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Starting from some general and plausible assumptions based on geometrical optics and on a common feature
of the truncated Bessel beams, a heuristic derivation is presented of very simple analytical expressions capable
of describing the longitudinal (on-axis) evolution of axially symmetric nondiffracting pulses truncated by finite
apertures. The analytical formulation is applied to several situations involving subluminal, luminal, or super-
luminal localized pulses, and the results are compared with those obtained by numerical simulations of the
Rayleigh—Sommerfeld diffraction integrals. The results are in excellent agreement. The present approach can
be rather useful, because it yields, in general, closed-form expressions, avoiding the need for time-consuming
numerical simulations, and also because such expressions provide a powerful tool for exploring several impor-
tant properties of the truncated localized pulses, such as their depth of fields, the longitudinal pulse behavior,
and the decaying rates. © 2006 Optical Society of America
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1. INTRODUCTION

Ideal nondiffracting pulses (INPs) are infinite-energy so-
lutions of the ordinary linear wave equation, capable of
maintaining their spatial shapes indefinitely (sometimes
with just small local variations) while propagating.'™
When these ideal solutions are adapted to real situations
and applications, they must be spatially truncated by a fi-
nite aperture (i.e., generated by a finite aperture), becom-
ing transformed into finite-energy solutions with finite
field depths, even if these field depths are very large when
compared with those of ordinary pulses.

When we truncate an INP, the resulting wave field can-
not be obtained, in general, in analytical form. In this
case one has to resort to diffraction theory and perform
numerical simulations of the diffraction integrals, such as
the well-known Rayleigh—Sommerfeld formula.

Indeed, one can get very important pieces of informa-
tion about a truncated nondiffracting pulse (TNP) by per-
forming numerical simulations of its longitudinal
evolution,''™* especially when the pulse is axially sym-
metric.

In this paper® it will be shown that, by using some
general and plausible assumptions based on geometrical
optics and on a common feature of truncated Bessel
beams, a heuristic derivation of simple analytical expres-
sions is possible, capable of furnishing the longitudinal
(on-axis) evolution of the TNPs. It is interesting to note
that this approach depends only on the spectral structure
of the relevant INP.

The results of our analytical method, when applied to
several different situations involving subluminal, lumi-
nal, or superluminal TNPs, are compared with the results
obtained from the usual numerical simulation of the
Rayleigh—Sommerfeld integrals: the results are in excel-
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lent agreement. This method, due to its extreme simplic-
ity and analytical character, can be a powerful tool for ex-
ploring several important properties of the TNPs, such as
their depth of fields, the longitudinal pulse behavior, and
the decaying rates; for revealing the effects of the spectral
parameters on the pulses evolution; and also for compar-
ing the “effectiveness” of the different kinds of TNPs, such
as subluminal, luminal, and superluminal. Without this
method, all those results could be achieved (in each par-
ticular situation) only by performing several time-
consuming numerical simulations.

2. HEURISTIC APPROACH FOR DESCRIBING
THE ON-AXIS EVOLUTION OF A
TRUNCATED NONDIFFRACTING PULSE

Let us begin this section by making some comments about
the truncated Bessel beams and about some approxima-
tions that will be used below for developing the method
proposed here.

A. Some Observations on and Approximations of
Truncated Bessel Beams
An ideal (infinite-energy) Bessel beam (IBb) is given by 16

\IIIBb(prZ’t) =J0(kpp)ei Ze_ths (1)

where p?=x?+y? is the transverse coordinate,
k,=\w?/c*~B* is the transverse wavenumber, B is the
longitudinal wavenumber, and w is the angular frequency.

An important parameter'”2° of an IBb is its axicon
angle 0, where w=cpB/cosd. When a Bessel beam is trun-
cated by a finite aperture of radius R, Eq. (1) cannot be
used to describe the resulting beam in the whole

space.21’22 However, if the size of the aperture is large

© 2006 Optical Society of America


https://core.ac.uk/display/296670559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Michel Zamboni-Rached

enough to contain several bright rings of the ideal inci-
dent Bessel beam, i.e., if R>1/k,, we can use geometrical
optics to get some characteristics of the truncated Bessel
beam (TBb) evolution. In this case (see Fig. 1), we can say
that, in the spatial region localized inside the cone ori-
ented along the z axis, with apex at z=Z=R/tan # and
base given by the circular aperture, the resulting TBb can
be approximately described by Eq. (1).

However, when using geometrical optics, after the dis-
tance Z=R/tan 6, the on-axis amplitude of the TBb be-
comes approximately zero (see Fig. 1). The distance Z is
called the depth field of the TBb.

Keeping the above observations in mind, one may af-
firm that, since R>1/k,, the on-axis behavior of a TBb
can be approximately described by

) . R
ePe™i for z <
tan 6
\I,TBb(p = O’Z’t) = R ) (2)
0 for z >
tan 6

which can be compactly written as

R
\IITBb(p = O,Z,t) = eiﬁze—iwt|:H(2) - H<Z - _):| ’ (3)
tan 0

where H(-) is the Heaviside step function. Approximation
(3) is the starting point for our heuristic method describ-
ing the on-axis TNP’s behavior. According to approxima-
tion (3), the on-axis field intensity of a TBb is a rectangu-
lar function with unitary value, until z=Z7.

