is not an alternative to cluster 
expansions: It has a different regime of validity and different aims. 

While the ideas behind our results are natural and simple, their formal- 
ization requires many intermediate technical results that may obscure the 
development of our theory. Let us, therefore, present a sort of "road map" 
of the paper to guide the reader. The main results are presented, in a self- 
contained manner, in Section 2. The actual construction of the loss network is 
the subject of Section 3. We start with a reference "free" process of Poissonian 
births and exponentially distributed deaths, with respect to which the loss 
network is absolutely continuous. The novelty of our approach resides in the 
fact that, rather than independently generating birth times and death times, 
the lifetimes are associated to each birth time as a mark. Hence, unlike compa- 
rable constructions, each death time has an associated birthtime and defines 
a space-time "cylinder" representing the presence of a loss event (contour). 
This permits us to comb the process either backward or forward in time with 
equal ease. The "time backward" point of view leads to the notion of "back- 
ward oriented percolation," which will be our main conceptual and practical 
tool. The idea is to construct the loss network by erasing from the free process 
those cylinders that conflict with preexisting ones. This can only be done if the 
set of preexisting cylinders (the "clan of ancestors") is finite with probability 
1. This is precisely the condition of absence of backward oriented percolation. 
The main technical result of Section 3 is the proof that this construction yields 
precisely the loss network. (This is contained in the proof of Theorem 3.1.) It 
is apparent that the same construction works for any other process absolutely 
continuous with respect to a Poisson birth-and-death process, for instance, 
point or Boolean processes [Baddeley and van Lieshout (1995) and Kendall 
(1997, 1998)]. 

Once the process is so constructed, the course of action is clear. First, we 
relate time and space mixing properties with the time and space size of the 
percolation clan. This is done in Section 4 (Theorem 4.1). The only slightly 
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involved part of this section is related to the proof of the mixing proper- 
ties. Indeed, we resort to a-standard but unusual-coupling between clans, 
together with a continuous-time construction (Section 4.5), to improve a lit- 
tle over results proved previously by the method of "duplicated variables" 
[von Dreifus, Klein and Perez (1995) and Bricmont and Kupiainen 
(1996)]. 

In order to present quantitative estimates in terms of the parameters of the 
problem, we follow the known technique [used, for instance, by Hall (1985)] 
of bounding percolation probabilities via a branching process. In particular, 
the size of the percolation clan is bounded by the number of branches. This 
is done in Section 5, where the only (very simple!) algebraic calculations of 
the paper are presented [(5.14), (5.37) and (5.40)]. As expected, subcritical- 
ity of the branching process implies lack of percolation and exponentially 
damped sizes of the percolation clan. The main estimations are contained 
in Theorem 5.1. Once again, we present a slightly unusual continuous-time 
construction (Section 5.2) to improve one of the estimations, namely, the time 
length of a clan [part (ii) of Theorem 5.1]. Readers can opt instead for the more 
direct, but slightly weaker, estimate presented in the first remark following 
the theorem. 

The results of Theorem 2.2 are a direct consequence of the estimates of 
Section 5 applied to the percolation expressions of Section 4, as explained 
in Sections 6 and 7. The proof of the Poisson approximation of the loss net- 
work (Theorem 2.3) requires some further considerations presented in the 
final section (Section 8). 

Our work was motivated in part by the posthumous review of Dobrushin 
(1996b), where he complained that while "perturbation methods are inten- 
sively used by mathematical physicists, they are not so popular as correlation 
inequalities among the probabilists." He called for a "systematical exposition 
oriented to the mathematicians." In this paper we follow his call: We concen- 
trate on probabilistic issues and exploit probabilistic arguments. 

2. Definitions and results. 

2.1. The contour model. We consider the d-dimensional lattice 7Zd and call 
plaquettes the (d - 1)-dimensional unit cubes centered at points of 17d. We 
identify each plaquette with its center. A set of plaquettes is called a surface. 
Two plaquettes are adjacent if they share a (d - 2)-dimensional face. This 
defines a notion of connection: A set -y of plaquettes forms a connected (hyper) 
surface if for every two plaquettes x, y there is a sequence of pairwise adjacent 
plaquettes starting at x and ending at y. A surface is closed if every (d - 2)- 
dimensional face is shared by an even number of plaquettes in the surface. A 
contour -y is a connected and closed family of plaquettes. Two contours -y and 0 
are incompatible if they share some (d - 2)-dimensional face. In this case we 
say that -y 76 0. 
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Denote by GA the set of all contours in the volume A. The subset XA C NG 
of compatible configurations is defined as 

(2.1) XA = {7q E {0, 1}GA; T)(y)'q(O) = 0 if Y O}; 
that is, a configuration of contours is compatible if it does not contain two 
incompatible contours. We denote X = Xz and G = GZd . As usual, we endowed 
X with the product topology. 

For each fixed /8 E R+, a parameter usually called the inverse temperature, 
and for each finite A, define the measure tA on XA by 

(2.2) A\ = exp(-/3E8 (y j)l ) 

where Ayi is the number of plaquettes in -y and ZA is a renormalization con- 
stant making /A a probability. 

2.2. The loss network. We introduce a Markov process called the (fixed 
routing) loss network in the set of compatible contours. This process was intro- 
duced by Erlang in 1917 [see Brockmeyer, Halstr0m and Jensen (1948), page 
139]. An account of its properties can be found in Kelly (1991). In the tradi- 
tional interpretation a contour -y represents the route taken up by a call. The 
plaquettes encompassing -y are the circuits held by the call. For a finite or 
infinite set A c E7d and f a real continuous function on XA, the generator of 
the process is defined by 

AAf(q) = E- e-:1Y 1{?8 +b EXA} [f(q ?8)-f(q)] 

(2.3) yEGA 

+ ? *) [f (r - bf - NOf/)], 
YEGA 

where be(O) = 1{O = y} and the sum of configurations is defined pointwisely 
in NGA: () + ? )Q) = T() ? (-y). In words, each contour y attempts to appear 
at rate e-f1'Y but it does so only if it is compatible with all present contours. 
Present contours disappear at rate 1. Our first result is the following sufficient 
condition for the existence of a process with generator AA for any (infinite) A. 

THEOREM 2.1. If 

(2.4) a(f8) = sup 1 O1 e-'01' < oc, 
/ KY I 0 :/Y 

then for any (infinite) A the Markov process with generator AA exists and 
admits at least one invariant measure. 

This theorem is proven in Section 6. We denote by A, the corresponding 
process in A with initial configuration I. We omit the volume superindex when 
A = =Ad: 

( 2 .5) t t 7 A = A 
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2.3. Results on the invariant measure. We say that f has support in Y C Ed 
if f depends only on contours intersecting Y (not necessarily contained in Y). 
Let ISupp(f)l = min{fY : f has support in Y}. When we write Supp(f) we 
mean some Y such that JYJ = ISupp(f)l and f has support in Y. For instance, 
if f (n) = rj(-y), Suppff ) may be set as {x} for any x E -y. The following results 
work for any such choice, so one can take the most favorable one in each 
case. Let 

(2.6) /8* solution of a(,8) = 1, 

(2.7) ao(/3) = L jy e-:'~' 
'YO 

Let IxI be some fixed norm, for instance, the one given by the Manhattan 
distance (I x = Edxj 1 xi , the sum of the coordinate lengths). Let the corre- 
sponding distance between two subsets of 7d be 

(2.8) d(A, Y) = min{fx - yl x E A, y E Y}. 

THEOREM 2.2. If 3 > /* [i.e., a(/3) < 1], then the following statements 
hold: 

1. Uniqueness. For any A c Ed, there is a unique process qA with generator AA. 
The process has a unique invariant measure denoted by /LA. For A finite, this 
measure is precisely (2.2). For A = 7Zd we denote 'q = 

/7d 
= Z . 

2. Exponential time convergence. For any A c E1d and for measurable f on XA, 

(2.9) SUP _A f- Ef(rt )I < 211 f 1.ISupp(f aoeeP t 
FEXA P 

where p = (1 - a)/(2 - a). 
3. Exponential space convergence. Let A be a (finite or infinite) subset of 7d 

and let f be a measurable function depending on contours contained in A. 
Then 

(2.10) _tf - 1Afj < 21If IIoao M2 E exp(-M3d({x},Ac)), 
XESUPP(f) 

where M2 = (1 - a(3))-1 and M3 = (/3 - /), for any /3 E (/3*, /). 
4. Exponential mixing. For measurable functions f and g depending on con- 

tours contained in an arbitrary set A C Ed: 

I/_LA(fg) _MAf/ AgI 

(2.11) < 21fj 1j001gloj (M2)2 Ix - y exp(-M3X - YI), 
XESUPP(f), 
yeSupp(g) 

where M2 and M3 are the same as in (2.10). 
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5. Central limit theorem. Let f be a measurable function on X with finite sup- 
port such that 1ttf = 0 and f/(l f2+) < oc for some 8 > 0. Let rx be the 
translation by x and assume D = E>x ,(f x-f) > 0. Then D < oc and 

(2.12) 1 >j Txf =?~ Normal(0, D), 
(.2 Aj xeA Avid 

where the double arrow means convergence in distribution. 

