PHYSICAL REVIEW B 73, 104411 (2006)

Anomalous phonon shifts in the paramagnetic phase of multiferroic RMn,05 (R=Bi, Eu, Dy):

Possible manifestations of unconventional magnetic correlations
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A Raman spectroscopic study of the high-frequency optical phonons in single crystals of the multiferroic
system RMn,Os5 (R=BIi, Eu, Dy) was performed. All studied materials show anomalous phonon shifts, below
a new characteristic temperature for these materials, 7° ~60—65 K. The sign and magnitude of such shifts
appear to be correlated with the ionic radius of R, envolving from softenings for R=Bi to hardenings for R
=Dy and showing an intermediary behavior for R=Eu. Additional phonon anomalies were identified below
~Ty~40-43 K, reflecting the onset of long-range ferroelectric and/or magnetic order of the Mn sublattice.
Complementary dc-magnetic susceptibility [x(7)] measurements for BiMn,Os up to 800 K yield a Curie-
Weiss temperature 6-y=-253(3) K, revealing a fairly large frustration ratio (|6cy|/Ty=6.3). Deviations of
x(T) from a Curie-Weiss paramagnetic behavior due to magnetic correlations were observed below tempera-
tures of the order of |fqy|, with the inverse susceptibility showing inflection points at ~160 K and ~7".
Supported by x(7) data, the anomalous Raman phonon shifts below 7™ are interpreted in terms of the spin-
phonon coupling, in a scenario of strong magnetic correlations. Overall, these results support significant
magnetic frustration, introduce a new characteristic temperature (7°), and suggest a surprisingly rich behavior

for the magnetic correlations in the paramagnetic phase of this system.
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I. INTRODUCTION

Multiferroics, also termed magnetoelectrics, are materials
where (anti)ferromagnetism and (anti)ferroelectricity coexist.
Such a rare! effect attracts steady attention due to the inter-
esting physics involved as well as relevant potential applica-
tions in devices with new functionalities. In multiferroics, a
coupling between magnetic and electric properties may in
principle occur, leading to concrete possibilities of realizing
the long-sought control of the electric polarization by a mag-
netic field or vice-versa.>”* Among other interesting systems,
promising candidates for this purpose may be found within
the RMn,Os family (R=rare earth, Y, or Bi), which are iso-
structural insulators.’” Members of this family undergo a
ferroelectric transition at (or slightly below) the antiferro-
magnetic (AFM) transition temperature for the Mn spin sub-
lattice, Ty=39—-45 K.”"!3 This system is also characterized
by the existence of other magnetic transitions at lower tem-
peratures between distinct commensurate and uncommensu-
rate Mn spin structures.'>”'> In addition, the R** spin system
may order below 10 K.%!21416.17 Each magnetic transition is
in general followed by a corresponding ferroelectric transi-
tion, clearly signaling a coupling between magnetic and elec-
tric properties.®!® In fact, for DyMn,O5 and TbMn,Os, giant
magnetoelectric effects have been observed.>®16:17

A detailed understanding of the multiferroic properties of
the RMn,Oj5 family is challenged by the complex crystal and
magnetic structures. Figure 1 shows the crystallographic
structure of RMn,Os along the z-axis. Mn**O4 octahedra
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form edge-sharing infinite linear chains along the z direction.
Mn3**O5 square pyramids interconnect the Mn**Og octahe-
dra. The magnetic structures depend strongly on R and 7. All
phases show a magnetic propagation vector (k,,0,k.) with
k,~1/2.791213.18 Recently, the magnetic structures of
(Bi,Ho, Tb,Dy)Mn,Os were studied in detail.!>!3 It was
suggested that the lattice geometry causes an inherent mag-
netic frustration in the system, which is lifted by small shifts
of the Mn** cations.!>!3 This would lead to a canted antifer-
roelectric phase that would be strongly coupled to the mag-
netic structure, providing a hint for the strong magnetoelec-

FIG. 1. (Color online) A view of the crystal structure of
RMn,Os5 (R=Bi,Dy,Eu) along the z-axis.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.104411

GARCIA-FLORES et al.