On the other hand, when a numerical simulation of the
diffraction integrals is performed,®'® one can observe that
the TBb presents some on-axis field oscillations around
the unitary value before suffering an abrupt decay after
z=Z. Such oscillations cannot be predicted by geometrical
optics and arise only as a result of the abrupt truncation
made by the aperture. However, it is important to stress
here that, despite the fact that those oscillations are not
predicted by approximation (3), such an error is not
present, in general, in the case of our description of trun-
cated localized pulses. One can understand this by noting
that, since nondiffracting pulses are constructed through
Bessel beam superpositions, those oscillations, originat-
ing from each TBb, suffer a destructive interference.

With all this in mind, we are ready to develop our
method.

-

= e z
= e
= P Z=R/tg(®)

Fig. 1. Typical Bessel beam truncated by a finite aperture.
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B. Heuristic Approach

It is well known'™ that axially symmetric ideal nondif-
fracting pulses (INPs) can be made by zero-order Bessel
beam superpositions,

% wlc _ wZ ' .
W(p,z,t) = J dwf dﬁS(w,B)Jo(P \/z~ /32)6"528“”
0 —wlc ¢

4)

provided that the spectral function S(w, B) entails a linear
relationship of the type

w=VB+b (5)
between w and B. In this way, by putting S(w,p)

=S(w)8(w—-VB-b), the general form of an axially symmet-
ric INP is written as

Winp(p,z,t) =e 0V dwS(w)
\/ 1 1), 20 0%\ v
X [ — ),
JO P 02 V2 o™+ V2 V2 e s

(6)

where {=z-V¢, V is the peak velocity and S(w) is the fre-
quency spectrum. Obviously, the INP will be subluminal,
luminal or superluminal, depending on the value of V, it
being less than equal to, or greater than c. The positive
quantities w,,;, and wp,,, are the minimum and maximum
angular frequency allowed for the Bessel beams in the su-
perposition (6), and their values have to be estimated as
follows.

Once we have chosen the value of V in Eq. (6), the val-
ues of b, wy;,, and wp,, are interrelated in such a way
that

2 1 1) 2o b _ _
=2 w+V2—V2/O, B=0, (7
for all positive angular frequency w,,;, < ®< wy,x used in
superposition (6).

In relation (7), the condition on &, eliminates any non-
physical behaviors of Bessel functions and evanescent
waves in Eq. (6). The second condition (8=0) eliminates
any backward-traveling Bessel beams in the same super-
position, since we are considering positive values of the
angular frequency only.

Taking into account conditions (7), one has

e For subluminal (V<c¢) INPs: 6>0, w,,;,=b and w4
=cb/(c-V).

e For luminal (V=c) INPs: >0, w,,;,=b and wy,,,=°.

e For superluminal (V>¢) INPs: 6=0, w,,;,=b and
Wmax=2. Or <0, w,;,=cb/(c-V) and wpax=2°.

The INPs provided by Eq. (6) can propagate without
distortion indefinitely, with peak velocity V. Such INPs
possess infinite energy, and so, for real applications, they
must be spatially truncated (i.e., generated by finite
apertures),ll_14 resulting in finite-energy solutions, with a
finite depth of field. When such truncation is made, the
resulting pulse in general cannot be obtained in an ana-



2168 J. Opt. Soc. Am. A/Vol. 23, No. 9/September 2006

lytical form but has to be numerically calculated from dif-
fraction theory by using, for example, the Rayleigh—
Sommerfeld formula.!** That is, once we have a known
INP solution Wyp, its truncated version Wryp, generated
by a finite aperture of radius R on the plane z=0, results
in

(z-2")

2 R 1
2 ,2,t) = do’ dp'p' —— [Vinpl——
™~p(p;2,1) Jo ¢J0 p'p 277D{[ ~pl D2

(z-2")
+ [(9ct"I'INP]T , 8

the quantities enclosed by the square brackets being
evaluated at the retarded time ct’'=ct—D. The distance
D=[(z—2")2+p%+p'2=2pp’ cos(¢p— ¢')]*? is the separation
between the source and the observation points. Due to its
complexity, Eq. (8) has to be solved numerically in most
cases.

Of particular interest is the on-axis behavior of Wryp.
Actually, much important information can be extracted
from the evolution of Yrnp(p=0,2,%), such as its depth of
field, the pulse decaying rate, and the effects of the differ-
ent spectral parameters on the pulse evolution; and, even
more important, the quantity WYnp(p=0,2z,¢) can be used
to compare the performance of different kinds of TNPs,
such as, for example, the luminal and the superluminal
ones.