This theorem strengthens the results R1-R5 of Fernandez, Ferrari and 
Garcia (1998). In that paper /8* was replaced by a value 8M defined as the 
solution of ao(/3M) = 1/(d-1). This value is strictly larger than f*. Item 5 gen- 
eralizes (the central limit) Theorem 7.4 of Dobrushin (1996b), where only func- 
tions depending on a finite number of contours are considered. Theorem 2.10 
will be proven in Section 7. 

Finally, we prove a Poisson approximation. Consider the equivalence rela- 
tion induced by the translation of contours. Let G be the set formed by one 
representative containing the origin from each class of equivalence of contours 
with length j. For each Borel set V c Rd and a E R, let 

(2.13) V a Ix E Ed [x 1/2x :+1/2d CVl 

Fix a contour length j > 0. For each -y E Gj, let M>, B be defined by 

(2.14) My, P (V) = L T,'(7x Y), 

XEV.eIlyVl/d 

where -q: is distributed according to the invariant measure for the given 38. 
Let (M>,,, -y E Gj) be a family of independent unit Poisson processes in Rd. 

THEOREM 2.3. For each contour length j, it is possible to jointly construct 
the d-dimensional processes {M,, 3: /3* < jB < oc, y E Gj} in such a way that, 
for all regions V equal to a product of intervals, 

215 P (MY ,3(V) : My, O(V)) < c(I y , V) (a(,8) + exp(-,3LIyL/d)) 

1 exp(-,8 min{2d, lyl/d}), 

where c(ljyl, V) is a computable constant. As a consequence, {M,, ;3: y E Gj} 
converges in distribution to a family consisting of JGjJ independent Poisson 
processes with mean e-Pi. 

Theorem 2.3 is proven in Section 8. 
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3. Graphical representation of loss networks. We construct the loss 
network as a function of stationary marked Poisson processes (a' la Harris), 
each of which indicates the attempted birth times of a contour. A lifetime 
is associated to each attempted birth. The triple (contour, attempted birth, 
lifetime) is called a cylinder. The loss network is constructed by erasing cylin- 
ders which at birth violate the exclusion condition. The crucial point in this 
construction is the association of the lifetime to the birth time. This allows 
us to study the process backward in time by studying a Markovian oriented 
percolation process of cylinders. In contrast, the standard construction uses 
independent Poisson processes for the birth times and death times, respec- 
tively. In this case the backward construction looks hard. 

3.1. Marked Poisson processes. To each contour -y E G we associate an 
independent (of everything) marked Poisson process NY on R with rate e''yl. 
We call Tk(y) E R, y E G, the ordered time events of NY with the convention 
that To(y) < 0 < T1(y). For each occurrence time Ti(y) of the process N7, 
we choose an independent mark Si(y) exponentially distributed with mean 1. 
At the Poisson time event Ti(y), a contour -y appears and it lasts Si(y) time 
units. 

The random family C = {{(y, Ti(-y), Si(-y)): i E 2}: -y E G} consists of 
independent marked Poisson processes. A marked point (my, Tk(y), SkAy)) E C 
is identified with -y x [Tkby), Tk(y) + Skby)], the cylinder with basis -y, birth 
time Tk(y) and lifetime Sk(y). The life of the cylinder is the time inter- 
val [Tk(y), Tk(Y) + Sk(Y)]. For a generic cylinder C = (y, t, s), we use the 
notation 

(3.1) Basis(C) = -y, Birth(C)= t, 

Death(C) = t + s, Life(C) = [t, t + s]. 

We define incompatibility between cylinders C and C' by 

C' -/ C if and only if Basis(C) -/ Basis(C') 
(3.2) 

and Life(C) n Life(C') : 0; 

otherwise, C' - C (compatible). We say that two sets of cylinders A and A' 
are incompatible if there is a cylinder in A incompatible with a cylinder in A': 

(3.3) A/ A' if and onlyifC / C' for some C eA and C' EA'. 

Let S := (S?(O) : 0 E G. i > 1) be a (countable) family of iid exponential 
times of mean 1 independent of C. These are the lifetimes that, when neces- 
sary, will be associated to the contours of the initial configuration. Indeed, we 
identify S with the set of cylinders {(0, 0, S?(0)): 6 E G. i > 1}. For ( E NG, 
let 

~(O) 
(3.4) S(()= U U {(H, 0, So(o))1, 

OeG i=1 
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the family of cylinders associated to the initial configuration A, all with birth 
time 0. Notice that ( may have more than one cylinder with the same basis. 
For s < t, define 

(3.5) C[s, t] := IC E C: Birth(C) E [s, t]}, 

the set of cylinders born in the interval [s, t]. 

REMARK 1. In Sections 2 to 7 of this paper we will work with the prob- 
ability space given by the product of the spaces generated by C and S. We 
call it ((2, A, 1PF). We write E for the respective expectation. In Section 4.5.2 
we use the direct product of this space by itself, while in Section 5 we need 
to consider countable products of this space. We use the same notation P and 
E for the corresponding probability and expectation in these enlarged spaces. 
In Section 8 we use a continuous-space Poisson process on which we simulta- 
neously construct the process on 17d for all values of A. 

3.2. The free network. For ( E RIG, define 

(3.6) Y(Y) = E 1{Basis(C) = 'y, Life(C) 3 t}. 
C E C[O, t]US(() 

The preceding process, called the free network, is a product of independent 
birth-and-death processes on NG with initial configuration ( whose generator 
is given by 

(3.7) AOf(a) = E e-,1'Y [f(( + 8e) - f (0)] + E 01y)[f(a - 8) - f ( 
-eG yeG 

The invariant (and reversible) measure for this process is the product measure 
/1 on NG with Poisson marginals 

(3.8) -LO{ (I y) = k} - (e ) expe 

In terms of loss networks, (( is the process for which all the calls are 
accepted; that is, (f(y) is the number of calls on route -y at time t when there 
is no restriction on the number of calls a circuit can accept and the initial 
configuration of calls is A. 

3.3. Finite-volume construction of a loss network. In the construction of a 
loss network in a finite volume A with an initial condition ; E XA, we use only 
the finite set of Poisson processes (N.,: y c A) and the finite family of initial 
lifetimes (S?(O): 0 c A). Let CA = {C E C: Basis(C) c A} and S(;), defined 
as in (3.4), be such that all its cylinders are mutually compatible. We realize 
the dynamics NM as a (deterministic) function of CA and S(;). 

We construct inductively K; [0 t], the set of kept cylinders at time t. The 
complementary set corresponds to erased cylinders. At time 0 we include all 
cylinders of S(;) in K; [0, t]. Then, we move forward in time and consider the 
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first Poisson mark: The corresponding cylinder is erased if it is incompatible 
with any of the cylinders already in K; [0. t]; otherwise, it is kept. This proce- 
dure is successively performed mark by mark until all cylinders born before t 
are considered. Define NA,I E XA as 

71A;( = E 1{Basis(C) = -y,Life(C) 3 t} 
(3.9) CEKA [O,t] 

= ify E {Basis(C): C E KA[0, t], Life(C) 3 t} 

that is, NA, signals all contours which are bases of a kept cylinder that is alive 
at time t. We show in Section 3.4 that NA,Y has generator AA defined as in 
(2.3) restricting the sums to the set of contours contained in A. It is immediate 
that /1tA defined in (2.2) is reversible for this process. Since we are dealing 
with an irreducible Markov process in a finite state space, -A, converges in 
distribution to /iA for any initial configuration ;. This, in particular, implies 
that /1tA is the unique invariant measure for this process. Later in the paper 
we determine the speed of convergence. 