tric coupling in this system. If this scenario is correct, strong
magnetic correlations are prone to be found above T,.'° In
fact, in frustrated systems, a detailed investigation of such
correlations in the paramagnetic phase may be an essential
step towards a satifactory understanding of the overall physi-
cal properties. Nonetheless, few information is presently
available on the nature and strength of the magnetic correla-
tions in the paramagnetic phase of multiferroic RMn,0Os, to
our best knowledge. We note that the complex crystal struc-
ture and the presence of distinct magnetic ions (Mn**, Mn**,
and, in some cases R**) requires the use of microscopic ex-
perimental techniques for a detailed investigation of such
correlations.

In this work, we argue that microscopic information of the
Mn-Mn spin correlations in the paramagnetic phase of the
RMn,05 family (R=Bi, Eu, and Dy) was achieved by means
of a phonon Raman scattering study, complemented by dc-
magnetic susceptibility measurements. Anomalous frequency
shifts of stretching Mn-O modes were observed below a new
characteristic temperature for this system, T"~60—65 K.
Supported by magnetic data in BiMn,Os, such shifts are as-
cribed to the spin-phonon coupling, i.e., a modulation of the
superexchange energy of specific Mn-O-Mn paths by each
vibration. This interpretation implies that a rather abrupt
change in the nature or strength of at least some of the
Mn-Mn spin correlations takes place at 7°. The sign and
magnitude of the anomalous phonon shifts appear to be cor-
related with the ionic radii of R, envolving from softenings
for R=Bi to hardenings for R=Dy. Such trend appears to
indicate distinct magnetic correlations for each R, which is
possibly a precursor effect that leads to the distinct long-
range-ordered magnetic structures below Ty.

II. EXPERIMENTAL DETAILS

The single crystals used in the present study were pre-
pared by the flux method, as described elsewhere.®?° The
Raman scattering spectra were excited with the 514.5 nm
laser line from an Ar" laser, with a power of ~12 mW fo-
cused in a spot of ~100 um diameter. All measurements
were made in a near-backscattering configuration. The scat-
tered light was analyzed by a triple grating spectrometer
equipped with a LN,-cooled CCD detector. Measurements
were performed in the 80 cm™' <w <900 cm™' range. The
T-dependent measurements were carried out by mounting the
samples on a cold finger of a closed-cycle He refrigerator.
T-accuracy was better than ~2 K. For R=Bi and Eu, Ty
=40 K was obtained from dc-magnetization measurements,
in good agreement with reported values.®'* dc-magnetic sus-
ceptibility measurements on BiMn,O5 were performed under
a field of 1 T using a commercial superconducting quantum
interference device (SQUID) magnetometer (see footnote?!).

III. RESULTS AND ANALYSIS
A. Raman scattering

Factor group analysis for the Pbam symmetry of the
paraelectric phase of these oxides yields a total of 48
Raman-active phonon modes (I'ggn=13A,+13B,+11B,,
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FIG. 2. (Color online) Unpolarized Raman spectra of (a)
BiMn,0s, (b) EuMn,0s, and (c) DyMn,Os at 10, 100, and 300 K.
(d) Symmetry-dependence of the Raman spectra of DyMn,O5 at
room-7..

+11B;,).?* Figures 2(a)-2(c) show unpolarized Raman spec-
tra of RMn,O5 (R=Bi, Eu, Dy) at 18, 100, and 300 K. Only
some expected modes were observed for all samples. For R
=Bi, 19 Raman peaks were seen at 185, 195, 200, 235, 245,
280, 300, 325, 345, 360, 405, 445, 480, 510, 545, 565, 595,
610, and 655 cm™' (room-T). For R=Eu, 11 modes were ob-
served at 215, 295, 325, 335, 355, 450, 495, 535, 620, 665,
and 685 cm™' (room-T). For R=Dy, a polarization analysis
was also performed [see Fig. 2(d)], taking advantage of the