On considering axially symmetric TNPs and making p
=0 in Eq. (8), we get some simplifications, because the in-
tegration on ¢’ can be done immediately. But, even in this
case, the integration on p’ rarely can be carried out ana-
lytically, due to the complexity of the integrand, and nu-
merical simulations are once more required.

To overcome this problem, let us propose the following
heuristic approach: First, we consider the Bessel beam
superposition (6), which provides us with the INPs. Sec-
ond, we make the assumption that each Bessel beam,
with frequency w and axicon angle A(w), entering in su-
perposition (6), obeys the following condition,

1 c
R>» —=———, 9
k, wsin (o)

R being the radius of the finite aperture that will be used
for truncating the INP. The above assumption is very
plausible, since efficient TNPs are generated by large ap-
ertures.

Once condition (9) is fulfilled by all Bessel beams in su-
perposition (6), we can use again geometrical optics and
assume that, after the truncation, the on-axis behavior of
each one of those Bessel beams can be approximated by
approximation (3).

Third, taking into account relations (3) and (6), we may
conjecture that the on-axis evolution of the truncated non-
diffracting pulse is approximately given by
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“max

Winp(p=0,2,t) = eV dwS(w)

Dmin

R
LoV _ _
X e |:H(z) H<z tane(w))]’ (10)

where H(-) is the Heaviside step function and, let us re-
call, #(w) is the axicon angle of the Bessel beam with an-
gular frequency w. We should note that in the integrand
of approximation (10), the step function H(z—-R/tan (w))
depends on w, through of 6(w).

We can rewrite approximation (10) in the form

Wrnp(p=0,2>0,¢)

Pmax
~ e—ibz/V|:f S(w)eiw{/de
,

'min

®max R
_ iwlV _
f S(w)e H(Z P )dw] , (11)

©min

where the first term on the right-hand side of approxima-
tion (11) is nothing but the INP W\p(p=0,z,t), while the
second term is the perturbation due to the truncation.

Now, remembering that for a Bessel beam of axicon
angle 6 we have w=cf/cos 6 and that the spectra of INPs
impose the constraint w=VB+b between angular frequen-
cies and longitudinal wavenumbers, it becomes easy to
show that

R R ¢ be
- ——— (12)
tan 6(w) \1-(c/V-bc/Vw)?\V Vo

and thus

( R ) R(c/V - bcl/Vw)
Hz-—|=H|z - ———
tan 6(w) V1= (c/V- be/Vw)?

R(c/V - be/Vw)
\/1 —(c/V = be/Vw)?
R(c/V - bel/Vw)
\/1 —(c/V = be/Vw)?

1 forz=

0 forz<

(13)
With all that preceded, we can finally write

Winp(p =0,2,2)

Pmax
~ e—ibz/V|:f S(w)eiwg’/de
,

'min

“max ) R(c/V - bc/Vw)
—f S(w)e!*?VH| z - do |.
V’

1 - (c/V = be/Vw)?

(14)
In the next subsection, we will analyze the fundamen-

tal Eq. (14) for the three possible types of TNPs: sublumi-
nal, luminal, and superluminal.
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1. Subluminal Truncated Nondiffracting Pulse

For the subluminal pulses (V<c), we have >0, w,,;,=b
and wg,x=cb/(c=V). In this way, taking into account
these facts, and that z=0 and o, <w<wg, We can
show, after several manipulations, that Eq. (13) can be
written as

R(c/V = belVw)
1= (V- belVa)

2V
1 for w<bc c——
\JZZ +.R2
= oV . (15)
0 for w>be C——
\\“’22+R2

Now, by noting that wy;,=b<bc/(c-zV/\z?+R?)
< wmax=bc/(c-V), one can write Eq. (14) for the sublumi-
nal case as

bel(c-V)
Winp(p=0,2 > 0,t) = e 04V f S(w)e?dw
b

bel(c—2VINz2+R?) ]
- S(w)e*?Vdw
b

bel(e-V)
— e—ibz/V f S(w)eiwg/de ,
bel(c-zVINz2+R?)

(16)

which represents our method in the case of subluminal
TNPs. It is a very simple equation, capable of providing
closed-form, analytical results for several different fre-
quency spectra S(w), as we shall see in Section 3.

2. Luminal Truncated Nondiffracting Pulse
For luminal TNPs (V=c¢), we have 6>0, wp;,=b, and
®max=. With this, and taking into account that z=0 and

R(c/V - be/Vw)
.
V1= (c/V - bc/Vw)?

p
f b _ZV d —

1 for w<bc c—-————=|andzs= ———
VZZ +R2 VVQ/CZ -1

= 2V
1 for w=bc C——F— andZE—,—
/ ( \"22 +R2> \J"/Z/C2 -1

0 otherwise
\
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Onin<O<wn. We can, after several manipulations,
show that Eq. (13) may be written as

R(c/V - be/Vw)
1= (V- belVao)?

z
1 foro<bd 1-——
/( \22+R2)
- L an
0 forw>b 1-—
/( \'22+R2)

and, by noting that wpi,=b<b/(1-2/\2?+R?) < 0pnax=,
we can write approximation (14), for the luminal case, as

Winplp=0,2>0,t) = e‘ibz/c|:f S(w)ei“¥dw
b

b/(1-2/\z%+R?) )
- S(w)e“Ydw

b

=e—ibz/clf S(w)eiw{/cdw] .
b/(1-2/\z2+R?)