Using the same C and S in the construction of -q and (t, we have that if 
;(y) < ~(y) for all 'y C A, then 

(3.10) NA, ( (y) for all y c A, 

because in the free network (t all cylinders are kept. 
Since A is finite, there exists a sequence of random times ti = ti(CA) with 

ti ?oc as i -+ ?oc such that t, (By) = 0 for all -y E A. We can, in particular, 
consider ti as the entrance times of t in the set {f : ~(y) = 0 for all -y E 
A}. Since this process has a unique invariant measure which gives positive 
probability to this set, (ti) is a stationary renewal process with interrenewal 
time with finite mean. We extend the construction of a set of kept cylinders to 
t E R, forgetting the set S(;), by doing the preceding procedure in each time 
interval [ti, ti+1] with the cylinders of C[ti, ti+?]. This can be done because no 
cylinder intersects {ti : i E Z}. Let us denote by KA the resulting set of kept 
cylinders and -A its projection in the sense of (3.9). By construction, KA has a 
time translation-invariant distribution. The process -A has generator AA and 
distribution independent of t, hence given by /-A. This implies that, for any 
f: {0, 1}GA ~~R and any t E, 

(3.11) yAf = Ef(t ). 

Since -qA(y) < ~(-y) for all -y E A and ~(-y) has Poisson distribution with mean 
eTh'I, we have, taking f(rj) = rj(y) in (3.11), that 

(3.12) A A 
7q: _(y) = 1} < e-01,Y . 

This content downloaded from 143.106.1.143 on Mon, 4 Aug 2014 13:22:11 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


912 R. FERNANDEZ, P. A. FERRARI AND N. L. GARCIA 

3.4. Infinite-volume construction. Backward oriented percolation. If we try 
to perform an analogous construction in infinite volume, we are confronted 
with the problem that there is no first mark. To overcome this, we follow the 
original approach of Harris (1972) [see also Durrett (1995)] and introduce the 
notion of percolation. The goal is to partition the set of cylinders into finite 
subsets to which the previous mark-by-mark construction can be applied. 

We come back to the infinite-volume construction of Section 3.1. For an 
arbitrary space-time point (x, t), define the set of cylinders containing the 
point (x, t) by 

(3.13) A t= {C E C; Basis(C) D x, Life(C) D t}. 

For any cylinder C, define the set of ancestors of C as the set of cylinders 
born before C that are incompatible with C: 

AC = {CI E C; C' it C, Birth(C') < Birth(C)} 
(3. 14) 

= UxeBasis(C) Ax, Birth(C) 

The definition of ancestor of C does not depend on the lifetime of C. Recur- 
sively, for n > 2, the nth generation of ancestors of (x, t) is defined as 

(3.15) AX, t = {C" C" E AC' for some C' E A" t 

and, for a given cylinder C, 

(3.16) AC = {C" C" E AC' for some C' E AC 
We say that there is backward oriented percolation in C if there exists a 

space-time point (x, t) such that A', t + 0 for all n; that is, there exists a point 
with infinitely many generations of ancestors. Let the clan of the space-time 
point (x, t) be the union of its ancestors: 

(3.17) A X t UAx, t 

n>1 

In the next theorem we give a sufficient condition for the existence of 
the infinite-volume process in any finite time interval in terms of backward 
percolation. 

THEOREM 3.1. If, with probability 1, AX,t n C[O, t] is finite for any x E Zd 
and t > 0 then for any (possibly infinite) A C Ed, the process with generator 
AA is well defined for any initial configuration; E XAiand has at least one 
invariant measure HA. 

PROOF. We construct the process for A = Ed; the construction for other 
regions A is analogous. The initial configuration is denoted by ; E X and 
the initial cylinders are given by S(;), defined in (3.4). Note that that all the 
cylinders of S( ) are mutually compatible. We then partition S( ) U C[O, t] into 
a set of kept, cylinders, denoted by K, and a set of erased cylinders, denoted 
by D. 

This content downloaded from 143.106.1.143 on Mon, 4 Aug 2014 13:22:11 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


PEIERLS CONTOURS 913 

The construction is as follows. First, all cylinders in S(;) are kept. Second, 
for each x E A, the percolation clan of (x, t) in [0, t], Ax, t n C[o, t], is parti- 
tioned in kept and deleted cylinders as in the finite-volume case. To do so, we 
order the cylinders of AXt n C[o, t] by birth-time. This can be done because 
by hypothesis Ax, t n C[O, t] has a finite number of cylinders. Then we suc- 
cessively classify each cylinder as kept if it is compatible with all cylinders 
already classified as kept [including those in S(;)]; if not, we classify it as 
erased. We denote the resulting sets K; t[o0 t] and D; t[o0 t], respectively. 

Denoting 

(3.18) KJO, t] U Kxtt[O, DJO, t] U Dxdt[O, t], 
xeA xeA 

we have that 

(3.19) K40, t] Li Dj[o, t] = C[0, t] U S(;). 

Indeed, the classification of any given cylinder C E C [0, t] depends only on (a) 
its ancestors in [0, t], Ac n C[0, t], and (b) the finite subset of S(;) of cylinders 
that are incompatible with some of the ancestors of C in [0, t]. Therefore there 
is no inconsistency: K; t[0 t] n D' t[0 t] = 0 for all x 7& y and K; t[0 t] C 

K;; t [O, t'] for t < t' if (x, t) E C for some C E K;; t'[0 t']. 
The process is now defined as in (3.9) by 

(3.20) -(y) = 1 y E {Basis(C): C E KJO, t], Life(C) X t4. 

The reader can check that for finite A the preceding construction is equivalent 
to that of Section 3.3. Applied to the set of cylinders of CA[0, t], it yields the 
set K; [0, t] defined in the paragraph preceding formula (3.9). 

To show that -q4 has generator A, denote -qt = -q4 and K = K; and write 

[f(t+h)-f fat)] 
- E 1{Birth(C) E [t, t + h]1[f(-qt +? Basis(C))0-f ft)] 

CeK[O, t+h] 

+ E 1{Life(C) g t, Life(C) a t + h}[f(-qt-8Basis(C))-f(rit)] 
CeK[O, t] 

+ {other things}, 

where {other things} refers to events with more than one Poisson mark in the 
time interval [t, t + h] for the contours in the (finite) support of f. Since the 
total rate of the Poisson marks in this set is finite, the event {other things} 
has a probability of order h2. Now, denoting 

(3.22) N7(t, s) = #1k: Tk(Y) E (t, s)}, 
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we have 

L l{Birth(C) E [t, t + h]}1{C E K[O, t + h] [f(,t + 8Basis(C))-f(-qt)] 
CEC 

- 
E lNasais(C)[t, t + h] = 1} 

CeC 

(3.23) x l{Basis(C) - Basis(C'), VC' E K[O, t]: Life(C') 9 t} 

X [f (rjt + 8Basis(C)) -f ( qt)] 

= I 1{N7[t, t + h] = 1}1{f? +6,y E x}[f(qt + 8) - f(-qt)]. 

To compute the second term of (3.21), observe that Life(C) is independent of 
Birth(C) and both the event {C E K[O, t]} and -t are Yt-measurable. Here t 
is the v--algebra generated by the births and deaths occurring before t. Hence 

(3.24) fP(Life(C) 9 t, Life(C) a t + h I t) 
= fP(Life(C) a t + h I Life(C) 9 t)1{Life(C) 9 t} 

and 

E L 11C e K[O, t]} l{Life(C) 9 t, Life(C) f t + h} 
c 

X [f(t -Basis(C)) -f(t)] 

(3.25) 
= L P(Life(C) y t + h I Life(C) 9 t)1{C E K[O, t], Life(C) 9 t} 

c 

X [f (t - Basis(C)) - f (t)]]- 

Since Life(C) is exponentially distributed with mean 1, 

(3.26) IP'(Life(C) a t + h I Life(C) 9 t) = h + o(h). 

Taking the expectation of (3.21) and substituting (3.23)-(3.26), we get 

E[f (>qt+h) - f (t)] 

(3.27) = L he-01YDI(1{fqt + 8Y E X} [f (-qt + 86) - f (-qt)]) + o(h) 
3, 

+ E h E Q~t(y) [f (-qt - 5,) - f ( ?qt)]) o(h), 

which, dividing by h and taking limit, gives, 

(3.28) df=(4) - AEf(-q4). dt 
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The existence of an invariant measure follows by compactness as our pro- 
cess is defined in the compact space X. See Chapter 1 of Liggett (1985). ED 

We show in the next theorem that under a stronger hypothesis the process 
can be constructed for times in the whole real line. Since the construction is 
time translation invariant, the distribution of -t will be invariant. 

THEOREM 3.2. If, with probability 1, there is no backward oriented perco- 
lation in C, then the process with generator A can be constructed in (-oo, 0o) 
in such a way that the marginal distribution of -t is invariant. 

PROOF. The lack of percolation allows us to construct a set K c C as 
KJO, t] was constructed from C[O, t] U S(;) in the proof of the previous 
theorem. We just proceed clan by clan and simply ignore the cylinders of 
S. Note that K is both space and time translation invariant by construction. 
Analogously to the previous theorem we define -t as the section of K at time t: 

(3.29) nqt(y) = 1{y E {Basis(C): C E K, Life(C) X t}}. 

