View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

PHYSICAL REVIEW B, VOLUME 65, 132102

Crystallization kinetics: A solution for geometrical impingement
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Starting from the wrong derivation by Erukhimovitch and Baram of an equation alternative to the classical
Kolmogoroff-Johnson-Mehl-Avrami one for the transformed fraction in an infinite specimen, undergoing an
isothermal first-order phase transformation, it is shown that a different exact solution of the geometrical
problem of impingement can be obtained. Such solution is equivalent to the empirical one already presented by
Austin and Rickett more than sixty years ago and allows to better fit experimental results for isothermal
transformations. This also suggests that perhaps different statistical derivations could allow to reach the same
result.
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The classical Kolmogoroff-Johnson-Mehl-Avrami work of Avrami, starting from geometric considerations of a
(KIMA) equation~® for the transformed fraction in an infi- crystal aggregate of grains, of various shapes and sizes, re-
nite specimen undergoing a solid-solid or liquid-solid iso-sulting of growth beginning at various times in the past from
thermal phase transformation, correctly describes the corrdiucleation sited.Such considerations are totally independent
sponding kinetic process when nucleation sites are randomi§f any hypothesis about the distribution of nucleation sites
distributed and the linear-grain-growth rate is constant untifnd the only assumption is that grain growth ceases where
impingement with neighboring ones. However, Erukhimov-impingement occurs. Defining as extended the volume of any
itch and Baran(EB) raised some doubts on the hypothesesdrain, had its growth been unimpeded by impingement, it is
underlying the KIMA equation and showed several example§onvenient to introduc®; ¢,= [odroK(t—7)* as the total
in which their model better fitted experimental results in theextended volume fraction, which includes overlapped grains
case of isothermal amorphous to crystal transformationsgnd also phantom nuclénuclei that are created in already
polymer crystallization, et&’” Their works were an object of growing nuclei and are completely embedded in them
dure criticism by several authors because there actually wetigeing the shape factor @#3 for spheresand K the rate
big mistakes in their derivatiofr.*2 Anyway, even so, they production per unit volume of nuclei times the cube of their
were successful in calling attention on the lack of agreemersize derivative assumed constant. According to Avrathie
with experimental results of KIMA solution, which, in gen- portion of volume lying solely within the regions corre-
eral, predicts a transformed fraction as a function of timesponding tom-overlapping extended grains is given by,
appreciably larger than the measured one after about 40% of
the material had been transformed. Vin=Vin— Vi1, (1)

We will show the graphs that EB showed do not corre- hereV. is th : £ vol di h
spond to the equation they presented. Even more, the equi'€"€Vm IS the portion of volume corresponding to the sum

tion they showed as the base of their model does not arisgl r€9ions with degree of overlapping greater than or equal

from their initial assumptions. The plots they presented cort© M counted only once,

respond to a different assumption that was already proposed o o

as an empirical one by Austin and Rické&R) and already V. — 2 V! = Z (— 1)k m (k—1)! v
discussed by Avrami**3 Similar empirical models for im- e (m—1)1(k—m)! "kex
pingement have been frequently proposed and discussed in 2
the literature, showing that better agreement with experimen-

tal results can be obtained, however, no strong physical jus’k ex P€ing the portion corresponding to the total volume of

tifications nor statistical arguments supported tH&m® overlapping of all groups ok grains counted and added
Here we want to show that AR model corresponds to a>cParately without regard to higher overlapping,

different exact solution of the geometrical problem of im- w0
pingement, as formulated by Avrami, suggesting that perhaps Vo = E m! v/ &)
statistical arguments, different from random distribution of kex™ &~ ki(m—k)! "™

nucleation sites, could allow to reach the same result. _

Before rederiving the rigth EB equation, let us rememberAccording to such definition¥; =V is the usual transformed
the KIMA one for isothermal first-order phase transitions.fraction.
For the sake of simplicity let us limit the treatment to three- Avrami, in a beautiful piece of algebra, showed in the
dimensional continuous nucleation with constant rate ofppendix of his second wofk,that the assumption
grain production and constant interface velocity, the extenVm/Vmex=1—V;: allows to obtain a self-consistent
sion to two- and one-dimensional growth and inclusion ofsolution of Egs. (1)—(3), corresponding to Vp,
incubation time are straightforward. To this end, it is conve-= (V1 ¢,) "eXp(—Vi e d/M, Vi ex= (V1e)™m!, and V(1)
nient to recall some of the quantities formulated in the first=1—ex{ — Vi (t)], in accordance with statistical deriva-
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tions based on random distribution of nucleation stts.
Such a result allowed him to elaborate several reasoning to
justify it from the very first principles, that can be summa-
rized by the following relation for differential incremerfts:

dVi=(1-V1)dViey. (4)

