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Starting from some general and plausible assumptions based on geometrical optics and on a common feature
of the truncated Bessel beams, a heuristic derivation is presented of very simple analytical expressions capable
of describing the longitudinal (on-axis) evolution of axially symmetric nondiffracting pulses truncated by finite
apertures. The analytical formulation is applied to several situations involving subluminal, luminal, or super-
luminal localized pulses, and the results are compared with those obtained by numerical simulations of the
Rayleigh–Sommerfeld diffraction integrals. The results are in excellent agreement. The present approach can
be rather useful, because it yields, in general, closed-form expressions, avoiding the need for time-consuming
numerical simulations, and also because such expressions provide a powerful tool for exploring several impor-
tant properties of the truncated localized pulses, such as their depth of fields, the longitudinal pulse behavior,
and the decaying rates. © 2006 Optical Society of America
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. INTRODUCTION
deal nondiffracting pulses (INPs) are infinite-energy so-
utions of the ordinary linear wave equation, capable of

aintaining their spatial shapes indefinitely (sometimes
ith just small local variations) while propagating.1–9

hen these ideal solutions are adapted to real situations
nd applications, they must be spatially truncated by a fi-
ite aperture (i.e., generated by a finite aperture), becom-

ng transformed into finite-energy solutions with finite
eld depths, even if these field depths are very large when
ompared with those of ordinary pulses.

When we truncate an INP, the resulting wave field can-
ot be obtained, in general, in analytical form. In this
ase one has to resort to diffraction theory and perform
umerical simulations of the diffraction integrals, such as
he well-known Rayleigh–Sommerfeld formula.

Indeed, one can get very important pieces of informa-
ion about a truncated nondiffracting pulse (TNP) by per-
orming numerical simulations of its longitudinal
volution,11–14 especially when the pulse is axially sym-
etric.
In this paper15 it will be shown that, by using some

eneral and plausible assumptions based on geometrical
ptics and on a common feature of truncated Bessel
eams, a heuristic derivation of simple analytical expres-
ions is possible, capable of furnishing the longitudinal
on-axis) evolution of the TNPs. It is interesting to note
hat this approach depends only on the spectral structure
f the relevant INP.

The results of our analytical method, when applied to
everal different situations involving subluminal, lumi-
al, or superluminal TNPs, are compared with the results
btained from the usual numerical simulation of the
ayleigh–Sommerfeld integrals: the results are in excel-
1084-7529/06/092166-11/$15.00 © 2
ent agreement. This method, due to its extreme simplic-
ty and analytical character, can be a powerful tool for ex-
loring several important properties of the TNPs, such as
heir depth of fields, the longitudinal pulse behavior, and
he decaying rates; for revealing the effects of the spectral
arameters on the pulses evolution; and also for compar-
ng the “effectiveness” of the different kinds of TNPs, such
s subluminal, luminal, and superluminal. Without this
ethod, all those results could be achieved (in each par-

icular situation) only by performing several time-
onsuming numerical simulations.

. HEURISTIC APPROACH FOR DESCRIBING
HE ON-AXIS EVOLUTION OF A
RUNCATED NONDIFFRACTING PULSE
et us begin this section by making some comments about

he truncated Bessel beams and about some approxima-
ions that will be used below for developing the method
roposed here.

. Some Observations on and Approximations of
runcated Bessel Beams
n ideal (infinite-energy) Bessel beam (IBb) is given by 16

�IBb��,z,t� = J0�k���ei�ze−i�t, �1�

here �2=x2+y2 is the transverse coordinate,

�=��2 /c2−�2 is the transverse wavenumber, � is the
ongitudinal wavenumber, and � is the angular frequency.

An important parameter17–20 of an IBb is its axicon
ngle �, where �=c� / cos�. When a Bessel beam is trun-
ated by a finite aperture of radius R, Eq. (1) cannot be
sed to describe the resulting beam in the whole
pace.21,22 However, if the size of the aperture is large
006 Optical Society of America
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nough to contain several bright rings of the ideal inci-
ent Bessel beam, i.e., if R�1/k�, we can use geometrical
ptics to get some characteristics of the truncated Bessel
eam (TBb) evolution. In this case (see Fig. 1), we can say
hat, in the spatial region localized inside the cone ori-
nted along the z axis, with apex at z=Z=R / tan � and
ase given by the circular aperture, the resulting TBb can
e approximately described by Eq. (1).
However, when using geometrical optics, after the dis-

ance Z=R / tan �, the on-axis amplitude of the TBb be-
omes approximately zero (see Fig. 1). The distance Z is
alled the depth field of the TBb.