By construction, the distribution of -t does not depend on t; hence its distri- 
bution is an invariant measure for the process. ED 

Let us denote by juL the distribution of -t, in anticipation of the fact that 
this is precisely the measure of Theorem 2.2. 

As in the finite case, 

(3.30) qt(y) j< ~(y) 

for all my e G. This implies that the distribution juL inherits property (3.12): 

(3.31) atA(Y) = 1} = E-t(y) < EfQy) =e-0lY1. 

Let 

(3.32) A(Y) = U AxO 
xeY 

be the clan of y C 7d (at time 0). 

REMARKS. (i) It follows from (3.29) that, for any t E R and continuous f, 

(3.33) tf = Ef(t). 

(ii) The presence/absence of a contour -y at time t depends only on the clan 
of ancestors of (x, t) for any x E -y through a certain function. More generally, 
for each f there exists a function 1D such that 

(3.34) f(TOt) = ls J AXfti 
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For instance, -qt(y) = 1 if and only if AlXt contains a cylinder in K with basis 
y whose life contains t. This depends only on the set Ax, t. In particular, with 
the notation (3.32), 

(3.35) f(-qo) = ,I(A(Supp(f))) 

Analogous statements are true for the process starting with a fixed configu- 
ration at time 0: 

(3.36) f (+t ) = (A; (Supp(f), [0, t]))v 

where 

A(Y [O, t]) = [(U AX t) n C[O, t]] 

ujC E S(): {C} (u Ax t) n C[o, t]} 

is the set of cylinders in C[O, t] U S(;) which determines the value of f(-f) 
when f has support Y. 

4. Percolation, space-time convergence and mixing. In this section 
we exploit the relationship between the loss network process and the absence 
of percolation to prove a more precise version of Theorem 2.2. In the proof 
of the mixing properties we shall need a continuous-time construction of the 
backward percolation clan. 

4.1. The key theorem. The precise statement of the next theorem requires 
the notion of nonoriented percolation in a time interval. For any time interval 
(s, t) and any space-time point (x, t'), define 

(4.1) Gx t' [s, t] = {C E C[s, t]: Basis(C) X x, Life(C) X t'} 

and 

(4.2) Gx' t [s, t] = {C E C[s, t]: Basis(C) it Basis(C') 

for some C' E Gn't1[s, t]}. 

Notice that in the definition of G,1 there is no exigency that the birth time of 
C' be prior to the birth time of C or that the lifetimes intersect. Let 

(4.3) GX t [s, t] = U Gx't[s, t]. 
kay k>O 

We say that there is no (nonoriented) percolation in [s, t] if, for any space- 
time point (x, t'), GX, t' [s, t] contains a finite number of cylinders. We will 
show later that the condition a < oc is sufficient for the existence of an h such 
that the probability that there is no nonoriented percolation in [0, h] is 1. 
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In addition, we need the following definitions. 

* The time length (TL) and the space width (SW) of the family of cylinders 
AX,t are, respectively, 

(4.4) TL(AX t) = t - supIs: Life(C) X s, for some C E Ax, t} 

(4.5) SW(AX t) = U Basis(C). 
CeAxt 

In words, the space width is the number of sites occupied by the projection 
of the bases of the cylinders in the family. The time length is the length of 
the time interval between t and the first birth in the family of ancestors 
of (x, t). 

* AA(Supp(f)) is the set of ancestors of Supp(f) constructed from CA as 
A(Supp(f)) was constructed from C. [Notice that this is not the same as 
A(Supp(f)) n CA.] 

In item 4 of the next theorem we enlarge our probability space to the direct 
product of our working space with itself: (fQ, F, fP) x (fQ, F, fP). As noted before, 
we continue to use fP and E for the probability and expectation of this space. 

THEOREM 4.1. Assume that there is no backward oriented percolation with 
probability 1. Then: 

1. Uniqueness. The measure jIL is the unique invariant measure for the process 

2. Time convergence. For any function f with finite support, 

(4.6) lim sup Ef(-tl) - ff = 0. 
t Xoo EX 

Furthermore, 

sup I Ef( 4)-) -f 

(4.7 X < 21 f K (Ks U fAx t 96 S( ) or TL(AX t) > t}) 

(4.8) < 2 11flloo E [(TL(AXo?) > bt) + e-(l-b)t E(SW(AX )) 
xeSupp(f) 

for any b e (0, 1). 
3. Space convergence. As A -, Ed, A converges weakly to ILL. More precisely, if 

f is a function depending on contours contained in a finite set A, then 

(4.9) LAf- I < 2 l Wfl([P A(Supp(f)) W AA(Supp(f))). 
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4. Mixing. If, in addition, there exists a value h such that there is no (nonori- 
ented) percolation in (0, h) with probability 1, then, for f and g with finite 
support, 

(4.10) liM I 1(fTxg) - tf fugI = 0, 
jxj->OO 

where ix is translation by x. More precisely, for f and g with arbitrary 
support, 

(4.11) ltt(fg) - ftf uLgj < 2 11f llol1g|j. P(A(Supp(f)) -G A(Supp(g))), 

where A(Supp(g)) has the same distribution as A(Supp(g)) but is independent 
of A(Supp(f)). 

The existence of juL has been proven in Theorem 3.2. In the rest of this 
section we prove the other properties. 

4.2. Time convergence and uniqueness. We use the same Poisson marks to 
construct simultaneously the stationary process -t and a process starting at 
time 0 with an arbitrary initial configuration ;. The second process is denoted 
by -q4 (as before). This is what in the literature is known as coupling. By 
construction [cf. (3.18) and (3.20)], the process -q4 ignores the cylinders in 
C with birth times less than 0 but takes into account the set of cylinders 
with basis given by the contours of the initial configuration ; and birth time 
0, S(;) = {(O, 0, S?(O)) E S: -q(O) = 1}. Recall that the times Sk(O) are 
exponentially distributed with mean 1 and independent of everything. 

By (3.33) and (3.11), 

(4.12) sup IEf(4qt) - I-L 
= sup E f(-qt)-f(-qt) 

Since we are using C to construct -t and C[0, t] U S(;) to construct t, it 
follows from (3.34) and (3.36) that 

( 4.1)3 - f (-qt) = P(A (Supp(f) 0, t])) - ( U AX t) 

(4. 13) 
EUPf 

< 2 llflloo0 1(;) U AX, t) or TL(AX t) > t 
xeSupp(f) 

To see this, notice that {Ax t C C[0, t]} = {TL(AX t) < t} 
and that UXESUPP(f)A' S(=) and Uxesupp(f)Ax t C C[0, t] if and only if 

UXESUPP(f) Ax t = Aj(Supp(f), [0, t]). Equation (4.13) shows (4.7). 
To prove the weak convergence (4.6), we fix b E [0, 1] and bound the indi- 

cator function on the right-hand side of (4.13) by 

(4.14) 1{TL(AX t) > bt} + 1{TL(AX t) < bt, AX, t - S() 
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The expected value of the first term in (4.14) goes to 0 because Ax, t has a finite 
number of cylinders with probability 1. The second term in (4.14) is bounded 
above by 

(4.15) t1max{S0(y): ;(y) = 1 and 
y -t Basis(C) for some C E AX tI > (1 - b)t}. 

Since S and Axt are independent and So are iid exponentially distributed 
random variables of mean 1, 

E(maxISO(y): ;(y) = 1 and y it Basis(C) for some C E Ax t} 

(4.16) > (1 - b)t Ax, t) 
= 1 - (1 e-(1-b)t)j: (y)=i and y-Basis(C) for some CEAX t}j 

Since ; is a configuration of compatible contours, it contains at most one con- 
tour per site; that is, I{y D x: ;(y) = 1}1 < 1 for all x E Ed. This implies 
that at most SW(AX t) cylinders of C(;) can be incompatible with cylinders in 
Ax t. Hence (4.16) is bounded by 

(4.17) 1 - (1 - e-(1-b)t)SW(Axt). 

The expectation of (4.17) is given by 

(4.18) E [- (1 -e-(1-b)t)n] P(SW(AX ?) =n 
n>1 

because the distribution of Ax, t does not depend on t. Our hypothesis of no 
backward oriented percolation implies that AX, contains a finite number of 
(finite) contours. Hence Ln>l PIP(SW(Ax 0) = n) = 1 and by dominated conver- 
gence (4.18) goes to 0 as t -> co. This proves (4.6). 

To prove (4.8), we start from the expectation of (4.14) and use (4.18) to 
bound the expected value of the second term by 

n-1 

e-(~ ) E P'(SW(Ax0) = n) L (1- e-(-b)t)k 
n>1 k=O 

(4.19) < e-(1-b)t E n fP(SW(AX?) = n) 
n>1 

< e-(l-b)t E(SW(Ax,o)). 