well defined (001), (110), (110), and (010) natural faces of
this particular crystal. 24 modes were then observed, accord-
ing to the following symmetry assignment: A, modes at 215,
350, 420, 460, 500, 545, 625, and 695 cm‘fg; B, modes at
145, 205, 235, 330, 420, 485, 540, and 675 cm™; B,, modes
at 220, 3053, 460, and 510 cm™'; and B3, modes at 320, 440,
495, and 585 cm™' (room-T). This symmetry analysis for R
=Dy is in general agreement with previous results of Mi-
hailova et al. for R=Ho and Tb.?} The overall Raman spectra
for R=Dy and R=Eu are very similar, while, for R=Bi, the
Raman modes are considerably sharper, better defined, and
shifted towards lower energies. This trend is more readily
realized for the highest energy modes (>600 cm™'). No ad-
ditional Raman peaks were observed for the low-T ferroelec-
tric phase with respect to the paraelectric phase in any of the
studied crystals, suggesting that the ionic displacements as-
sociated with the ferroelectric phase are rather small.
Anomalous phonon behavior was detected for all studied
crystals. In this work, the analysis is focused on the high-
energy modes (w>500 cm™!), which are ascribed to Mn-O
stretching vibrations. Figure 3(a) shows a selected portion of
the Raman spectra of BiMn,0Os at several T for a selected
frequency interval (520 cm™' <@ <590 cm™!). Figures
3(b)-3(e) show the T-dependence of the frequency of the
high-energy modes at 545, 565, 610, and 655 cm™!. Upon
cooling, all modes show conventional hardening down to
T"~65 K. Below T, the studied modes show a clear change
in behavior, with an anomalous softening on cooling down to
Ty~40 K, coincident with the magnetic ordering
temperature.” Below T, the modes show another change in
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FIG. 3. (Color online) (a) Selected portion of the Raman spectra
of BiMn,Os at several temperatures. The mode positions are indi-
cated by arrows as a guide to the eyes. (b)—(e) T-dependencies of
the positions of selected high-frequency Raman modes. The solid
vertical line represents the anti-ferromagnetic transition temperature
[see Refs. 9 and 10 and Fig. 5(a)], while the dashed line indicates
T", the temperature below which anomalous phonon behavior is
observed.

behavior, hardening again upon cooling. We emphasize that
the hardening below T does not appear to be a conventional
phenomenon in this case, since lattice contraction due to an-
harmonic effects are not expected to be significant in this
T-range (Debye temperature ~235 K).° The T-dependence
of the phonon linewidths (not shown) revealed no clear
anomaly at Ty and T" for all modes, within our experimental
resolution.

Figures 4(a) and 4(b) show the T-dependence of the po-
sition of the most intense high-frequency Raman modes for
R=Eu, at ~620 and ~690 cm™". Frequency anomalies, simi-
lar to those found for R=Bi [see Figs. 3(b) and 3(c)], were
observed. However, the tendency for phonon softenings be-
tween T°~65 K and ~Ty=T,=40 K'* is less pronounced
for R=Eu than for R=Bi, where T, represents the ferroelec-
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FIG. 4. (Color online) T-dependence of the position of selected
high-frequency Raman modes for EuMn,Os (a) and (b) and
DyMn,Os (c) and (d). The dashed vertical lines mark 7", while the
solid vertical lines represent the reported antiferromagnetic and
ferroelectric ordering temperatures of the Mn sublattice (7 and T,
respectively Refs. 8, 14, and 16).

tric transition temperature. On the other hand, the phonon
hardenings that take place below ~T7y and T, are similar in
magnitude for R=Eu and Bi.

The T-dependencies of the positions of the most pro-
nounced Mn-O stretching modes for R=Dy are given in
Figs. 4(c) and 4(d). The behavior of the mode at ~705 cm™!
reveals again the existence of two characteristic tempera-
tures, 7"~ 60 K and ~T,=39 K, showing a steep hardening
upon cooling between 7° and ~T,, and a nearly constant
frequency below ~T,. The mode at ~630 cm™' appears to
show a similar behavior, although the larger error bars in this
case do not allow for a conclusive statement.