EB questioned the inclusion of phantom nucleiVig ¢y
and proposed the following alternative relation for differen-
tial increments

dV;=(1-V)dVie,, (5) time

with Vi (t)=[od7oK[1-V(7)](t—7)° which implies FIG. 1. KIMA (solid line) and AR(dotted ling solutions for the
the occurence of nucleation sites only in the untransformedrystallized fraction as function of time in the special case=1.
fraction. They stated, in both works they published, that the
corresponding solution fov; should be given B’ with V; o= oKt*/4 in the case of constantk, without any
need for numerical methods. Expressid®) represents all
the curves they showed in both works to better fit experimen-
tal results. Such an excellent agreement may be considered
amazing at this point, however, it is quite an old result, al-
Michaelsen, Dahms, and Pfuff destroyed their claim showingeady mentioned in Avrami’s works, which Austin and Rick-
that such a solution cannot be a bounded bibis can be  ett empirically proposed the same expression for isothermal
easily seen in the case of constari since, by repeatedly transformation of super-cooled austenite into bainfté® In
using Leibniz’s rule for differentiation of integrals, it is pos- ayrami's second work the Austin-Rickett formula was de-
sible to transform such integral equation to a simple differ-quced as an approximated one. For illustrative purposes, in
ential one, Fig. 1 the KIMA(solid line) and AR (dotted ling solutions
are plotted as functions of time in the special casi€=1.
Equation(9) is a special case of the empirical expression
dV;=(1—V;)'dV ey for differential increments formulated
well long ago for better fitting experimental dafat® The
which for initial condition V=dV/dt=d?V/dt?=d3V/dt®  correction factor for impingement (1V,)" with 0<i<1 is
=0 has no limited solutions. However, from E&), in the  associated to some degree of order for the crystallization
case of constantK, the following differential equation is process that is completed in a finite time, while for1
the correct one: clustering of nucleation sites should be responsible for the
increasing slowness of the procé&gherefore, besides de-
d® [dv,/dt viations from linear grain growth at the end of transforma-
E( -V, ) =60K(1-Vy). (8)  tion and/or deviations from isothermal conditions, also de-
viations from random distribution of nucleation sites could
It may be surprising but the solution of this last equationaccount for the lack of agreement between KIJMA predic-
differs from KJMA solution in less than 1% also at high tions and experimental results.
transformed fraction&his can be easily done using common  KJMA solution is an exact one, arising from self-
commercial softwares for its integratiprso it seems irrel- consistent assumptions satisfying the geometrical formula-
evant to use the modified definition of the extended volumdion of the problenfthis means that the quantities defined by
if the impingement is treated in a way analogous to Avrami.Egs. (1)—(3) must all be expressed in terms of onlye,;,
A similar result is mentioned in Ref. 9, where a numericalwhich can be easily computgend also satisfying a random
simulation of two-dimensional crystallization was done. distribution of nucleation sites. However, we will show that
At this point what did EB really show in their graphs? We KIJMA solution is not unique when the random hypothesis is
found the implicit answer in their second work whegy  relaxed and another solution, reducing to AR formula, satis-
passant,in Eq. (19) they showed the differential equation fying the same geometrical requirements, can be obtained.
they actually solved that in the case here examined reduces It can be easily proved that the assumption
to

Vl(t):J:dTO’K[l—Vl(T)]Z(t—T)S. (6)

4Vl

dt*

=60K(1-V,)?, (7)

!
m

Vm ex

=(1-Vvy™, (1)
M (v Dt 9
allows to consistently satisfy relatiori$)—(3) with
with Vi, and notVi,,,. The solution of such equation is
immediate and give¥; =V /(1—V,) or alternatively Vimex=(V1ex)™ (12

V1=Viext/(1+ Viexd), (10 Vm:(l—Vl)me ex- (13
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For instance, Eq(2) reduces to the following identity: Text IS considered the following differential equation arises
" for V1, whenoK is constant:
Vlex )m_ ( 1)kfm (k_l)! K
T e T IV (K—m) Vlex d® [ dv,/dt
1 Viex m (m=1)!(k—m) — | | =6oK(1-Vy), (14)
Correspondingly, Vi=Viex/(1+View) and dV;=(1 dt® 1 (1-Vy)

—V1)?dVie in agreement with AR formula and Eq€)  and its corresponding numerical solution differs fror
and (10). The relation between differential increments can—y,  /(1+ Ve, in less than 1%, showing again the irrel-

also be writtendVy=(1—V1)(V1/Viex)dViexs @and it can  ayance of making any distinction betwe¥qe,, andV*,, ..
be interpreted as if the increment in the transformed fraction |, conclusion. the AR empirical formula represents an
is proportional to the increment in the extended fraction, cor—ternative exact solution of the geometrical problem of im-

responding to the transformed fraction embedded in it, anhngement that allows to better fit experimental results on
corrected for the probability of happening in the already un-

b ; " "isothermal crystallization kinetics.
transformed fraction. Such argument seems quite plausible
and should be interpreted in terms of statistical consider- This work was partially supported by Conselho Nacional
ations as in the case of KIMA solution. de Desenvolvimento Ciefiico e Tecnolgico (CNPq, Brazi
Again some doubt may be raised regarding the validity ofand Coordengo de Aperfejoamento de Pessoal dewsl

consideringV ey OF Viey in EQ. (9). It can be shown that if Superior(CAPES/PICDT, Brazjl
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