(18)

Equation (18), which represents our method in the case
of luminal TNPs, is very simple too and can provide
closed-form, analytical results for many different fre-
quency spectra S(w), as we shall see in Section 3.

3. Superluminal Truncated Nondiffracting Pulse

For superluminal TNPs (V>c¢), the value of b, in the the
spectral constraint (5), can assume negative or positive
values, i.e.,, —o<b=<w. Let us analyze the superluminal
case of relations (13) and (14) for both situations, b6<0
and b=0.

Superluminal case for b<0. In this case, we have
wmin=cb/(c-V) and wy,,=. Taking into account that z
=0 and oy, < 0= g,y and, again, after several manipu-
lations, we can show that for this case Eq. (13) can be
written as

R

R . (19)

By noting that, when z<R/\V?/c?-1, we have bc/(c—-zV/\z?+R?)<0 and that, when z=R/\V?/c?-1, we have
bel(c—zV/Iz2+R%) > oy =bc/(c-V), one can write approximation (14), for the case V>c¢ and <0, as

* R
—ibzlV iV,
e S(w)e do forz < —
jbc/(c-V) VWV -1
Wrnp(p=0,2>0,¢) = ) /Vfbc/(c—zV/xz_2+R2) o R (20)
e 'v? S(w)e'*Vdw forz= ———
V%2 -1

bel(e-V)

v
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Approximation (20) represents our method in the case
of superluminal TNPs with b<0. Again, the integrals are
very simple and can provide closed-form, analytical re-
sults for many spectra S(w).

Before going on to the next case, one can immediately
see from approximation (20) that, independently of S(w),
the superluminal TNPs with b <0 will reach the distance
z2=R/\V?/c?>-1 without deforming.

Superluminal case for b=0. In this case, we have

)

e'in/Vf S(w)e?Vdw forz <
bel(c-zVINz2+R?)

Yrnplp=0,2>0,¢) =
0

Approximation (21) represents our method in the case
of superluminal TNPs with b=0. Again, many closed-
form results, for many different spectra S(w), can be ob-
tained from approximation (21). We can also notice from
approximation (21) that, for V>¢ and =0, the superlu-
minal TNPs will have very low intensities after the dis-
tance z=R/\V?/c?-1.

It is important to note that in our method, given by ap-
proximations (16), (18), (20), and (21), the on-axis evolu-
tion of a TNP depends only on the frequency spectrum
S(w) of its corresponding INP Wyp, at variance with the
Rayleigh—Sommerfeld formula (8), which depends on the
mathematical expression of Wiyp.

Now we shall go on to Section 3, where our method will
be applied to some important kinds of localized waves,
and our results will be compared with those obtained by
making numerical simulations with the Rayleigh—
Sommerfeld formula.

3. APPLICATION TO SOME IMPORTANT
CASES: CLOSED-FORM, ANALYTICAL
RESULTS, AND THEIR COMPARISON WITH
NUMERICAL SIMULATIONS OF THE
RAYLEIGH-SOMMERFELD FORMULA

The method we have developed in Section 2 is described
by approximations (16), (18), and (20)—(21), for the cases
of truncated subluminal, luminal, and superluminal
pulses, respectively. We shall now apply this method to
some important cases involving TNPs, and it will be
shown that the results agree very well with those ob-
tained through numerical simulations of the Rayleigh—
Sommerfeld formula (8).

A. The Method Applied to a Truncated Subluminal
Pulse
A well known ideal subluminal (V<c¢) nondiffracting

pulse23 is

ibVy2y
WINP(P,Z,t) =exp C2

. by 2. 2.2
sinc| —\p®+ 2|, (22)
c

where y=1/\1-V?/c2, 5=z-c%/V, and, as always,
{=z-Vt.
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Wmin=b and wpx=*. Remembering that z=0 and wy;,
< w=< oy, and, as before, after several manipulations, we
can show that in this case Eq. (13) can be written in the
same form of Eq. (19).

Now, taking into account that, when z<R/\V?/c2-1, it
is wyin=b<bc/(c-2V/\z2+R%) < wp..=> and that, when
2>R/\V?/c®2-1, one has bc/(c-zV/\z2+R?)<0, we can
write our fundamental approximation (14), for the case
V>c¢ and 6=0, in the form

R
\,/VQ/C2 -1
R (21)
for z = e
\J’VZ/C2 -1

Now, we want to describe the on-axis behavior of the
truncated version (Wryp) of the the ideal solution (22).
The subluminal INP [Eq. (22)] is generated by superposi-
tion (6), with a constant spectrum S(w)=c¢/(20V+?). How-
ever, we must note that this solution possesses backward-
traveling components: Actually, it has wy,=bc/(c+V)
instead of wp;,=b [which ensures forward components
only in superposition (6), as we have seen in Section 2]. It
is the price paid to get such a closed-form and exact INP
solution.