B. Magnetic susceptibility

In order to gain further insight into the nature of the new
characteristic temperature 7" evidenced by the phonon shifts
in this system, detailed dc-magnetic susceptibility (y) mea-
surements were performed for BiMn,Os between 2 and
800 K. This particular compound was chosen since Bi** is
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FIG. 5. (Color online) (a) T-dependence of the inverse of the dc
magnetic susceptibility x(7) of BiMn,Os, after subtraction of a
small diamagnetic constant term xq (see text) (symbols). The solid
line represents an extrapolation of the Curie-Weiss behavior that
matches the data between 400 and 800 K (not shown). (b)
T-derivative of (y(T)—xo)~"' (symbols). The solid line is a guide to
the eyes and the horizontal dashed line is the prediction of the
Curie-Weiss law. The vertical dashed lines in (a) and (b) mark the
Néel temperature (7), modulus of the Curie-Weiss temperature
(|6cwl), and the temperature below which anomalous Raman shifts
were observed (77).

diamagnetic, contributing only with a 7T-independent portion
to the susceptibility. Thus, any interesting feature in y(7)
must be solely due to the Mn moments for this compound. A
fit of the measured x(7) curve for 400 K<T7T<800 K to the
expression x(T)=xo+C/(T—6cy) (not shown) yields x,
=-4.2(2) X 10 emu/mol(BiMn,05), C=2.69(2) emu.K/
mol(Mn), and 6qy=-253(3) K. The diamagnetic term
obtained from the fit is in agreement with the theoretical
prediction x{’=-4.06 X 10~ emu/mol(BiMn,Os) (see foot-
note’*). Also, from the observed paramagnetic Curie constant
C, an effective moment of 4.64 ug/Mn is obtained, which is
between the expected values for Mn** (4.90 uz/Mn) and
Mn** (3.87 wz/Mn).? Figure 5(a) shows the inverse suscep-
tibility below 400 K, after subtraction of the experimentally
obtained diamagnetic term, (x(T)—x,)~'. An extrapolation of
the Curie-Weiss paramagnetic behavior with the above con-
stants is also displayed. It can be noted that ((T)—x,)™'
starts to deviate significantly from the Curie-Weiss behavior
at temperatures of the order of |6/, due to magnetic corre-
lations. The feature at 7y=40 K indicates the onset of long-
range magnetic order, also consistent with previous
observations.”! We emphasize that the large ratio
|6cwl/ Ty=6.3 clearly indicates that this is a magnetically
frustrated material.

Additional information on the behavior of the magnetic
correlations in the paramagnetic phase may be gained by
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the temperature-derivative of the inverse susceptibility,
d(x(T)-xo)~'/dT [see Fig. 5(b)]. Again, a deviation of this
curve from a constant (i.e., from the Curie-Weiss law) can be
noticed below ~|6cy|. The inflection points of (x(7)—x,)~"
at T~ 160 K and T~ 65 K, noticed in Figs. 5(a) and 5(b),
are indicative of complex magnetic behavior in the paramag-
netic phase, likely due to competing exchange interactions of
different signs and/or magnitudes in this system. It is inter-
esting to note that the fairly abrupt inflection point of
(xX(T)-xo)~" at ~65 K coincides with the temperature below
which anomalous phonon shifts were observed by Raman
scattering.

IV. DISCUSSION

As described above, the phonon anomalies are clearly ob-
servable below T" ~ 60—65 K for all samples, i.e., at T where
no lattice anomaly or electronic phase transition has been
reported. This severely limits the possible explanations for
this phenomenon. Also, the feature on the magnetic suscep-
tibility in BiMn,Os at T" [see Fig. 5(b)] suggests that the
phonon shifts may be related to magnetism. In fact, to our
present knowledge, the only feasible explanation for the ob-
served anomalies at 7° appears to be rooted on the spin-
phonon coupling. It is well known that the magnetic order
and/or correlations may couple to the phonon frequencies
through a modulation of the exchange integral by the lattice
vibrations.?®-2° The phonon frequency shift caused by this
coupling is proportional to the spin pair correlation function
¢$=(S;.S;) and to the second derivative of the exchange in-
tegral with respect to the normal coordinate of the
phonon.?627:2 The first term depends directly on the
T-dependent magnetic structure/correlations, while the sec-
ond term may vary strongly with structural parameters such
as the Mn-O-Mn superexchange angle and it is generally
assumed to be 7-independent. If anharmonic and/or struc-
tural contributions may be ignored or subtracted, the
T-dependency of a relevant phonon frequency is a direct es-
timative of ¢.