Keeping the above observations in mind, one may af-
rm that, since R�1/k�, the on-axis behavior of a TBb
an be approximately described by

�TBb�� = 0,z,t� � �ei�ze−i�t for z �
R

tan �

0 for z �
R

tan �
� , �2�

hich can be compactly written as

�TBb�� = 0,z,t� � ei�ze−i�t�H�z� − H�z −
R

tan �
	
 , �3�

here H�·� is the Heaviside step function. Approximation
3) is the starting point for our heuristic method describ-
ng the on-axis TNP’s behavior. According to approxima-
ion (3), the on-axis field intensity of a TBb is a rectangu-
ar function with unitary value, until z=Z.

On the other hand, when a numerical simulation of the
iffraction integrals is performed,8,16 one can observe that
he TBb presents some on-axis field oscillations around
he unitary value before suffering an abrupt decay after
=Z. Such oscillations cannot be predicted by geometrical
ptics and arise only as a result of the abrupt truncation
ade by the aperture. However, it is important to stress

ere that, despite the fact that those oscillations are not
redicted by approximation (3), such an error is not
resent, in general, in the case of our description of trun-
ated localized pulses. One can understand this by noting
hat, since nondiffracting pulses are constructed through
essel beam superpositions, those oscillations, originat-

ng from each TBb, suffer a destructive interference.
With all this in mind, we are ready to develop our
ethod.

Fig. 1. Typical Bessel beam truncated by a finite aperture.
. Heuristic Approach
t is well known1–9 that axially symmetric ideal nondif-
racting pulses (INPs) can be made by zero-order Bessel
eam superpositions,

���,z,t� =�
0

	

d��
−�/c

�/c

d�S̄��,��J0����2

c2 − �2	ei�ze−i�t

�4�

rovided that the spectral function S̄�� ,�� entails a linear
elationship of the type

� = V� + b �5�

etween � and �. In this way, by putting S̄�� ,��
S���
��−V�−b�, the general form of an axially symmet-
ic INP is written as

INP��,z,t� = e−ibz/V�
�min

�max

d�S���

� J0���� 1

c2 −
1

V2	�2 +
2b�

V2 −
b2

V2	ei��/V,

�6�

here �=z−Vt, V is the peak velocity and S��� is the fre-
uency spectrum. Obviously, the INP will be subluminal,
uminal or superluminal, depending on the value of V, it
eing less than equal to, or greater than c. The positive
uantities �min and �max are the minimum and maximum
ngular frequency allowed for the Bessel beams in the su-
erposition (6), and their values have to be estimated as
ollows.

Once we have chosen the value of V in Eq. (6), the val-
es of b, �min, and �max are interrelated in such a way
hat

k�
2 = � 1

c2 −
1

V2	�2 +
2b�

V2 −
b2

V2 
 0, � 
 0, �7�

or all positive angular frequency �min����max used in
uperposition (6).

In relation (7), the condition on k� eliminates any non-
hysical behaviors of Bessel functions and evanescent
aves in Eq. (6). The second condition ��
0� eliminates
ny backward-traveling Bessel beams in the same super-
osition, since we are considering positive values of the
ngular frequency only.
Taking into account conditions (7), one has

• For subluminal �V�c� INPs: b�0, �min=b and �max
cb / �c−V�.
• For luminal �V=c� INPs: b�0, �min=b and �max=	.
• For superluminal �V�c� INPs: b
0, �min=b and

max=	. Or b�0, �min=cb / �c−V� and �max=	.

The INPs provided by Eq. (6) can propagate without
istortion indefinitely, with peak velocity V. Such INPs
ossess infinite energy, and so, for real applications, they
ust be spatially truncated (i.e., generated by finite

pertures),11–14 resulting in finite-energy solutions, with a
nite depth of field. When such truncation is made, the
esulting pulse in general cannot be obtained in an ana-
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ytical form but has to be numerically calculated from dif-
raction theory by using, for example, the Rayleigh–
ommerfeld formula.10–14 That is, once we have a known
NP solution �INP, its truncated version �TNP, generated
y a finite aperture of radius R on the plane z=0, results
n

�TNP��,z,t� =�
0

2�

d���
0

R

d����
1

2�D�
�INP�
�z − z��

D2

+ 
�ct��INP�
�z − z��

D � , �8�

he quantities enclosed by the square brackets being
valuated at the retarded time ct�=ct−D. The distance
= 
�z−z��2+�2+��2−2��� cos��−����1/2 is the separation

etween the source and the observation points. Due to its
omplexity, Eq. (8) has to be solved numerically in most
ases.

Of particular interest is the on-axis behavior of �TNP.
ctually, much important information can be extracted

rom the evolution of �TNP��=0,z , t�, such as its depth of
eld, the pulse decaying rate, and the effects of the differ-
nt spectral parameters on the pulse evolution; and, even
ore important, the quantity �TNP��=0,z , t� can be used

o compare the performance of different kinds of TNPs,
uch as, for example, the luminal and the superluminal
nes.