In any case, we may, and we must, minimize the con-
tribution of those “backward” components by choosing the
subluminal velocity V in such a way that (c+V)/(c-V)
> 1. Once this condition is satisfied, we can observe that
the INP [Eq. (22)] is then similar to that which would be
obtained with the same S(w), but with w,;,=b.

It should be noted that the comments and observations
above have nothing to do with our method, which is con-
structed from the beginning in order to encompass causal
(forward) solutions only and can be used for any values of
the velocity V. Those remarks were made just in order
that a causal behavior of the INP [Eq. (22)] be guaran-
teed.

Now, on using S(w)=c/(2bV?) in approximation (16),
which describes the on-axis evolution of the subluminal
TNPs, one gets

Yornp(p=0,2>0,2)

bel(c-V)
f eiw(/de
bel(c-zVINz2+R2)

ibe
V(e - V){

__ ¢ o-ib?lV
20V?
e—ibz/V exp|:

ibc\z? + R?
) (23)

— exp Tg
l Vicyz +R2-2V)

which is a very simple closed-form, analytical expression.

First, we use approximation (23) to get the pulse-peak
intensity behavior. To do this, we just put z=V¢— =0 in
approximation (23).
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Let us consider three different cases: (1) V=0.995¢ and
b=1.5%1015 Hz, (2) V=0.998¢ and =6 X 101* Hz, and (3)
V=0.9992¢ and 5=2.4x10'* Hz. In all three cases, we
consider the radius of the finite aperture to be R=4 mm.
At the same time, we compare our result with that ob-
tained by the numerical simulation of the Rayleigh—
Sommerfeld formula (8), with Wiyp given by Eq. (22).

In Fig. 2, plots represented by thin solid curves were
obtained from approximation and (23), those represented
by dotted curves come from the numerical simulation of
Eq. (8). We can verify the excellent agreement existing
among those results.

Now, we are interested in the on-axis longitudinal
pulse evolution in the three cases considered above, in the
time instants given by ¢'=0.11ns, ¢"=0.22 ns and ¢”
=0.33 ns. Figures 3(a)-3(c) show the results correspond-
ing to cases (1), (2), and (3), respectively. As above, the
continuous curves represent the results obtained from ap-
proximation (23), and the dotted ones represent those
coming from the numerical simulation of Eq. (8). Again,
we consider R=4 mm. We can observe, once more, very
good agreement among the results, confirming that our
method works very well.

1
4
ty,m,{"p 0,2 VU

12 B
L i
*
o
L]
08 ‘i\‘
- LY
5 “0\
08 'ﬁ"\ % 1
* -‘“ (3)
0.4 ', ‘\ - 4
s N2
N ™
02 » ‘., >, R
S W N
0 i o, LY P 12
o] 0.05 ot 015 0.2 025
z[m]

Fig. 2. Peak intensity evolution of the subluminal TNP for the
three cases: (1) V=0.995¢ and b=1.5 X 10> Hz, (2) V=0.998¢ and
b=6x10" Hz, (3) V=0.9992¢ and b=2.4x 10" Hz. In all cases
R=4 mm. The continuous curves represent results obtained from
our closed-form analytical expression (23), and dotted curves rep-
resent results from the numerical simulation of the Rayleigh—
Sommerfeld formula (8).

[Pp=0.2)
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Mg 020f
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B. The Method Applied to the Truncated Luminal Focus
Wave Mode Pulse

A very well known ideal luminal (V=c¢) nondiffracting
pulse! is the focus wave mode pulse (FWM), given by

-ib ) -bp?
xp g” exp 2c(ac-i0) |’

(24)

ac

Winp(p,2,t) = -
ac—1i{

where =z +ct, {=z-ct, and a>0 is a constant.

Like all the INPs, the FWM possesses infinite energy
and must be truncated (i.e., generated by a finite aper-
ture) for real applications. We shall use our method to get
closed-form, analytical expressions for the on-axis evolu-
tion of the truncated version Wryp of Eq. (24).

The exact ideal solution (24) is obtained from superpo-
sition (6) with V=c and S(w)=a exp(ab/2)exp(-aw). Be-
cause it has wy;,=b/2, instead of wy;,=b, its spectrum
possesses backward componen‘csk6 in the range b/2<w
<b. To overcome this problem, we must minimize the con-
tribution of the nonphysical part of the spectrum; this can
be done if ab < 1. Once such a condition is obeyed, the INP
[Eq. (24)] can be considered similar to the one that we
would obtain with the same frequency spectrum of the
FWM but with w,;,=b. Again, let us note that such re-
marks are made just to validate the causality of the INP
[Eq. (24)] and have nothing to do with our own method.