The preceding arguments prove that the process converges, uniformly in the 
initial configuration, to the invariant measure jLL. An immediate consequence 
is that juL is the unique invariant measure. This concludes the proof of items 1 
and 2 of Theorem 4.1. El 
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4.3. Finite-volume effects. To prove inequality (4.9), we use (3.33), (3.11) 
and (3.34) to get 

(4.20) 
If _ ILAf = Ef r0)Ef (_qA) (4.20) - ~ (0 f~o 

= E[PD(A(Supp(f))) - P(AA(Sup )))], 

where 1D is the function referred to in (3.35). By definition, 

(4.21) PD(A(Supp(f))) < 11 f 11z 
Hence inequality (4.9) follows from (4.20). 

Since the spatial projections of the set of ancestors of Supp(f) are finite, the 
right-hand side of (4.9) goes to 0, proving, in particular, the weak convergence 
of IA to I. w 

4.4. Mixing: Its relation with a coupling construction. The proof of item 4 
of Theorem 4.1 is very similar in spirit to the preceding proof but it requires 
a somewhat more delicate argument based on the coupling of two continuous- 
time versions of the backward percolation process. We first notice that (4.10) 
is a straightforward consequence of (4.11), because, in the absence of back- 
ward percolation, the spatial projections of the set of ancestors of Supp(f) 
and Supp(g) are finite. This implies that the right-hand side of (4.11) goes 
to 0. 

To prove (4.11), we use (3.33) and (3.34) to get 

|/4(fg) - -f gl = E(f (7o)g(7qo)) - Ef(m) Eg(mqo) 

(4.22) = E[(P(A(Supp(f))) P)(A(Supp(g)))] 

- E[(D(A(Supp(f))) PD(A(Supp(g)))], 

where 1D is the function referred to in (3.34) and (A(Supp(f)), A(Supp(g))) 
has the same marginal distributions as (A(Supp(f)), A(Supp(g))) but its 
marginals are independent. 

Identity (4.22) shows that to obtain (4.10) it is enough to construct a cou- 
pling (joint construction) of the four processes 

(A(Supp(f)), A(Supp(g)) ,A(Supp(f)), A(Supp(g))), 

such that 

(4.23) A(Supp(f)) = A(Supp(f)) 

and 

(4.24) A(Supp(g)) - A(Supp(f)) implies A(Supp(g)) = A(Supp(g)). 

Indeed, from (4.21) and (4.23)-(4.24) we obtain that the last line of (4.22) is 
bounded above by the right-hand side of (4.11). 

In the remainder of this section we discuss the construction of the coupling 
with properties (4.23)-(4.24). The construction is natural and straightforward, 
but unavoidably technical. As an alternative, we mention the approach based 
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on "duplicated variables" [von Dreifus, Klein and Perez (1995) and Bricmont 
and Kupiainen (1996)], which is probabilistically simpler but requires some 
combinatorial input. 

4.5. Construction of a four-clan coupling. We need to couple two clans in 
the same random set of cylinders with two independent copies with the same 
marginal distribution. Moreover, to strengthen our results, we need to ensure 
that the marginal realizations remain the same as much as possible. The cou- 
pling (Section 4.5.2) is based on a construction of backward percolation clans 
as nonhomogeneous continuous-time Markov processes (Section 4.5.1). The 
hypothesis on the absence of nonoriented percolation for some time interval 
(0, h) is needed for the infinite-volume construction of the coupling. 

4.5.1. A continuous-time construction of the backward percolation clan. For 
y C Zd, define 

(4.25) At(Y) = {C' E A(Y): 0 > Birth(C') > -t} 
= A(Y) n C[-t, 0], 

that is, the set of cylinders in A(Y) with birth time posterior to -t. The inclu- 
sion of a new cylinder in the time interval [t, t + h] depends on the existence of 
a birth Poisson mark in [-t-- h, -t] whose corresponding cylinder is incompat- 
ible with some C' E At(Y). That is, if C is a cylinder with Basis(C) -f Basis(C') 
then for some C' E At, 

WP(At+h = A u CAt =A, At= At, t? E [O, t)) 

(4.26) = PIC e C: Birth(C) E [-t - h, -t], 

Death(C) > t - TI(A, Basis(C)) } + o(h). 

We have denoted 

(4.27) TI(At, y) = min {Birth(C'): C' E At, Basis(C') -f y} 

and abbreviated At(Y) = At. The remainder o(h) is the correction related to 
the probability that C is not the only cylinder born in [-t - h, -t]. Since the 
birth time is independent of the lifetime, which is exponentially distributed 
with rate 1, 

[R t+h = A U ClAt = A, At, = At,, t' E [O. t) 

(4.28) 
= PIJC E C: Birth(C) E [-t - h, -t] 

x fP(Life(C) > t - TI(A, Basis(C))) + o(h) 

= he-OlBasis(C)l e-t+TI(A, Basis(C)) + o(h). 

This implies that when the configuration at time t- is A, a new cylinder with 
basis my is included in At(Y) at rate 

(4.29) e-01Yee-t+TI(A, e) 
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From (4.28), as in the computation of the forward Kolmogorov equations, 
we get 

E (d/ (Att) |AS5 0 < s < t) 

(4.30) 00 
= i I ds e-s e-4lyl [f (At U (y, t, s)) - f (At)] 

where the sum is over the set {y E G: -y -f Basis(C') for some C' E At}. This 
equation characterizes the law of the process At(Y) as a nonhomogeneous 
Markov process. 

We now construct At(Y) by combing the Poisson marks backward in time 
in a continuous manner. 

Finite-volume case. If we only consider contours contained in a finite set 
A C Zd, there is only a finite set of possible bases for the cylinders and the 
Poisson marks are well ordered with probability 1. The construction proceeds 
mark by mark backward in time. Set AO(Y) = Y. If there is a Poisson birth 
mark at time -t whose corresponding cylinder is called C", then 

* if C" it C' for some C' E At_(Y), set At(Y) = At_(Y) U {C"}; 
* if C" - C' for all C' E At_(Y), set At(Y) = At_(Y), 

where the incompatibility between cylinders was defined in (3.2). 

Infinite-volume case. In an infinite volume the construction can be per- 
formed using a percolation argument as in Section 3.4. By hypothesis, there 
exists an h such that each cylinder born in the interval [-h, 0] belongs to a 
finite nonoriented clan. Hence the set of cylinders born in the interval [-h, 0] 
can be partitioned in connected families: 

(4.31) C[-h, 0] = U Hk[-h, 0], 
k>O 

where the sets Hk[s, t] are the maximal sets of cylinders with the property 
that cylinders in different Hk's are compatible. We can then order the birth 
time of the cylinders inside each Hk and proceed as for the finite-volume case. 
This yields the process At(Y) for t E [0, h]. To extend the construction for arbi- 
trary t > 0, we simply repeat the previous procedure in [h, 2h], [2h, 3h], etc. 

4.5.2. A coupling between two interacting and two independent clans. We 
take two independent marked Poisson process whose marks and cylinders we 
respectively call blue and red. We enlarge our probability space and continue 
using PID and E for the probability and expectation with respect to the space 
generated by the product of the blue and red Poisson processes. Using these 
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marks, we construct simultaneously the processes (At(A1), At(A2), At(A1), 
AJ(A2)), for A1, A2 C Zd, in the following way: 

1. The processes At(A1) and At(A2) are constructed using only the blue marks, 
as described in Section 4.5.1, and ignoring the red marks. Hence they are 
the clans of A1 and A2, respectively. 

2. The process At(A1) is also constructed only with the blue marks; hence it 
coincides with At(A1). 

3. The process At(A2) is constructed with a precise combination of blue and 
red marks in such a way that (a) it coincides with At(A2) for a time interval 
that is as long as possible, (b) it is independent of At(A1) and (c) it has the 
same marginal distribution as At(A2). 

Property 3 is achieved in the following way. 

Finite-volume case. If both A1 and A2 are finite sets, we order the marks 
by appearance and introduce a flag variable, Flag(t) E {O, 1}, which indicates 
if some cylinder of At(A1) is incompatible with some cylinder of At(A2): 

(4.32) Flag(t) = 1{C' -/ C" for some C' E At(Al), C" E At(A2)1. 

We now proceed as follows, mark by mark backward in time. First, we set 
Flag(O) = 0. The construction guarantees that Flag(t) = 0 implies At(Aj) = 

At(Aj) for i = 1, 2. 