On considering axially symmetric TNPs and making �
0 in Eq. (8), we get some simplifications, because the in-

egration on �� can be done immediately. But, even in this
ase, the integration on �� rarely can be carried out ana-
ytically, due to the complexity of the integrand, and nu-

erical simulations are once more required.
To overcome this problem, let us propose the following

euristic approach: First, we consider the Bessel beam
uperposition (6), which provides us with the INPs. Sec-
nd, we make the assumption that each Bessel beam,
ith frequency � and axicon angle ����, entering in su-
erposition (6), obeys the following condition,

R �
1

k�

=
c

� sin ����
, �9�

being the radius of the finite aperture that will be used
or truncating the INP. The above assumption is very
lausible, since efficient TNPs are generated by large ap-
rtures.

Once condition (9) is fulfilled by all Bessel beams in su-
erposition (6), we can use again geometrical optics and
ssume that, after the truncation, the on-axis behavior of
ach one of those Bessel beams can be approximated by
pproximation (3).
Third, taking into account relations (3) and (6), we may

onjecture that the on-axis evolution of the truncated non-
iffracting pulse is approximately given by
TNP�� = 0,z,t� � e−ibz/V�
�min

�max

d�S���

� ei��/V�H�z� − H�z −
R

tan ����	
 , �10�

here H�·� is the Heaviside step function and, let us re-
all, ���� is the axicon angle of the Bessel beam with an-
ular frequency �. We should note that in the integrand
f approximation (10), the step function H�z−R / tan �����
epends on �, through of ����.
We can rewrite approximation (10) in the form

TNP�� = 0,z � 0,t�

� e−ibz/V��
�min

�max

S���ei��/Vd�

−�
�min

�max

S���ei��/VH�z −
R

tan ����	d�
 , �11�

here the first term on the right-hand side of approxima-
ion (11) is nothing but the INP �INP��=0,z , t�, while the
econd term is the perturbation due to the truncation.

Now, remembering that for a Bessel beam of axicon
ngle � we have �=c� / cos � and that the spectra of INPs
mpose the constraint �=V�+b between angular frequen-
ies and longitudinal wavenumbers, it becomes easy to
how that

R

tan ����
=

R

�1 − �c/V − bc/V��2� c

V
−

bc

V�
	 �12�

nd thus

H�z −
R

tan ����	 = H�z −
R�c/V − bc/V��

�1 − �c/V − bc/V��2	
= �1 for z 


R�c/V − bc/V��

�1 − �c/V − bc/V��2

0 for z �
R�c/V − bc/V��

�1 − �c/V − bc/V��2
� .

�13�

With all that preceded, we can finally write

TNP�� = 0,z,t�

� e−ibz/V��
�min

�max

S���ei��/Vd�

−�
�min

�max

S���ei��/VH�z −
R�c/V − bc/V��

�1 − �c/V − bc/V��2	d�
 .

�14�

In the next subsection, we will analyze the fundamen-
al Eq. (14) for the three possible types of TNPs: sublumi-
al, luminal, and superluminal.
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. Subluminal Truncated Nondiffracting Pulse
or the subluminal pulses �V�c�, we have b�0, �min=b
nd �max=cb / �c−V�. In this way, taking into account
hese facts, and that z
0 and �min����max, we can
how, after several manipulations, that Eq. (13) can be
ritten as

�z −
R�c/V − bc/V��

�1 − �c/V − bc/V��2	

=�1 for � � bc��c −
zV

�z2 + R2	
0 for � � bc��c −

zV

�z2 + R2	� . �15�

Now, by noting that �min=b�bc / �c−zV /�z2+R2�
�max=bc / �c−V�, one can write Eq. (14) for the sublumi-

al case as

�TNP�� = 0,z � 0,t� � e−ibz/V��
b

bc/�c−V�

S���ei��/Vd�

−�
b

bc/�c−zV/�z2+R2�
S���ei��/Vd�


= e−ibz/V��
bc/�c−zV/�z2+R2�

bc/�c−V�

S���ei��/Vd�
 ,

�16�

hich represents our method in the case of subluminal
NPs. It is a very simple equation, capable of providing
losed-form, analytical results for several different fre-
uency spectra S���, as we shall see in Section 3.

. Luminal Truncated Nondiffracting Pulse
or luminal TNPs �V=c�, we have b�0, �min=b, and

max=	. With this, and taking into account that z
0 and w

bc/�c−V�
min����max, we can, after several manipulations,
how that Eq. (13) may be written as

�z −
R�c/V − bc/V��

�1 − �c/V − bc/V��2	

=�1 for � � b��1 −
z

�z2 + R2	
0 for � � b��1 −

z

�z2 + R2	� , �17�

nd, by noting that �min=b�b / �1−z /�z2+R2���max=	,
e can write approximation (14), for the luminal case, as

�TNP�� = 0,z � 0,t� � e−ibz/c��
b

	

S���ei��/cd�

−�
b

b/�1−z/�z2+R2�
S���ei��/cd�


= e−ibz/c��
b/�1−z/�z2+R2�

	

S���ei��/cd�
 .