In conventional magnetic systems, ¢ and by extension the
phonon shifts are negligible in the paramagnetic phase, ex-
cept at T not exceeding 7 by more than few percents. How-
ever, in magnetically frustrated systems, a highly correlated
paramagnetic state is typically formed above Ty.!” For
RMn,Os, the high-frequency phonons were assigned to
Mn-O stretching vibrations, which are indeed prone to
modulate the Mn-O-Mn superexchange interactions in this
system,?’ supporting the spin-phonon mechanism. Thus, our
results point to a scenario of remarkably strong magnetic
correlations at T significantly above Ty, in agreement with
the hypothesis of inherent magnetic frustration caused by the
lattice geometry in this family.!>!3 This hypothesis is further
reinforced by the large frustration ratio (|6cy|/Ty=6.3) ob-
tained for BiMn,0Os from magnetic susceptibility data (see
above and Ref. 10). We note that a phonon softening on
cooling due to the spin-phonon coupling in the paramagnetic
state have been also recently reported on the frustrated sys-
tem ZnCr,04.%° Nonetheless, the rather complex crystal
structure of RMn,05 and unknown phonon eigenmodes pre-

104411-4



ANOMALOUS PHONON SHIFTS IN THE PARAMAGNETIC...

vent a more quantitative analysis in the present case.

It is relevant to note that magnetic correlations have been
observed in BiMn,Os5 even at temperatures much higher than
T" (see Fig. 5). In fact, the magnetic correlations above T
might also contribute to the phonon shifts through the spin-
phonon mechanism. However, a presumably smooth
T-dependence of such correlations would make the corre-
sponding phonon shifts impossible to be separated from the
shifts due to anharmonicity and thermal expansion. Thus, the
new characteristic temperature 7" suggested by this work
does not seem to mark the very onset of the magnetic corre-
lations, however signaling a transition between states with
correlations of distinct natures and/or strengths. The fairly
abrupt inflection point of (x(7)—x,)~! at T~T" may be an-
other manifestation of such a transition.

An interesting feature of our results is the dependence
with the R-ion of the phonon anomalies in the paramagnetic
phase. While softenings are clearly observed for R=Bi upon
cooling below T™, this tendency is much less pronounced for
R=Eu, and is reversed to an anomalous hardening for R
=Dy. This trend appears to be correlated with the ionic radii
of the R ions, r=1.17, 1.066, and 1.027 A, for R=Bi3*, Eu3",
and Dy?*, respectively, under an eightfold coordination.
According to the spin-phonon interpretation, the different
signs of the Raman shifts below T" for R=Bi and R=Dy,
should be due to the change in sign of the (S;.S), at least for
some Mn pairs. Thus, the paramagnetic correlations may be
sensitive to the particular R-ion. We should mention that the
low-T magnetic structures are also R-dependent, the mag-
netic propagation vectors for the studied samples being
(~1/2,0,k,) with k,=1/2, 1/3, and 1/4 for R=Bi, Eu, and
Dy, respectively.!3-1331 It is not implausible to argue that
the distinct magnetic correlations in the paramagnetic phase
evidenced here is a precursor effect that leads to the distinct
long-range-ordered magnetic structures below 7. More de-
tailed studies are certainly necessary to confirm or dismiss
our suggestion.