* If at time -t a (blue or red) mark is present and Flag(t-) = 0, then 

- If the mark is blue and the corresponding cylinder can be included in 
At-(A1) but not in At(A2), then include it in At(A1) and At(A1). Analo- 
gously, if it can be included in At-(A2) but not in At(A1), then include it 
in At(A2) and At(A2). Keep the Flag = 0. 

- If the mark is blue and the corresponding cylinder can be included in 
both At_(A1) and At-(A2), then include it in both At(A1) and At(A2) but 
include it only in At(A1). Set the Flag = 1. 
If the mark is red and the corresponding cylinder can be included in both 
At_(A1) and At_(A2), then include it only in At(A2). Set the Flag = 1. 
If the mark is red and the corresponding cylinder can be included in 
either At (A1) or At (A2) but not in both of them, then ignore the mark. 
Keep the Flag = 0. 

- If the mark is red or blue but the corresponding cylinder can be included 
in neither At-(A1) nor At-(A2), then ignore the mark. Keep the Flag = 0. 

* If at time -t a (blue or red) mark appears and Flag(t-) = 1, then use blue 
marks for At(A1), At(A2) and At(A1) and red marks for At(A2). Keep the 
Flag= 1. 

This content downloaded from 143.106.1.143 on Mon, 4 Aug 2014 13:22:11 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


924 R. FERNANDEZ, P. A. FERRARI AND N. L. GARCIA 

To verify that the previous coupling has the right marginals, it suffices to 
notice that the rate of inclusion of cylinders in each one of the marginals is 
precisely given by (4.29). 

Infinite-volume case. In the case in which at least one of Al and A2 is infi- 
nite, we consider families Hk analogous to the Hk given in (4.31) but defined 
using the time interval [-h/2, 0] and both red and blue marks. Therefore 
in the combined set of cylinders there is no nonoriented percolation and we 
can construct the coupling working in a finite set of Hk's at a time. We then 
continue working in time intervals of length h/2 to reach arbitrary times t. 

By construction, the coupling satisfies (4.23). It also satisfies (4.24) because 
the flag changes from 0 to 1 (and remains 1 forever) the first time a cylinder 
of At(Supp(g)) is incompatible with a cylinder of At(Supp(f)). This implies 

(4.33) Flag(oo) = 1 {A (Supp(f)) A (Supp(g))} 

5. Branching processes: Time length and space width. In this 
section we estimate the time length and space width of the families of ances- 
tors Ax, t. We follow the well-known approach of introducing a branching 
process that dominates the backward percolation process [see e.g., Hall (1985)], 
though we must consider multitype branching. The main result of this section 
is Theorem 5.1, which shows that the hypotheses of Theorem 2.2 lead to expo- 
nential upper bounds of both TL(AX t) and SW(AX t). 

5.1. Multitype branching processes. We introduce a multitype branching 
process Bn, in the set of cylinders, which dominates An. To do this, we look 
"backward in time" and let "ancestors" play the role of "branches." In particu- 
lar, births in the original marked Poisson process correspond to the disappear- 
ance of branches. We reserve the words "birth" and "death" for the original 
forward-time Poisson process. 

We start by enlarging our probability space and defining, for any given set 
{C1, ..., Ck4, independent random sets BCi with the same marginal distribu- 
tion as AC'. The important point here is that 

k k 
(5.1) U Alic U Bli 

i=1 i=1 

The proof of this fact relies on fixing a way to distribute common ancestors. 
For example, consider the total order -< in the set of cylinders induced by the 
birth times. That is C < C' if and only if Birth(C) < Birth(C'). For any finite 
set of cylinders {C1, ..., Ck} such that Ci < Ci+1, i = 1, ..., k - 1, define 
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Cc. 
This ensures that A1 are independent sets and 

k k 

(5.3) U A Ci =U Ali 
t=1 i=1 

On the other hand, for any C, AlC is stochastically dominated by Al7 [i.e., 
there exists a joint realization (A 7, AlC) such that WP(A7C c AC) = 1]. From 
this observation and (5.3) we get (5.1). 

The procedure defined by B1 naturally induces a multitype branching pro- 
cess in the space of cylinders. We define the nth generation of the branching 
process by 

(5.4) BC = {BlC C'!E BeC 11 

where, for all C', BlC has the same distribution as AC' and is an independent 
random set depending only on C'. Inductively, 

(5.5) AnC c B5C. 

Indeed, 

(5.6) AC= U AC/= U A-C, 
C'EAC1 C'cAf1 

where in the definition of Al7 we use {Cl,...,Ck} = JirJAi. Hence the 
inductive hypothesis AC c BC, for i = 1, ... , n - 1, yields (5.5). 

Consistent with our previous notation, we denote by 

(5.7) Bc= UJB , BXt= UBx't, BY= UBXO 
n>O n>O xEY 

the branching clans of C, (x, t) and Y (at time 0), respectively. By (5.5), 

(5.8) AC c BC, AX, t c BX t, Ay cBy. 

Defining the time length and space width of this clan as in (4.4) and (4.5), we 
get 

(5.9) TL(Ac) < TL(Bc), TL(AX t) < TL(Bx t) TL(AY) < TL(BY), 

and similarly for the respective space widths. 
The (multitype) branching process Bn induces naturally a multitype branch- 

ing process in the set of contours. For a cylinder C with basis -y and birth 
time 0, define bn E RNG as the number of cylinders in the nth generation of 
ancestors of C with basis 0: 

(5.10) bn(O) = {C' e BC : Basis(C') = 011. 
This process will be useful in estimating the space properties of the clans of 
ancestors. We have the following relationship: If Basis(C) = -y, then 

(5.11) Lby(O) = JB5C. 
0 
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The process bn is a multitype branching process whose offspring distribu- 
tions are Poisson with means 

00 

(5.12) m(y, 0) = l{fy J 0} e-,0 f e- dt 
= l{fy J O}e-01. 

To see this, notice that the cylinders C' with basis 0 that are potential ances- 
tors of C (with basis -y) form a Poisson process of rate l{y J 0} e-,i01. Each of 
those cylinders is an ancestor of C if its lifetime is larger than the difference 
between the birth time of C and C'. The lifetimes of different cylinders are 
independent exponentially distributed random variables of rate 1. The prob- 
ability that the lifetime of any given cylinder is larger than t is given by e-t. 
Hence the birth times of the ancestors of C with basis 0 form a (nonhomoge- 
neous) Poisson process of rate depending on t given by l{fy J 0} e-:l01 e-t. The 
mean number of births is therefore given by (5.12). 

LEMMA 5.1. The means (5.12) satisfies 

(5.13) In mn(Y, 0) < 0 m'2Qy 0) n -y ae, 
0 0 

where mn is the nth power of the matrix m and a is defined in (2.4). 

PROOF. The first inequality is immediate. For the second, 

>LZHmMn(y, 0) 
0 

= E e-'81'l E e- IY21 E GI Il-1? 
(5.14) yl clfe e Y72 1 Y2? Yl 00- 

jyLj >Y Yi e1371e> 
yii1 'Y1)X 7272/71 I OOY/ ?n-1I 

< jyj sup E Soe 101) 

This lemma shows, in particular, that the branching process bn is subcritical 
if a < 1. 

5.2. Continuous-time branching process. Let C be a cylinder with basis 
,y and birth time 0. Combing backwards continuously in time the branching 
clan BC, we define a continuous-time multitype branching process f7(O) = 

number of contours of type 0 present at time t (of this process) whose initial 
configuration is 8e. Each C' E BC is a branch, that is, belongs to the first 
generation of ancestors of a unique cylinder U(C') in BC. In the branching 
process at all the branches (ancestors) of U(C') appear simultaneously at the 
birth of U(C'), that is, when U(C') disappears if we look backward in time. 
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Therefore the part of C' in the interval [Birth(U(C')), Death(C')] is ignored. 
Formally, 

(5.15) qt7(O) = {C' E BC: Basis(C') = 0, Birth(C') <-t <Birth(U(C'))} | 

In the process A/'t each contour y lives a mean-one exponential time after 
which it dies and gives birth to ko contours 0, 0 E G, with probability 

(5.16) H en (Qy 0) m(y, o) 
k 

for ko > 0. These are independent Poisson distributions of mean m(-y, 0). The 
infinitesimal generator of the process is given by 

(5.17) Lf(ff) = E q() E H ei(ly0)m(y, o))(0) 
yEG qE Wo(Y) 0:,q(0) > 1 

where q, 27 E % = e EG; 0 qf (0) < ao} and 0(y) = { E 0; f(0) > 1 
implies 0 -/ y} and f *0 > N. 