�18�

Equation (18), which represents our method in the case
f luminal TNPs, is very simple too and can provide
losed-form, analytical results for many different fre-
uency spectra S���, as we shall see in Section 3.

. Superluminal Truncated Nondiffracting Pulse
or superluminal TNPs �V�c�, the value of b, in the the
pectral constraint (5), can assume negative or positive
alues, i.e., −	�b�	. Let us analyze the superluminal
ase of relations (13) and (14) for both situations, b�0
nd b
0.
Superluminal case for b�0. In this case, we have

min=cb / �c−V� and �max=	. Taking into account that z
0 and �min����max, and, again, after several manipu-

ations, we can show that for this case Eq. (13) can be

ritten as
H�z −
R�c/V − bc/V��

�1 − �c/V − bc/V��2	 =�1 for � � bc��c −
zV

�z2 + R2	 and z �
R

�V2/c2 − 1

1 for � 
 bc��c −
zV

�z2 + R2	 and z 

R

�V2/c2 − 1

0 otherwise
� . �19�

By noting that, when z�R /�V2 /c2−1, we have bc / �c−zV /�z2+R2��0 and that, when z
R /�V2 /c2−1, we have
c / �c−zV /�z2+R2���min=bc / �c−V�, one can write approximation (14), for the case V�c and b�0, as

�TNP�� = 0,z � 0,t� � �e−ibz/V�
bc/�c−V�

	

S���ei��/Vd� for z �
R

�V2/c2 − 1

e−ibz/V�bc/�c−zV/�z2+R2�
S���ei��/Vd� for z 


R � . �20�
�V2/c2 − 1
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Approximation (20) represents our method in the case
f superluminal TNPs with b�0. Again, the integrals are
ery simple and can provide closed-form, analytical re-
ults for many spectra S���.

Before going on to the next case, one can immediately
ee from approximation (20) that, independently of S���,
he superluminal TNPs with b�0 will reach the distance
=R /�V2 /c2−1 without deforming.
Superluminal case for b
0. In this case, we have
t
T
t
e
t
i
o
i
s

t
s
�
t
o

a
s
(
t
t
t

w
T

�

w

i
a

min=b and �max=	. Remembering that z
0 and �min
���max and, as before, after several manipulations, we

an show that in this case Eq. (13) can be written in the
ame form of Eq. (19).

Now, taking into account that, when z�R /�V2 /c2−1, it
s �min=b�bc / �c−zV /�z2+R2���max=	 and that, when
�R /�V2 /c2−1, one has bc / �c−zV /�z2+R2��0, we can
rite our fundamental approximation (14), for the case
�c and b
0, in the form
�TNP�� = 0,z � 0,t� � �e−ibz/V�
bc/�c−zV/�z2+R2�

	

S���ei��/Vd� for z �
R

�V2/c2 − 1

0 for z 

R

�V2/c2 − 1
� . �21�
Approximation (21) represents our method in the case
f superluminal TNPs with b
0. Again, many closed-
orm results, for many different spectra S���, can be ob-
ained from approximation (21). We can also notice from
pproximation (21) that, for V�c and b
0, the superlu-
inal TNPs will have very low intensities after the dis-

ance z=R /�V2 /c2−1.
It is important to note that in our method, given by ap-

roximations (16), (18), (20), and (21), the on-axis evolu-
ion of a TNP depends only on the frequency spectrum
��� of its corresponding INP �INP, at variance with the
ayleigh–Sommerfeld formula (8), which depends on the
athematical expression of �INP.
Now we shall go on to Section 3, where our method will

e applied to some important kinds of localized waves,
nd our results will be compared with those obtained by
aking numerical simulations with the Rayleigh–
ommerfeld formula.

. APPLICATION TO SOME IMPORTANT
ASES: CLOSED-FORM, ANALYTICAL
ESULTS, AND THEIR COMPARISON WITH
UMERICAL SIMULATIONS OF THE
AYLEIGH–SOMMERFELD FORMULA
he method we have developed in Section 2 is described
y approximations (16), (18), and (20)–(21), for the cases
f truncated subluminal, luminal, and superluminal
ulses, respectively. We shall now apply this method to
ome important cases involving TNPs, and it will be
hown that the results agree very well with those ob-
ained through numerical simulations of the Rayleigh–
ommerfeld formula (8).