Now, by using S(w)=a exp(ab/2)exp(-aw) in approxi-
mation (18), we get the on-axis evolution of the truncated
FWM:

o

\IITNP(p — O,Z > O,t) ~q eab/2 e—ibz/cf
bl(1-2/\z%+R?)

ac .
eab/Z e—le/C

e a® eiw{/cdw
ac -1l

Xexp|: ], (25)

which is a very simple closed-form, analytical expression.
First, let us put {=0 into approximation (25) to get the
pulse-peak intensity behavior. We consider three different

- b\s’zZ +R%(ac-1id)

c(\z*+R%*-2)

2
¥ p(P .0,11)

03 o5

z-Vt[m]

(a)

0o

(©)

Fig. 3. On-axis evolution of the subluminal TNP, at the times ¢'=0.11 ns, #"=0.22 ns, and #”=0.33 ns, for each case cited in Fig. 2; (a),
(b), and (c), represent cases (1), (2), and (3), respectively. The continuous curves are the results obtained from our closed-form analytical
expression (23) and dotted curves represent results from the numerical simulation of the Rayleigh—Sommerfeld formula (8).
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Fig. 4. Peak-intensity evolution of the truncated luminal FWM
pulse for the three cases: (1) a=1.6 X107 and =5 x 10! Hz, (2)
a=125%x10"1%g5 and b=3x10' Hz, (3) a=1x10"1% and b=2
% 10" Hz. In all cases R=2 mm. The continuous curves are the
results obtained from our closed-form analytical expression (25)
and dotted curves represent results from the numerical simula-
tion of the Rayleigh—Sommerfeld formula (8).

cases: (1) a=1.6x10716 s and b=5x 10 Hz, (2) a=1.25
X101 g and b=3x 10! Hz, and (3) a=1x10"16 s and b
=2x 101 Hz. In all cases we adopt the aperture radius
R=2 mm.

Figure 4 shows the results. The continuous curves rep-
resent the results obtained from our approximation (25),
and the dotted ones are the results of the numerical simu-
lation of the Rayleigh—Sommerfeld formula (8). The re-
sults agree so well that the corresponding continuous and
dotted curves superpose to each other.

Now, we are going to use approximation (25) to show
the on-axis evolution of this TNP, in the three cases con-
sidered above, for the time instants ¢'=0.22 ns, ¢”
=0.44 ns, and #"=0.66 ns.

aVeab/Ze—ibz/V

Michel Zamboni-Rached

Figures 5(a)-5(c) show the results corresponding to
cases (1), (2), and (3), respectively. The continuous curves
are the results obtained from approximation (25), and the
dotted curves are those coming from the numerical simu-
lation of (8). Again, we consider R =2 mm. The results are
in excellent agreement, showing the very good efficiency
of the method.

C. The Method Applied to the Truncated Superluminal
Focus-Wave Mode Pulse

An interesting, approximated, superluminal (V>¢) ideal
nondiffracting solution to the wave equation is the
so-called® superluminal focus-wave-mode pulse (SFWM):

—_ib b(V2+c?)
Vinp(p,z,t) =aV exp ov 7 Xexp W(V2— )
X[(@V-id)-X17, (26)

where p=z+Vt, {(=z-Vt, a>0 is a constant and where

V2 -1/2
X=|:(aV—i§)2+(—2—1)p2:| . (27)
c

Expression (26) is a very good approximate solution of
the wave equation if ab <1, which is also the condition for
minimizing the contribution of the backward components
of expression (6). Actually, this superluminal INP can be
obtained from superposition (6), with 5>0, when using
S(w)=a exp(ab/2)exp(-aw), with constant a >0, but with
wmin=0/2 instead of wy;,=b.

To get the closed-form, analytical mathematical expres-
sion that describes the on-axis evolution of the truncated
version of Eq. (26), let us put S(w)=a exp(ab/2)exp(-aw)
in approximation (21):

aV-il
Wrnp(p=0,2 > 0,t) =

Now, let us set (=0 in approximation (28) to analyze
the peak-intensity behavior of the truncated SFWM.

We consider three different cases: (1) V=1.0002¢, b=3
X102 Hz, and a=25%x10"17s; (2) V=1.0001lc, b=1
x 1012 Hz, and a=5%x10"1"s; and (3) V=1.00008¢c, b=2
X102 Hz, and a=1.1xX10"1"s. In all these cases we
choose R=3 mm as being the radius of the aperture.

The plots are shown in Fig. 6, where the continuous
curves represent our results using approximation (28),
and the dotted ones represent those obtained from the nu-

—bey2Z+ RYaV -i{) ] R
for z

V(e \s'ZZ +R%2-2V)

= —
\J’VZ/C2 -1

R , (28)
forz = ———
\’V2/02 -1

[

merical simulation of the Rayleigh—Sommerfeld formula
(8). We can observe an excellent agreement among the re-
sults.

Now, we are going to use our method to show the on-
axis evolution of the pulse intensity at three different
times ¢'=0.14 ns, t"=0.29 ns, and #”=0.43 ns, for each of
the cases cited above.