The branching process te' allows us to estimate the time length of a clan, 
due to the obvious fact: 

(5.18) fr'(0) = 0 implies TL(BC) < t. 
0 

Let Mt(-y, 0) be the mean number of contours of type 0 in A/t and Rt(y) its 
sum over 0: 

(5.19) Mt(-y, 0) = EEqf(0), Rt(y) = E Mt(y, 0). 
0 

The bound we need is given in the next lemma. 

LEMMA 5.2. The mean number of branches Rt(y) satisfies 

(5.20) P(> '(O) >o) < Rt(y) < jyj e(l)t 
0 

PROOF. The first inequality is immediate because Y0 q/'(0) assumes non- 
negative integer values and Rt(y) is its mean value. 

To show the second inequality, we first use the generator given by (5.17) to 
get the Kolmogorov backward equations for Rt(-y): 

(5.21) d Rt(y) =Lm(y, y')Rt(y') - Rt(y) 

Since Ro(,y') =_ 1, the solution is 

(5.22) Rt(y) = Y3[exp [t(m - I)]](y, y'), 
7, 
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where m is the matrix with entries m(y, -y') and I is the identity matrix. This 
can be rewritten as 

Rt(y) =e-t 
tit 

E (Y 

(5.23) _t 

e-t E7 Jyz/an, 
n>O 

where mn is the nth power of the matrix m; the last bound is just the leftmost 
inequality in (5.13). C 

5.3. Time length and space width. We are now ready to provide bounds 
for the time length and space width of the percolation clan. 

THEOREM 5.1. If / > /3* [i.e., a(f3) < 1], then 

(i) The probability of backward oriented percolation is 0. 
(ii) For any positive b, 

(5.24) WP(TL(AX t) > bt) < aoe-(l-a)bt. 

(iii) 

(5.25) E(SW(AX t)) < ao(/3) 

(iv) 

(5.26) E(exp [aSW(AX t)]) < ao(,8 - a) 
1 - a(8- a)' 

(v) 

(5.27) P (SW(AX t) > e) < -(/) e-(60 
1a(f3) 

for any /3 E (,/*, /). 

PROOF. (i) We follow an idea of Hall (1985). For each C E C, we use the 
domination (5.5) and the identity (5.11). Therefore, to prove that there is no 
backward oriented percolation, it is enough to prove that, for fixed -y, 

(5.28) P (beY(0) 7& 0 for infinitely many n) = 0. 

Since bn'(0) assumes nonnegative integer values, by the Borel-Cantelli lemma, 
a sufficient condition for (5.28) is 

(5.29) L E mn(,y, 0) <' o. 
n 0 

But this follows from Lemma 5.1. 
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(ii) By (5.18) and (5.9), for each x E -y and s < t, 

(5.30) > q4(O) = 0 implies TL(AX 0) <t 
0 

Hence 

WP(TL(AX ?) > t) < P W(Dqro(y) = 1)Rt(y) 

(5.31) YDx 

< e- 81'y Rt(^y) < aoge-('-a)t 
7DX 

by the rightmost inequality in (5.20). 
(iii) We find an upper bound for the space diameter of the backward perco- 

lation clan through and upper bound for the total number of occupied points 
by the multitype branching process bn defined by (5.10). In fact, 

(5.32) SW(AX ?) < > No(^y) I 1 0 bn(0). 
7DX n 0 

By (3.31), EDo(-y) < e-Mh'. Hence, by (5.13), 

E( 10 (^y) E>11 by(O)) 
7DX 1i 0 

(5.33) l >l 0 mn(,y, 0) 
7DX n 0 

< ato >1 cn. 
12 

(iv) Write 

E(eaSW) - > e0 Dp(SW = Q) 

< ea 
(5.34) z Y e ) l)l1ylU ...Uyk =Q 

e k Y1--7k 

XwP(-Yj D 0,b}y1(y2) > 1, bk'-1(Yk) > 1). 

By the Markovian property of bn, we get 

[P 'Yj D 0, b'1(^y2) > 1, . . . , b''- (Yk) > 1 

(5.35) = DIDy1 ( ?) oP(bl1(^y2) > i) * P(be-(k) > 1) 

k 
< 1{7 3'Y ?, 'Yj Y 2, ** ,k-1 -/ 'Yk} exp(-,8 Jyj ). 

Substituting this in (5.34) and using 

(5.36) eae 1{Y1 U ...Uyk| = e} < 1{1|Yl U ...UYk= e} exp (a Li), 
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we get 

E(eaSW) < 1<1y0,yl+y2,..,yklyk~exp(-(6-a)Ly$) 
k.7 

- L >1 lzyjexp(-(f3-a)jyjj) 
(5.37) 

k yjDO 

1 1 
X E 'y2jexp(-(f3-a)ly21) E exp(-(/3-a)lYkl) 

| 1 Y1 Y2 /7l|1Yk-1 Yk'I'Yk 1 -1 

< aO(-a)Ea(13-a)k. 
k>O 

(v) It suffices to use (iv) and the exponential Chebyshev inequality and 
to notice that a must be less than /8 - f8* to avoid a 0 in the denominator 
of (5.26). C 

REMARKS. (i) Part (ii) can, in fact, be proven by a more elementary argu- 
ment not requiring the continuous-time construction of Section 5.2. The argu- 
ment gives the same rate of decay as in (5.24) but a worse leading constant. 
Let us sketch it: 

P(TL(AXo) > t) 

(5.38) z Y3,1Y,.,k1Yws?.?k ) 
< E 1fyj D3 ?,,y "1 f2, *vYk-1 -/ YO~P(Si + '''+ Sk > t), 

k 71. , Yk 

where Si are independent mean-one exponentially distributed random vari- 
ables and independent of -yi. The time Si represents the period between the 
birth of -yi and -yi+j. As the sum of independent exponentials is a gamma 
distribution with parameters k and 1, 

k V 
(5.39) P(Sl+ +Sk > t)=eE 

i=O 

Therefore (5.38) is bounded by 

00 

e E it E E >1 mexp(-f3 jy1l) 
i=O k>i 71D ? 

X E Y721 exp(-f1321) E exp(-p8Ik D 

(5.40) 1 1 IY22 )**YYki 7kI 1YDk-1 

00 Hi 

< e-t k-1 
i=O i k>i 

o e-(1-a)t 
ae(l - a) 
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(ii) In Fernandez, Ferrari and Garcia (1998) we offered an alternative proof 
of part (iii), based on a computation of the exponential moment of the total 
population of a subcritical single-type branching process, which dominates the 
space width. However, this proof works in a smaller range of /8. 

6. Proof of Theorem 2.1. The following theorem shows that the condi- 
tion a < oc implies the hypothesis of Theorem 3.1. This proves Theorem 2.1. 

THEOREM 6.1. If a <oo, then,for all x and positive t, the set AXtnC[O, t] 
has a finite number of cylinders with probability 1. 

PROOF. By time translation invariance it is sufficient to prove that AX, n 
C[-t, 0] is finite with probability 1. Let C be a cylinder with basis -y and birth 
time 0. Recall the definition of U(C') just before (5.15) and define 

(6.1) f'(O) = I{C' E BC: Basis(C') = 0, -t < Birth(U(C'))} 

The process f signals all contours born in [0, t] in the process q. Notice 
that, for x E -y, 

(6.2) |AX, n C[-t, 0]| < I {C E BX, : Birth(C) E [-t, 0]} I < E > (0) 
0 

We prove that this is finite with probability 1 by showing it has a finite mean. 
Indeed, reasoning as in the previous section, 

(6.3) E( a i(n)) = L(et)(y, 0) < yeeta < X 

if a < co. LI 

7. Proof of Theorem 2.2. We prove that the hypotheses of Theorem 2.2 
imply those of Theorem 4.1. The different parts of Theorem 2.2 follow by 
combining Theorem 4.1 and the space-width and time-length estimations of 
Theorem 5.1. 

Existence and uniqueness. In Theorem 5.1(i) the condition a(,8) < 1 was 
shown to imply lack of backward oriented percolation. This, plus part 1 of 
Theorem 4.1, proves part 1 of Theorem 2.2. 

Exponential time convergence. Inequality (2.9) follows from (5.24), (5.25) 
and (4.8) by choosing b = (2 - a)-'. 

Exponential space convergence. In view of (4.20) it suffices to bound 

P (SW(A(Supp(f))) > d(Supp(f), Ac)) 
(7.1) < E, IP(SW(A X, ) > d(f xJ, A')). 

XESUPP(f) 
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By (5.27), this is bounded by 

(7.2) E o( ) exp(-(f3 - 3) d({x}, AC)). 
XESUPP(f)1 - a(f) 

Exponential mixing. We shall use part 4 of Theorem 4.1. We first show, in 
the next lemma, that a < oc implies the existence of an h such that there is 
nonoriented percolation in the interval (0, h). 