. The Method Applied to a Truncated Subluminal
ulse

well known ideal subluminal �V�c� nondiffracting
ulse23 is

�INP��,z,t� = exp� ibV�2�

c2 	sinc�b�

c
��2 + �2�2	 , �22�

here �=1/�1−V2 /c2, �=z−c2t /V, and, as always,
=z−Vt.
Now, we want to describe the on-axis behavior of the
runcated version ��TNP� of the the ideal solution (22).
he subluminal INP [Eq. (22)] is generated by superposi-

ion (6), with a constant spectrum S���=c / �2bV�2�. How-
ver, we must note that this solution possesses backward-
raveling components: Actually, it has �min=bc / �c+V�
nstead of �min=b [which ensures forward components
nly in superposition (6), as we have seen in Section 2]. It
s the price paid to get such a closed-form and exact INP
olution.

In any case, we may, and we must, minimize the con-
ribution of those “backward” components by choosing the
ubluminal velocity V in such a way that �c+V� / �c−V�
1. Once this condition is satisfied, we can observe that

he INP [Eq. (22)] is then similar to that which would be
btained with the same S���, but with �min=b.

It should be noted that the comments and observations
bove have nothing to do with our method, which is con-
tructed from the beginning in order to encompass causal
forward) solutions only and can be used for any values of
he velocity V. Those remarks were made just in order
hat a causal behavior of the INP [Eq. (22)] be guaran-
eed.

Now, on using S���=c / �2bV�2� in approximation (16),
hich describes the on-axis evolution of the subluminal
NPs, one gets

TNP�� = 0,z � 0,t�

�
c

2bV�2e−ibz/V��
bc/�c−zV/�z2+R2�

bc/�c−V�

ei��/Vd�

=

cV

2bV�2i�
e−ibz/V�exp� ibc

V�c − V�
�


− exp� ibc�z2 + R2

V�c�z2 + R2 − zV�
�
� , �23�

hich is a very simple closed-form, analytical expression.
First, we use approximation (23) to get the pulse-peak

ntensity behavior. To do this, we just put z=Vt→�=0 in
pproximation (23).
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Let us consider three different cases: (1) V=0.995c and
=1.5�1015 Hz, (2) V=0.998c and b=6�1014 Hz, and (3)
=0.9992c and b=2.4�1014 Hz. In all three cases, we

onsider the radius of the finite aperture to be R=4 mm.
t the same time, we compare our result with that ob-

ained by the numerical simulation of the Rayleigh–
ommerfeld formula (8), with �INP given by Eq. (22).
In Fig. 2, plots represented by thin solid curves were

btained from approximation and (23), those represented
y dotted curves come from the numerical simulation of
q. (8). We can verify the excellent agreement existing
mong those results.
Now, we are interested in the on-axis longitudinal

ulse evolution in the three cases considered above, in the
ime instants given by t�=0.11 ns, t�=0.22 ns and t�
0.33 ns. Figures 3(a)–3(c) show the results correspond-

ng to cases (1), (2), and (3), respectively. As above, the
ontinuous curves represent the results obtained from ap-
roximation (23), and the dotted ones represent those
oming from the numerical simulation of Eq. (8). Again,
e consider R=4 mm. We can observe, once more, very
ood agreement among the results, confirming that our
ethod works very well.

ig. 2. Peak intensity evolution of the subluminal TNP for the
hree cases: (1) V=0.995c and b=1.5�1015 Hz, (2) V=0.998c and
=6�1014 Hz, (3) V=0.9992c and b=2.4�1014 Hz. In all cases
=4 mm. The continuous curves represent results obtained from

ur closed-form analytical expression (23), and dotted curves rep-
esent results from the numerical simulation of the Rayleigh–
ommerfeld formula (8).

ig. 3. On-axis evolution of the subluminal TNP, at the times t�
b), and (c), represent cases (1), (2), and (3), respectively. The con
xpression (23) and dotted curves represent results from the num
. The Method Applied to the Truncated Luminal Focus
ave Mode Pulse
very well known ideal luminal �V=c� nondiffracting

ulse1 is the focus wave mode pulse (FWM), given by

�INP��,z,t� =
ac

ac − i�
exp�− ib

2c
�	exp� − b�2

2c�ac − i��
 ,

�24�

here �=z+ct, �=z−ct, and a�0 is a constant.
Like all the INPs, the FWM possesses infinite energy

nd must be truncated (i.e., generated by a finite aper-
ure) for real applications. We shall use our method to get
losed-form, analytical expressions for the on-axis evolu-
ion of the truncated version �TNP of Eq. (24).

