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Crystallization kinetics: A solution for geometrical impingement
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Starting from the wrong derivation by Erukhimovitch and Baram of an equation alternative to the classical
Kolmogoroff-Johnson-Mehl-Avrami one for the transformed fraction in an infinite specimen, undergoing an
isothermal first-order phase transformation, it is shown that a different exact solution of the geometrical
problem of impingement can be obtained. Such solution is equivalent to the empirical one already presented by
Austin and Rickett more than sixty years ago and allows to better fit experimental results for isothermal
transformations. This also suggests that perhaps different statistical derivations could allow to reach the same
result.
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The classical Kolmogoroff-Johnson-Mehl-Avram
~KJMA! equation,1–5 for the transformed fraction in an infi
nite specimen undergoing a solid-solid or liquid-solid is
thermal phase transformation, correctly describes the co
sponding kinetic process when nucleation sites are rando
distributed and the linear-grain-growth rate is constant u
impingement with neighboring ones. However, Erukhimo
itch and Baram~EB! raised some doubts on the hypothes
underlying the KJMA equation and showed several examp
in which their model better fitted experimental results in t
case of isothermal amorphous to crystal transformatio
polymer crystallization, etc.6,7 Their works were an object o
dure criticism by several authors because there actually w
big mistakes in their derivation.8–12 Anyway, even so, they
were successful in calling attention on the lack of agreem
with experimental results of KJMA solution, which, in ge
eral, predicts a transformed fraction as a function of ti
appreciably larger than the measured one after about 40
the material had been transformed.

We will show the graphs that EB showed do not cor
spond to the equation they presented. Even more, the e
tion they showed as the base of their model does not a
from their initial assumptions. The plots they presented c
respond to a different assumption that was already propo
as an empirical one by Austin and Rickett~AR! and already
discussed by Avrami.3,4,13 Similar empirical models for im-
pingement have been frequently proposed and discusse
the literature, showing that better agreement with experim
tal results can be obtained, however, no strong physical
tifications nor statistical arguments supported them.14–18

Here we want to show that AR model corresponds to
different exact solution of the geometrical problem of im
pingement, as formulated by Avrami, suggesting that perh
statistical arguments, different from random distribution
nucleation sites, could allow to reach the same result.

Before rederiving the rigth EB equation, let us rememb
the KJMA one for isothermal first-order phase transitio
For the sake of simplicity let us limit the treatment to thre
dimensional continuous nucleation with constant rate
grain production and constant interface velocity, the ext
sion to two- and one-dimensional growth and inclusion
incubation time are straightforward. To this end, it is conv
nient to recall some of the quantities formulated in the fi
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work of Avrami, starting from geometric considerations of
crystal aggregate of grains, of various shapes and sizes
sulting of growth beginning at various times in the past fro
nucleation sites.3 Such considerations are totally independe
of any hypothesis about the distribution of nucleation si
and the only assumption is that grain growth ceases wh
impingement occurs. Defining as extended the volume of
grain, had its growth been unimpeded by impingement, i
convenient to introduceV1 ex5*0

t dtsK(t2t)3 as the total
extended volume fraction, which includes overlapped gra
and also phantom nuclei~nuclei that are created in alread
growing nuclei and are completely embedded in them!, s
being the shape factor (4p/3 for spheres! and K the rate
production per unit volume of nuclei times the cube of th
size derivative assumed constant. According to Avrami,3 the
portion of volume lying solely within the regions corre
sponding tom-overlapping extended grains is given by,

Vm8 5Vm2Vm11 , ~1!

whereVm is the portion of volume corresponding to the su
of regions with degree of overlapping greater than or eq
to m, counted only once,

Vm5 (
k5m

`

Vk85 (
k5m

`

~21!k2m
~k21!!

~m21!! ~k2m!!
Vk ex,

~2!

Vk ex being the portion corresponding to the total volume
overlapping of all groups ofk grains counted and adde
separately without regard to higher overlapping,

Vk ex5 (
m5k

`
m!

k! ~m2k!!
Vm8 . ~3!

According to such definitionsV15V is the usual transformed
fraction.

Avrami, in a beautiful piece of algebra, showed in t
appendix of his second work,4 that the assumption
Vm8 /Vm ex512V1 allows to obtain a self-consisten
solution of Eqs. ~1!–~3!, corresponding to Vm8
5(V1 ex)

mexp(2V1 ex)/m!, Vm ex5(V1 ex)
m/m!, and V1(t)

512exp@2V1ext(t)#, in accordance with statistical deriva
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 132102
tions based on random distribution of nucleation sites.1,2,5

Such a result allowed him to elaborate several reasonin
justify it from the very first principles, that can be summ
rized by the following relation for differential increments:4

dV15~12V1!dV1ext . ~4!

EB questioned the inclusion of phantom nuclei inV1 ex
and proposed the following alternative relation for differe
tial increments

dV15~12V1!dV1ext* , ~5!

with V1ext* (t)5*0
t dtsK@12V(t)#(t2t)3, which implies

the occurence of nucleation sites only in the untransform
fraction. They stated, in both works they published, that
corresponding solution forV1 should be given by6,7

V1~ t !5E
0

t

dtsK@12V1~t!#2~ t2t!3. ~6!