Besides the unconventional behavior in the paramagnetic
phase, phonon anomalies and/or changes of behavior have
been also observed below T, and/or Ty, however with oppo-
site signs with respect to those between 7,./Ty and T". In-
deed, for R=Bi and Eu, softenings (hardenings) of the Mn-O
stretching modes were observed below T° (Ty), while, for
R=Dy, the anomalous hardening of the mode at 705 cm™!
below 7" is transformed into a nearly constant behavior be-
low T,. In opposition to the anomalous phonon behavior in
the paramagnetic phase discussed above, the origin of the
phonon anomalies below 7. or Ty is ambiguous, and may be
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twofold. The first possibility is again the spin-phonon cou-
pling. In fact, the long-range magnetic order in this family
may frustrate part of the exchange interactions,'>!? leading
to a change of sign of (S;.S;), at least for some i, j pairs.
However, a discontinuous change of the phonon frequencies
would be expected at Ty, rather than a change of behavior
only. The second, and most likely, possibility are the phonon
anomalies being a consequence of the Mn ionic displace-
ments and/or lattice parameter anomalies that occur at the
ferroelectric transition temperature, T,.'>'* Concerning the
second hypothesis, we should mention that the probable
ferroelectric state for BiMn,Os5 at low-T is not unambigu-
ously established in the literature yet, although an anomaly
in the dielectric constant was found at T~ T.'°

V. CONCLUSIONS

In summary, the high-frequency Mn-O stretching phonons
in RMn,Os (R=Bi, Eu, Dy) were investigated by means of
Raman scattering, complemented by magnetic susceptibility
measurements for R=Bi, with a focus on the paramagnetic
regime. Our results reveal the existence of a new character-
istic temperature for this family, 7°~ 1.5 Ty, below which
anomalous phonon shifts take place, likely related with mag-
netic correlations through the spin-phonon coupling mecha-
nism. The sign and magnitude of the phonon shifts in the
paramagnetic phase are different for each R-ion, indicating
an evolution of the paramagnetic correlations with R. Such
observations, together with the large frustration ratio
(|6cw|/ Ty=6.3) obtained for BiMn,Os, support magnetic
frustration in this system, presumably caused by its complex
lattice geometry. The phonon anomalies described here do
not support a conventional behavior with a gradual enhance-
ment of spin correlations upon cooling down to 7Ty, but
rather suggests the establishment of a more interesting cor-
related magnetic state below 7". The formation of a protec-
torade of spin directors, such as found for the magnetically
frustrated system ZnCr,0,,% for example, cannot be dis-
carded. In any case, the rich behavior of the magnetic corre-
lations in the paramagnetic phase for this multiferroic family
is certainly interesting, and deserves further investigation.

ACKNOWLEDGMENTS

The authors thank O. Agiiero for helpful discussions. This
work was supported by Fapesp and CNPq, Brazil, NSF
DMR-0102235, U.S.A., Russian Foundation for Basic Re-
search, Presidium of RAS, and Division of Physics of RAS.

*Electronic address: egranado@ifi.unicamp.br

IN. A. Hill, J. Phys. Chem. B 104, 6694 (2000).

2P. Curie, J. Phys. (Paris), Collog. 3 (Ser. III), 393 (1894).

31. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1960).

4D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).

SN. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W.

Cheong, Nature (London) 429, 392 (2004).

6J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L. Martinez,
and M. T. Fernandez-Diaz, J. Phys.: Condens. Matter 9, 8515
(1997).

1. Kagomiya, K. Kohn, and T. Uchiyama, Ferroelectrics 280, 297
(2002).

104411-5



GARCIA-FLORES et al.

8N. Hur, S. Park, P. A. Sharma, S. Guha, and S-W. Cheong, Phys.
Rev. Lett. 93, 107207 (2004).

9 A. Muiioz, J. A. Alonso, M. T. Casais, M. J. Martinez-Lope, J. L.
Martinez, and M. T. Fernandez-Diaz, Phys. Rev. B 65, 144423
(2002).

19E. 1. Golovenchits, V. A. Sanina, and A. V. Babinskii, JETP 85,
156 July (1997).

g, Kobayashi, T. Osawa, H. Kimura, Y. Noda, I. Kagomiya, and
K. Kohn, J. Phys. Soc. Jpn. 73, 1593 (2004).

121, C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G.
Radaelli, and S-W. Cheong, Phys. Rev. Lett. 93, 177402 (2004).

13G. R. Blake, L. C. Chapon, P. G. Radaelli, S. Park, N. Hur, S-W.
Cheong, and J. Rodriguez-Carvajal, Phys. Rev. B 71, 214402
(2005).