The exact ideal solution (24) is obtained from superpo-
ition (6) with V=c and S���=a exp�ab /2�exp�−a��. Be-
ause it has �min=b /2, instead of �min=b, its spectrum
ossesses backward components1–6 in the range b /2��
b. To overcome this problem, we must minimize the con-

ribution of the nonphysical part of the spectrum; this can
e done if ab�1. Once such a condition is obeyed, the INP
Eq. (24)] can be considered similar to the one that we
ould obtain with the same frequency spectrum of the
WM but with �min=b. Again, let us note that such re-
arks are made just to validate the causality of the INP

Eq. (24)] and have nothing to do with our own method.
Now, by using S���=a exp�ab /2�exp�−a�� in approxi-
ation (18), we get the on-axis evolution of the truncated
WM:

�TNP�� = 0,z � 0,t� � a eab/2 e−ibz/c�
b/�1−z/�z2+R2�

	

e−a� ei��/cd�

=
ac

ac − i�
eab/2 e−ibz/c

�exp�− b�z2 + R2�ac − i��

c��z2 + R2 − z� 
 , �25�

hich is a very simple closed-form, analytical expression.
First, let us put �=0 into approximation (25) to get the

ulse-peak intensity behavior. We consider three different

ns, t�=0.22 ns, and t�=0.33 ns, for each case cited in Fig. 2; (a),
s curves are the results obtained from our closed-form analytical

simulation of the Rayleigh–Sommerfeld formula (8).
=0.11
tinuou

erical
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ases: (1) a=1.6�10−16 s and b=5�1011 Hz, (2) a=1.25
10−16 s and b=3�1011 Hz, and (3) a=1�10−16 s and b
2�1011 Hz. In all cases we adopt the aperture radius
=2 mm.
Figure 4 shows the results. The continuous curves rep-

esent the results obtained from our approximation (25),
nd the dotted ones are the results of the numerical simu-
ation of the Rayleigh–Sommerfeld formula (8). The re-
ults agree so well that the corresponding continuous and
otted curves superpose to each other.
Now, we are going to use approximation (25) to show

he on-axis evolution of this TNP, in the three cases con-
idered above, for the time instants t�=0.22 ns, t�
0.44 ns, and t =0.66 ns.

ig. 4. Peak-intensity evolution of the truncated luminal FWM
ulse for the three cases: (1) a=1.6�10−16 and b=5�1011 Hz, (2)
=1.25�10−16 s and b=3�1011 Hz, (3) a=1�10−16 and b=2
1011 Hz. In all cases R=2 mm. The continuous curves are the

esults obtained from our closed-form analytical expression (25)
nd dotted curves represent results from the numerical simula-
ion of the Rayleigh–Sommerfeld formula (8).
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m
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a
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t
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Figures 5(a)–5(c) show the results corresponding to
ases (1), (2), and (3), respectively. The continuous curves
re the results obtained from approximation (25), and the
otted curves are those coming from the numerical simu-
ation of (8). Again, we consider R=2 mm. The results are
n excellent agreement, showing the very good efficiency
f the method.

. The Method Applied to the Truncated Superluminal
ocus-Wave Mode Pulse
n interesting, approximated, superluminal �V�c� ideal
ondiffracting solution to the wave equation is the
o-called6 superluminal focus-wave-mode pulse (SFWM):

�INP��,z,t� = aV exp�− ib

2V
�	X exp� b�V2 + c2�

2V�V2 − c2�

� 
�aV − i�� − X−1�� , �26�

here �=z+Vt, �=z−Vt, a�0 is a constant and where

X = ��aV − i��2 + �V2

c2 − 1	�2
−1/2

. �27�

Expression (26) is a very good approximate solution of
he wave equation if ab�1, which is also the condition for
inimizing the contribution of the backward components

f expression (6). Actually, this superluminal INP can be
btained from superposition (6), with b�0, when using
���=a exp�ab /2�exp�−a��, with constant a�0, but with
min=b /2 instead of �min=b.
To get the closed-form, analytical mathematical expres-

ion that describes the on-axis evolution of the truncated
ersion of Eq. (26), let us put S���=a exp�ab /2�exp�−a��
n approximation (21):
�TNP�� = 0,z � 0,t� � �
aVeab/2e−ibz/V

aV − i�
exp�− bc�z2 + R2�aV − i��

V�c�z2 + R2 − zV� 
 for z �
R

�V2/c2 − 1

0 for z 

R

�V2/c2 − 1
� , �28�
Now, let us set �=0 in approximation (28) to analyze
he peak-intensity behavior of the truncated SFWM.

We consider three different cases: (1) V=1.0002c, b=3
1012 Hz, and a=2.5�10−17 s; (2) V=1.0001c, b=1
1012 Hz, and a=5�10−17 s; and (3) V=1.00008c, b=2
1012 Hz, and a=1.1�10−17 s. In all these cases we

hoose R=3 mm as being the radius of the aperture.
The plots are shown in Fig. 6, where the continuous

urves represent our results using approximation (28),
nd the dotted ones represent those obtained from the nu-
erical simulation of the Rayleigh–Sommerfeld formula
8). We can observe an excellent agreement among the re-
ults.

Now, we are going to use our method to show the on-
xis evolution of the pulse intensity at three different
imes t�=0.14 ns, t�=0.29 ns, and t�=0.43 ns, for each of
he cases cited above.