Michaelsen, Dahms, and Pfuff destroyed their claim show
that such a solution cannot be a bounded one.8 This can be
easily seen in the case of constantsK since, by repeatedly
using Leibniz’s rule for differentiation of integrals, it is pos
sible to transform such integral equation to a simple diff
ential one,

d4V1

dt4
56sK~12V1!2, ~7!

which for initial condition V5dV/dt5d2V/dt25d3V/dt3

50 has no limited solutions. However, from Eq.~5!, in the
case of constantsK, the following differential equation is
the correct one:

d3

dt3
S dV1 /dt

12V1
D56sK~12V1!. ~8!

It may be surprising but the solution of this last equati
differs from KJMA solution in less than 1% also at hig
transformed fractions~this can be easily done using commo
commercial softwares for its integration!, so it seems irrel-
evant to use the modified definition of the extended volu
if the impingement is treated in a way analogous to Avra
A similar result is mentioned in Ref. 9, where a numeric
simulation of two-dimensional crystallization was done.

At this point what did EB really show in their graphs? W
found the implicit answer in their second work where,en
passant,in Eq. ~19! they showed the differential equatio
they actually solved,7 that in the case here examined reduc
to

dV1

dt
5~12V1!2

dV1ext

dt
, ~9!

with V1ext and notV1ext* . The solution of such equation i
immediate and givesV1 ext5V1 /(12V1) or alternatively

V15V1ext /~11V1ext!, ~10!
13210
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with V1 ext5sKt4/4 in the case of constantsK, without any
need for numerical methods. Expression~10! represents all
the curves they showed in both works to better fit experim
tal results. Such an excellent agreement may be consid
amazing at this point, however, it is quite an old result,
ready mentioned in Avrami’s works, which Austin and Ric
ett empirically proposed the same expression for isother
transformation of super-cooled austenite into bainite.3,4,13 In
Avrami’s second work the Austin-Rickett formula was d
duced as an approximated one. For illustrative purposes
Fig. 1 the KJMA~solid line! and AR ~dotted line! solutions
are plotted as functions of time in the special case,sK51.

Equation~9! is a special case of the empirical expressi
dV15(12V1) idV1ext for differential increments formulated
well long ago for better fitting experimental data.14,15 The
correction factor for impingement (12V1) i with 0, i ,1 is
associated to some degree of order for the crystalliza
process that is completed in a finite time, while fori .1
clustering of nucleation sites should be responsible for
increasing slowness of the process.18 Therefore, besides de
viations from linear grain growth at the end of transform
tion and/or deviations from isothermal conditions, also d
viations from random distribution of nucleation sites cou
account for the lack of agreement between KJMA pred
tions and experimental results.

KJMA solution is an exact one, arising from sel
consistent assumptions satisfying the geometrical form
tion of the problem@this means that the quantities defined
Eqs. ~1!–~3! must all be expressed in terms of onlyV1ext ,
which can be easily computed# and also satisfying a random
distribution of nucleation sites. However, we will show th
KJMA solution is not unique when the random hypothesis
relaxed and another solution, reducing to AR formula, sa
fying the same geometrical requirements, can be obtaine

It can be easily proved that the assumption

Vm8

Vm ex
5~12V1!m11, ~11!

allows to consistently satisfy relations~1!–~3! with

Vm ex5~V1 ex!
m, ~12!

Vm5~12V1!mVm ex. ~13!

FIG. 1. KJMA ~solid line! and AR~dotted line! solutions for the
crystallized fraction as function of time in the special casesK51.
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For instance, Eq.~2! reduces to the following identity:

S V1 ex

11V1 ex
D m

5 (
k5m

`

~21!k2m
~k21!!

~m21!! ~k2m!!
V1 ex

k .

Correspondingly, V15V1ext /(11V1ext) and dV15(1
2V1)2dV1ext in agreement with AR formula and Eqs.~9!
and ~10!. The relation between differential increments ca
also be writtendV15(12V1)(V1 /V1ext)dV1ext and it can
be interpreted as if the increment in the transformed fract
is proportional to the increment in the extended fraction, c
responding to the transformed fraction embedded in it, a
corrected for the probability of happening in the already u
transformed fraction. Such argument seems quite plaus
and should be interpreted in terms of statistical consid
ations as in the case of KJMA solution.

Again some doubt may be raised regarding the validity
consideringV1ext or V1ext* in Eq. ~9!. It can be shown that if
et
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V1ext* is considered the following differential equation aris
for V1 whensK is constant:

d3

dt3
S dV1 /dt

~12V1!2D 56sK~12V1!, ~14!

and its corresponding numerical solution differs fromV1
5V1ext /(11V1ext) in less than 1%, showing again the irre
evance of making any distinction betweenV1ext andV1ext* .

In conclusion, the AR empirical formula represents
alternative exact solution of the geometrical problem of i
pingement that allows to better fit experimental results
isothermal crystallization kinetics.
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