14y, Polyakov, V. Plakhty, M. Bonnet, P. Burlet, L.-P. Regnault, S.
Gavrilov, 1. Zobkalo, and O. Smirnov, Physica B 297, 208
(2001).

151, A. Zobkalo, V. A. Polyakov, O. P. Smirnov, S. V. Gavrilov, V.
P. Plakatii, I. V. Golosovskii, and S. N. Sharygin, Phys. Solid
State 38, 725 (1996).

16D, Higashiyama, S. Miyasaka, N. Kida, T. Arima, and Y. Tokura,
Phys. Rev. B 70, 174405 (2004).

7K. Saito and K. Kohn, J. Phys.: Condens. Matter 7, 2855 (1995).

I8E. E. Bertaut, G. Buisson, S. Quezel-Ambrunaz, and G. Quezel,
Solid State Commun. 5, 25 (1967).

19A. P. Ramirez, Handbook of Magnetic Materials (Elsevier, New
York, 2001), Vol. 13, pp. 423-520.

20y, A. Sanina, L. M. Sapozhnikova, E. 1. Golovenchits, and N. V.
Morozov, Sov. Phys. Solid State 30, 1736 (1988); E. L
Golovenchits, N. V. Morozov, V. A. Sanina, and L. M. Sapozh-
nikova, ibid. 34, 56 (1992).

2I'The BiMn,Os crystal was orientated arbitrarily with respect to the
field. Note that, in Ref. 10 the magnetic susceptibility of
BiMn,05 was found to be isotropic in the paramagnetic phase.

PHYSICAL REVIEW B 73, 104411 (2006)

22D, L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman
Spectrosc. 10, 253 (1981).

23B. Mihailova, M. M. Gospodinov, B. Giittler, F. Yen, A. P. Litvin-
chuk, and M. N. Iliev, Phys. Rev. B 71, 172301 (2005).

24The theoretical diamagnetic contribution was estimated with the
usual relation X{f":—O.792iZ,«<ri2>/a(2)X 1076 (emu/mol), where
Z; is the total number of electrons of the ith ion in the formula
unit, a(=0.529 A, and <ri2) is the mean square electronic
radius.”> In this work, (r7) was estimated assuming a simple
ionic model with uniform electron density inside a sphere de-
fined by the Shannon crystal radius r;y, (Ref. 30). Thus (r?)
=(3/5)r%,

25N. W. Ashcroft and N. D. Mermin, in Solid State Physics (Thom-
son Learning, 1976).

26W. Baltensperger and J. S. Helman, Helv. Phys. Acta 41, 668
(1968).

2TE. Granado, A. Garcia, J. A. Sanjurjo, C. Rettori, I. Torriani, F.
Prado, R. Sdnchez, A. Caneiro, and S. B. Oseroff, Phys. Rev. B
60, 11879 (1999); E. Granado, P. G. Pagliuso, J. A. Sanjurjo, C.
Rettori, M. A. Subramanian, S-W. Cheong, and S. B. Oseroff,
ibid. 60, 6513 (1999); E. Granado, N. O. Moreno, H. Martinho,
A. Garcia, J. A. Sanjurjo, 1. Torriani, C. Rettori, J. J. Neumeier,
and S. B. Oseroff, Phys. Rev. Lett. 86, 5385 (2001).

28 A. P. Litvinchuk, M. N. Tliev, V. N. Popov, and M. M. Gospodi-
nov, J. Phys.: Condens. Matter 16, 809 (2004).

2 A. B. Sushkov, O. Tchernyshyov, W. Ratcliff II, S. W. Cheong,
and H. D. Drew, Phys. Rev. Lett. 94, 137202 (2005).

30R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,
Theor. Gen. Crystallogr. 32, 751 (1976).

31C. Wilkinson, F. Sinclair, P. P. Gardner, J. B. Forsyth, and B. M.
R. Wanklyn, J. Phys. C 14, 1671 (1981).

328-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.
H. Kim, and S-W. Cheong, Nature (London) 418, 856 (2002).

104411-6