Figures 7(a)–7(c) show the plots. Again, the curves
iven by continuous curves come from approximation (28)
nd the dotted ones from the numerical simulation of Eq.
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8). Once more, there is an excellent agreement among
he results, confirming the validity and efficiency of our
ethod.

. EXTENDING THE PRESENT METHOD TO
HE ALMOST NONDIFFRACTING

FINITE-ENERGY) PULSES, TRUNCATED BY
INITE APERTURES

n the previous sections we have developed a (heuristic)
ethod capable of providing closed-form analytical ex-

ressions, describing the on-axis evolution of the INP
runcated by finite apertures. It is well known1,6 that be-
ides the INPs, there are the almost-nondiffracting pulses
ANPs), which also need infinite apertures to be gener-
ted but possess a finite energy content.
Once a function S��� is chosen and an INP with a ve-

ocity V and b=b0 is obtained from Eq. (6), we can get an
NP by integrating Eq. (6) over the parameter b with a

ig. 5. On-axis evolution of the truncated luminal FWM pulse, a
ited in Fig. 4; (a), (b), and (c) represent cases (1), (2), and (3),
losed-form analytical expression (25), and dotted curves represe
ormula (8).

ig. 6. Peak intensity evolution of the truncated superluminal
WM pulse for the three cases: (1) V=1.0002c, b=3�1012 Hz,
nd a=2.5�10−17 s; (2) V=1.0001c, b=1�1012 Hz, and a=5
10−17 s; and (3) V=1.00008c, b=2�1012 Hz, and a=1.1
10−17 s. In all cases R=3 mm. The continuous curves are re-

ults obtained from our closed-form, analytical expression (28),
nd dotted curves represent results from the numerical simula-
ion of the Rayleigh–Sommerfeld formula (8).
uitable choice of the weight function S��b�, which has to
e concentrated around b=b0. More explicitly,

�ANP��,z,t� =�
bmin

bmax

db�
�min

�max

d�S���,b�

� J0���� 1

c2 −
1

V2	�2 +
2b�

V2 −
b2

V2	
�ei��/Ve−ibz/V, �29�

here S��� ,b�=S���S��b� is a spectral function with S��b�
ell localized around b=b0. Obviously, one can recover

he INPs just by adopting the choice S��� ,b�=S���
�b
b0�.
An ANP can be viewed as a Bessel beam superposition

Eq. (4)] with a spectral function S̄�� ,�� well concentrated
round a straight line �=V�+b0. The ANPs are interest-
ng solutions, due to their finite-energy contents, and can

aintain their spatial shape for long distances.1,6

However, even possessing finite energy, the ANPs
eed—as was said above—infinite apertures in order to
e generated, something that cannot be obtained in the
eal world. Consequently, it is rather important to know
he behavior of these pulses when they are truncated by
nite apertures—that is, to know the �TNP versions of the
ANPs. These can be obtained by making numerical simu-

ations, again, of the Rayleigh–Sommerfeld integral for-
ula (8), on replacing �INP with �ANP.
On the other hand, the extension of our method to the

ases of ANPs truncated by finite apertures can be per-
ormed in a very simple way, just by multiplying our fun-
amental approximations (16), (18), (20), and (21) by the
�b�� under consideration and performing the relevant in-

egration over the parameter b. This will be shown by the
ollowing example, in which we shall obtain closed-form
nalytical expressions for the truncated version �TNP of a
ell-known finite energy ANP,1,23 namely, the modified
ower spectrum pulse (MPS).
Example: The truncated version of the MPS pulse. A

ell-known luminal ANP is the MPS pulse, which can be
btained by integrating, over the parameter b, the FWM
ulse (24) with the weight function

mes t�=0.22 ns, t�=0.44 ns, and t�=0.66 ns, for each of the cases
tively. The continuous curves are the results obtained from our
ults from the numerical simulation of the Rayleigh–Sommerfeld
t the ti
respec
nt res
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S��b� = H�b − b0�q exp
− q�b − b0��, �30�

uantities q and b0 being positive constants. More explic-
tly, the MPS pulse can be written as

�ANP��,z,t� =�
b0

	 aqc

ac − i�
exp�− ib

2c
�	exp� − b�2

2c�ac − i��

�exp
− q�b − b0��db

=
2ac2q

�2cq + i���ac − i�� + �2 exp�− ib0

2c
�	

�exp�−
b0�2

2c�ac − i��
 , �31�

ith �=z+ct, �=z−ct. This ANP has a finite-energy con-
ent; however, it needs an infinite aperture to be gener-
ted.
We shall use the extended version of our method to get
closed-form analytical expression for the on-axis evolu-

ion of the truncated version, �TNP, of the MPS pulse. As
e have seen, to get this we just need to multiply the

runcated version of the FWM pulse, given by approxima-
ion (25), by the corresponding weight function S��b�
iven by Eq. (30), and perform the integration over the
arameter b. In this way, the on-axis evolution of the
runcated MPS pulse is given by