Figures 7(a)-7(c) show the plots. Again, the curves
given by continuous curves come from approximation (28)
and the dotted ones from the numerical simulation of Eq.
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Fig. 5. On-axis evolution of the truncated luminal FWM pulse, at the times ' =0.22 ns, t"=0.44 ns, and ¢”’=0.66 ns, for each of the cases
cited in Fig. 4; (a), (b), and (c) represent cases (1), (2), and (3), respectively. The continuous curves are the results obtained from our
closed-form analytical expression (25), and dotted curves represent results from the numerical simulation of the Rayleigh—Sommerfeld

formula (8).
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Fig. 6. Peak intensity evolution of the truncated superluminal
FWM pulse for the three cases: (1) V=1.0002¢, b=3x 102 Hz,
and a=2.5%x10"1"s; (2) V=1.0001c, b=1x102 Hz, and a=5
X10717s; and (3) V=1.00008c, b=2x102Hz, and a=1.1
%1071 s. In all cases R=3 mm. The continuous curves are re-
sults obtained from our closed-form, analytical expression (28),
and dotted curves represent results from the numerical simula-
tion of the Rayleigh—Sommerfeld formula (8).

(8). Once more, there is an excellent agreement among
the results, confirming the validity and efficiency of our
method.

4. EXTENDING THE PRESENT METHOD TO
THE ALMOST NONDIFFRACTING
(FINITE-ENERGY) PULSES, TRUNCATED BY
FINITE APERTURES

In the previous sections we have developed a (heuristic)
method capable of providing closed-form analytical ex-
pressions, describing the on-axis evolution of the INP
truncated by finite apertures. It is well known'® that be-
sides the INPs, there are the almost-nondiffracting pulses
(ANPs), which also need infinite apertures to be gener-
ated but possess a finite energy content.

Once a function S(w) is chosen and an INP with a ve-
locity V and b=b is obtained from Eq. (6), we can get an
ANP by integrating Eq. (6) over the parameter b with a

suitable choice of the weight function S’(d), which has to
be concentrated around b=5,. More explicitly,

f dwS"(w,b)

'min

where S"(w,b)=S(w)S’(b) is a spectral function with S’ ()
well localized around b=b,. Obviously, one can recover
the INPs just by adopting the choice S"(w,b)=S(w)d(b
-by).

An ANP can be viewed as a Bessel beam superposition

bmaX
\I’ANP(P,ZJ) = f db
b

min

5 2bw b?
T

1

J(\/ (:

1
V2

2

|

Xeim(/Ve—ibz/V’ (29)

[Eq. (4)] with a spectral function S(w, 8) well concentrated
around a straight line w=VB+b,. The ANPs are interest-
ing solutions, due to their finite-energy contents, and can
maintain their spatial shape for long distances.™

However, even possessing finite energy, the ANPs
need—as was said above—infinite apertures in order to
be generated, something that cannot be obtained in the
real world. Consequently, it is rather important to know
the behavior of these pulses when they are truncated by
finite apertures—that is, to know the Wyp versions of the
Wanps- These can be obtained by making numerical simu-
lations, again, of the Rayleigh—Sommerfeld integral for-
mula (8), on replacing Viyp with Wanp.

On the other hand, the extension of our method to the
cases of ANPs truncated by finite apertures can be per-
formed in a very simple way, just by multiplying our fun-
damental approximations (16), (18), (20), and (21) by the
S(b") under consideration and performing the relevant in-
tegration over the parameter b. This will be shown by the
following example, in which we shall obtain closed-form
analytical expressions for the truncated version Wpyp of a
well-known finite energy ANP,I’23 namely, the modified
power spectrum pulse (MPS).

Example: The truncated version of the MPS pulse. A
well-known luminal ANP is the MPS pulse, which can be
obtained by integrating, over the parameter b, the FWM
pulse (24) with the weight function
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Fig. 7. On-axis evolution of the truncated SFWM pulse, at the times ¢'=0.14 ns, ¢"=0.29 ns, and ¢”=0.43 ns, for each of the cases cited
in Fig. 6; (a), (b), and (c) represent cases (1), (2), and (3), respectively. The continuous curves are the results obtained from our closed-
form, analytical expression (28), and results represented by dotted curves come from the numerical simulation of the Rayleigh—

Sommerfeld formula (8).

S'(b) =H(b - bo)gq exp[- q(b - by)], (30)

quantities ¢ and b, being positive constants. More explic-
itly, the MPS pulse can be written as

“ aqc -1ib —bp?
,\I, ki 7t = . . —.
ane(ps2,0) LO ac—il P 2¢ 7 |exp 2c(ac —1il)

Xexp[-q(b - b)]db

2ac%q —1bg
- (2¢cq +in)(ac —il) + p? exp( 2¢ 7])
boP2
Xexp[—m}, (31)

with n=z+ct, {=z—ct. This ANP has a finite-energy con-
tent; however, it needs an infinite aperture to be gener-
ated.