LEMMA 7.1. For all h > 0 such that 

(7.3) ah < 1, 

the probability that there is no (nonoriented) percolation in (0, h) is 1. 

PROOF. Analogously to Section 5.1, we dominate the construction of the 
set ancestors of the nonoriented percolation process by a multitype branch- 
ing process. In this branching process, the mean number of ancestors 0 of a 
contour -y is 

(7.4) H(y, 0) = h 1{ 0 J yle-16101. 

As in Lemma 5.1, this branching process is subcritical if -a = a h < 1. C 

We now prove (2.11). From (3.33) and (3.11) 

(7.5) AA(fg) - Af Ag = E(f(-q0)g(-10)) -Ef(-qo)Eg(-0). 

By (4.11) it is enough to bound 

(7.6) P(A(Supp(f)) J A(Supp(g))), 

where A(Supp(g)) has the same distribution as A(Supp(g)) but is indepen- 
dent of A(Supp(f)). This is bounded by 

P P(AX ?AY ?) < P(SW(AX )+SW(AY ?)>Ix-Y1)- 
(77) xESupp(f), xESupp(f), 

ycSupp(g) ycSupp(g) 

Using the following inequality, which is valid for independent random vari- 
ables S1 and S2, 

(7.8) P(S1 + S2 > E P(S1 > AP(S2 > f - A 
j=1 

and the exponential decay of (5.27), we get the decay stated in (2.11). 
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Central limit theorem. We apply the central limit theorem for stationary 
mixing random fields proven by Bolthausen (1982). Let Xx = Tf. Let 'nl be 
the o--algebra generated by {Xx: x E A}. Define 

ak, e(n) = sup{fWP(Al n 
A2)- P(A1)P(A2) :Al E Q A2 (E ' 

A11 < k, A21 I< , d(Al, A2) > n}. 

The simplified version of the Bolthausen theorem stated in Remark 1, page 
1049, of his paper says that if there exists a 3 > 0 such that IIXx I2+, < 00 
and 

00 

(7.10) >A n d-1(a2 oo(n)) ( + ) < Co, 
11=1 

then D < oc and (2.12) holds. Hence it suffices to show that a2, (n) decays 
exponentially fast with n. We can write 

(7.11) 2,oo(7) = sup ju4(g9g2)- -L992 , 
a, g1, g2 

where the supremum is taken over the set of a E Zd, g1 in the set of indicator 
functions with support on Supp(f) U Ta Supp(f) and g2 in the set of indicator 
functions with support in 

(7.12) U{T Supp(f): y E Ed and ly-xI > n Vx E Supp(f)}. 

By (2.12), 

a2oo(n) < 2(M2)2 E Ix - yJ exp(-M31x - Y) 
XeSupP(g1)X 

(7.13) yeSupp(g2) 

< 4(M2)21 Supp(f) I exp(-M31yI) 
lyl>n-21 Supp(f)l 

because I Supp(g1) < 2 I Supp(f) and 11g1 1l , = 11921loo = 1. Hence a2O,(n) 
decreases exponentially fast with n. D 

8. Proof of Theorem 2.3: Poisson approximation. We define first a 
common probability space where all processes W-8:,8* < /8 < oo} can simulta- 
neously be constructed. For each -y E G = Uj Gj, let N7 be a marked Poisson 
process on Rd+2 of rate 1. The event points of this process are denoted by 
(U, t, r, s), where u E Rd, t, r E OR and s E OR+. The coordinate t is interpreted 
as time while the coordinate r is later used to tune the rate of the projected 
process (u, t). The coordinate s-the mark-is an exponential random variable 
with mean 1 independent of everything (used later to determine the lifetime 
of the corresponding point/cylinder). Denote by WP the product measure gener- 
ated by (N7: -y E G), and by E the corresponding expectation. We identify the 
random counting measure NY with the corresponding discrete random subset 
of Rd+l x R+ 
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Fix a contour length j and an inverse temperature /8. By counting only 
those points in No whose r coordinate is in [0, e-m(I0-J)], we generate the 
(d + 1)-dimensional marked process 

(8.1) No, 6 = marked Poisson process of rate e-P(I 1- A 

The life of each point (u, t, s) E No ,6 x R+ is the interval [t, t + s]. 
Define a family of marked point processes indexed by /8 and TX0, x E Zd 

0 E G for Borel sets I c R by 

(8.2) NT: = No,s(O(xe-j/d, e-8jld/2) x I), 

where, for Y - (Y1, ..., Yd) E , 0 is the d-dimensional "rectangle" 

(8.3) O(Y, P) =I Y1-P, Y1 + p] xx [Yd-P, Yd + P]. 

Since the volume of O(xe-8jld, e-/jld/2) is e-,j and No,6 has rate e-3(i0-J), 
the resulting process NT,0 3(I) is a one-dimensional marked Poisson process of 
rate e-m101. The marks are the independent exponentially distributed random 
variables of mean 1, inherited from No, B. The point of this construction is that 
all these Poisson processes are constructed simultaneously as a function of the 
original (d + 2)-dimensional Poisson processes. 

Now for each /8 we use the processes NT0 oB to perform the graphical con- 
struction of Section 3.1. We call CG the family of cylinders so obtained. Let (8 
be the free network of Section 3.2 and q1p the loss networks of (3.29). As in 
(3.8) and (3.33) these processes have invariant distributions I-Lo and jIts, respec- 
tively. 

Let V be a d-dimensional rectangle as in the statement of the theorem. Let 

? 6(V)= E ((X^Y) 

(8.4) xEV.ePjyj/d 

= E 1{Basis(C) = Tx'y, Life(C) 3 O} 
xeV-ePIyI/d CECo 

as in (3.6). The superscript 0 on the left-hand side indicates that we are dealing 
with the free process 1t , while the subscript 0 on the right-hand side indicates 
time 0. The family (Me,,(V) : y E Gj) consists of IGjI independent Poisson 
random variables with mean 

(8.5) EMO, 6(V) = IV et yj/d Ie-1l. 

By (3.29), mqO(y) constructed with the cylinders in C: is [L,6 distributed. Thus 
we can use -8(,y) in the definition (2.14) of Met 3. By (3.30), 

(8.6) il3(y) ' (oy). 
Hence Me, :(V) < MO(V). 
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The joint construction also implies that 

(MO?:M(V) - M7e (V) > 1) 

E (To'Y) - q:(7x7) >i) 

(8.7) ~~~~~~xeV.ePlvI/d (8.7) 
E [ 4, (7x7) > 1, qg(T7X) = o) 

xcV.eflyl/d 

? WD(4(Txoy) > 2, qOg(T7xY) = i)]. 

From the construction, for any 0 E G, 

(88 (0) > 1, Ng(O) = 01 

c {C:: C: D C with Basis(C) = 0, Life(C) D 0,A7 7 0}. 

The probability of this last event is bounded by 

(8.9) ((((0) >1P)P(b1(O') > 1). 

Since WP((3(0) > 1) = 1 - exp(e-3101) < e-4101, (8.9) is bounded above by 

(8.10) e->101 E e -1?'l < e- 01 IO1a (f). 
o': o'frO 

On the other hand, 

(8.11) IP (4(O) > 2, ,(0) = 1) < P :(0) > 2) < le 

From (8.7)-(8.11) we get 

P(M? :(V) - M,,:(V) > 1) 
(8.12) < V. e -'8e I?I a ee-'lY1 e-2d,. 

To finish the proof of (2.15), we must show that MO, is close to a Poisson 
process. For ly I = j, let M7, 00 count those points of the Poisson process N, 00 
whose life contains the origin. The process M7, 00 is a Poisson process in Rd of 
rate 1. This is because the lifetimes are independent exponentials of mean 1 
and, for ly I = j, NY, 0 is a Poisson process of rate 1. The family {M7, 00 eY 

Gj} inherits independence from {N: -y E G}. For J c Zd, let 

(8.13) J: a = {r E R:d ra E J + [1/2, 1/2]d }C R 

By definition, 

(8.14) M? fG(V) = M,00 ((V. ei J/d) : eJ/d). 
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Then, as (V. e/jid): e/3id c V, 

P (M?8( V) - Me, 0(V) ? o) < P (Me( V\[(V eye/d): e/3J/d]) > o) 

(8.15) < |V\ [(V . e:j/jd ) e: jld]| 

< 2dlVl(d-l)/de-4j/d 

Inequality (2.15) follows from (8.12) and (8.15). 
Proposition I.2 of Neveu (1977) and the comments following the statement 

of the proposition say that the distribution on finite unions of d-dimensional 
finite-volume rectangles is enough to characterize a point process. Since the 
estimates (2.15) can be easily extended to finite unions of rectangles, the weak 
convergence follows. C 
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