�TNP�� = 0,z � 0,t� � �
b0

	 aqc

ac − i�
eab/2e−ibz/c

� exp
− q�b − b0��exp�− b�z2 + R2�ac − i��

c��z2 + R2 − z� 
db

=
aqc eab0/2 e−ib0z/c

�ac − i���q −
a

2
+

iz

c
+

�z2 + R2�ac − i��

c��z2 + R2 − z� 

�exp�−

b0�z2 + R2�ac − i��

c��z2 + R2 − z� 
 , �32�

hich is a closed-form analytical expression.

ig. 7. On-axis evolution of the truncated SFWM pulse, at the t
n Fig. 6; (a), (b), and (c) represent cases (1), (2), and (3), respect
orm, analytical expression (28), and results represented by d
ommerfeld formula (8).
As before, let us put �=0 in approximation (32) to get
he pulse peak intensity behavior.

Let us consider three different cases: (1) a=1.6
10−16 s, b0=5�1011 Hz, and q=2�10−11 s; (2) a=1.25
10−16 s, b0=3�1011 Hz, and q=10�10−11 s; and (3) a
1�10−16 s, b0=2�1011 Hz, and q=20�10−11 s. In all
ases, we adopt the aperture radius R=2 mm.

Figure 8 shows the results. The continuous curves rep-
esent those obtained from approximation (32), and the
otted ones are the results of the numerical simulation of
he Raleigh–Sommerfield integral formula (8). One can
erify the excellent agreement among the results.

Now, we are going to use approximation (32) to inves-
igate the on-axis evolution of this TNP in the three cases
onsidered above for the instants t�=0.22 ns, t�=0.44 ns,
nd t�=0.66 ns. Figures 9(a)–9(c) show the results corre-
ponding to cases (1), (2), and (3), respectively. The con-
inuous curves come from approximation (32) and the dot-
ed curves are those coming from the numerical
imulation of Eq. (8). Again, we consider R=2 mm. Once

=0.14 ns, t�=0.29 ns, and t�=0.43 ns, for each of the cases cited
The continuous curves are the results obtained from our closed-
curves come from the numerical simulation of the Rayleigh–

ig. 8. Peak-intensity evolution of the truncated luminal MPS
ulse for the three cases: (1) a=1.6�10−16, b0=5�1011 Hz, and
=2�10−11 s; (2) a=1.25�10−16 s, b0=3�1011 Hz, and q=10
10−11 s; and (3) a=1�10−16, b0=2�1011 Hz, and q=20
10−11 s. In all cases R=2 mm. The continuous curves are re-

ults obtained from our closed-form analytical expression (32),
nd dotted curves represent results from the numerical simula-
ion of the Rayleigh–Sommerfeld formula (8).
imes t�
ively.
otted
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ore, there is an excellent agreement among the results,
onfirming the validity and efficiency of our method.

Before finishing this section, it is important to note
hat the closed-form analytical expressions of the trun-
ated ANP obtained with our method can be used advan-
ageously for comparison purposes with the correspond-
ng nontruncated ANP, thus illustrating the effects due to
he truncation and, for example, telling us up to what dis-
ance we can use the three-dimensional (3D) solution of
he ANP as a good approximation to the corresponding 3D
NP.

. CONCLUSIONS
n this paper a very simple method has been developed
or describing the space–time on-axis evolution of trun-
ated nondiffracting pulses, be they subluminal, luminal,
r superluminal. It is important to notice that in this
ethod, given by approximations (16), (18), (20), and (21),

he on-axis evolution of a TNP depends only on the fre-
uency spectrum S��� of its corresponding INP �INP, con-
rary to the Rayleigh–Sommerfeld formula (8), which de-
ends on the explicit mathematical expression of �INP.
e also have extended our method to describe the trun-

ated versions of the ANPs. Due to such a simplicity, we
an obtain closed-form analytical expressions, which de-
cribe the on-axis evolution of innumerable TNPs. In this
aper we have done that for the truncated versions of a
ew, very well-known localized waves: subluminal, lumi-
al or superluminal. We have compared our results with
hose obtained through the numerical simulation of the
ayleigh–Sommerfeld integrals, and we have observed an
xcellent agreement among them, confirming the effi-
iency of our method.

The present approach can be very useful, because it
urnishes, in general, closed-form analytical expressions,
voiding the need for time-consuming numerical simula-
ions, and also because such expressions provide a power-
ul tool for exploring several important properties of the
runcated localized pulses such as their depth of field, the
ongitudinal pulse behavior, and the decaying rates.

ig. 9. On-axis evolution of the truncated luminal MPS pulse, at
ases considered in Fig. 8; (a), (b), and (c) represent cases (1), (2
rom our closed-form analytical expression (32), dotted curves
ommerfeld formula (8).
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