We shall use the extended version of our method to get
a closed-form analytical expression for the on-axis evolu-
tion of the truncated version, Wryp, of the MPS pulse. As
we have seen, to get this we just need to multiply the
truncated version of the FWM pulse, given by approxima-
tion (25), by the corresponding weight function S’(b)
given by Eq. (30), and perform the integration over the
parameter b. In this way, the on-axis evolution of the
truncated MPS pulse is given by

aqc

ac—1
. 4

WTNP(P =0,z > O,If) ~ f eab/2e—ibz/c

b

— b2+ R%ac - ig)]

X exp[-q(b - bo)lexp ——s
c(\,'z2 +R%2-2)
aqe eab0/2 e—ib(}z/c

a iz V"m(ac—i{)
(ac -1i0) q—§+—+—

c c(\,'22+R2—z)

bo\/z2 +R%(ac-1id)
Xexp| — , (32)

C(\JZZ +R%2-2)

which is a closed-form analytical expression.
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Fig. 8. Peak-intensity evolution of the truncated luminal MPS
pulse for the three cases: (1) a=1.6X10716, b,=5x 10! Hz, and
q=2x10""15s; (2) a=1.25X10"%5s, b,=3x10" Hz, and ¢=10
X107 Ms; and (3) a=1x10"16, py=2x10""Hz, and ¢=20
X 107" s. In all cases R=2 mm. The continuous curves are re-
sults obtained from our closed-form analytical expression (32),
and dotted curves represent results from the numerical simula-
tion of the Rayleigh—Sommerfeld formula (8).

As before, let us put {=0 in approximation (32) to get
the pulse peak intensity behavior.

Let us consider three different cases: (1) a=1.6
X 10716 s, by=5x 101 Hz, and ¢g=2x10"1s; (2) a=1.25
X 10716 s, by=3x 10" Hz, and ¢q=10x10""'s; and (3) a
=1Xx10"18 5, by=2x 101 Hz, and ¢=20x10"s. In all
cases, we adopt the aperture radius R=2 mm.

Figure 8 shows the results. The continuous curves rep-
resent those obtained from approximation (32), and the
dotted ones are the results of the numerical simulation of
the Raleigh—Sommerfield integral formula (8). One can
verify the excellent agreement among the results.

Now, we are going to use approximation (32) to inves-
tigate the on-axis evolution of this TNP in the three cases
considered above for the instants ¢'=0.22 ns, #"=0.44 ns,
and ¢”=0.66 ns. Figures 9(a)-9(c) show the results corre-
sponding to cases (1), (2), and (3), respectively. The con-
tinuous curves come from approximation (32) and the dot-
ted curves are those coming from the numerical
simulation of Eq. (8). Again, we consider R=2 mm. Once
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Fig. 9. On-axis evolution of the truncated luminal MPS pulse, at the times ¢’ =0.22 ns, ¢"=0.44 ns, and ¢ =0.66 ns, for each of the three
cases considered in Fig. 8; (a), (b), and (c) represent cases (1), (2), and (3), respectively. The continuous curves are the results obtained
from our closed-form analytical expression (32), dotted curves represent results from the numerical simulation of the Rayleigh—

Sommerfeld formula (8).

more, there is an excellent agreement among the results,
confirming the validity and efficiency of our method.

Before finishing this section, it is important to note
that the closed-form analytical expressions of the trun-
cated ANP obtained with our method can be used advan-
tageously for comparison purposes with the correspond-
ing nontruncated ANP, thus illustrating the effects due to
the truncation and, for example, telling us up to what dis-
tance we can use the three-dimensional (3D) solution of
the ANP as a good approximation to the corresponding 3D
TNP.

5. CONCLUSIONS

In this paper a very simple method has been developed
for describing the space-time on-axis evolution of trun-
cated nondiffracting pulses, be they subluminal, luminal,
or superluminal. It is important to notice that in this
method, given by approximations (16), (18), (20), and (21),
the on-axis evolution of a TNP depends only on the fre-
quency spectrum S(w) of its corresponding INP Wyp, con-
trary to the Rayleigh—Sommerfeld formula (8), which de-
pends on the explicit mathematical expression of Wiyp.
We also have extended our method to describe the trun-
cated versions of the ANPs. Due to such a simplicity, we
can obtain closed-form analytical expressions, which de-
scribe the on-axis evolution of innumerable TNPs. In this
paper we have done that for the truncated versions of a
few, very well-known localized waves: subluminal, lumi-
nal or superluminal. We have compared our results with
those obtained through the numerical simulation of the
Rayleigh—Sommerfeld integrals, and we have observed an
excellent agreement among them, confirming the effi-
ciency of our method.

The present approach can be very useful, because it
furnishes, in general, closed-form analytical expressions,
avoiding the need for time-consuming numerical simula-
tions, and also because such expressions provide a power-
ful tool for exploring several important properties of the
truncated localized pulses such as their depth of field, the
longitudinal pulse behavior, and the decaying rates.

(c)
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