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A nonequilibrium ensemble formalism: Criterion for truncation
of description

J. Galvão Ramos, Áurea R. Vasconcellos, and Roberto Luzzi
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas, Unicamp 13083-970 Campinas,
São Paulo, Brazil

~Received 30 November 1998; accepted 2 November 1999!

In the framework of a nonequilibrium statistical ensemble formalism, consisting of the so-called
Nonequilibrium Statistical Operator Method, we discuss the question of the choice of the space of
thermohydrodynamic states. We consider in particular the relevant question of the truncation of
description~reduction of the dimension of the state space!. A criterion for justifying the different
levels of truncation is derived. It depends on the range of wavelengths and frequencies which are the
relevant ones for the characterization, in terms of normal modes, of the thermohydrodynamic
motion in a nonequilibrium open system. Applications to the cases of thermal-sensitive resins and
of n-doped polar semiconductors are done, numerical results are presented, and experimental
observation is discussed. ©2000 American Institute of Physics.@S0021-9606~00!50705-3#

I. INTRODUCTION

The study of dissipative systems not so near to equilib-
rium conditions, that is, outside the so-called linear or Onsa-
gerian regime, has received plenty of attention in recent de-
cades. This is the result of the demands created by several
recent important developments in science and technology.
Accordingly, these facts have required the elaboration of ap-
propriate theoretical studies implying, mainly, those able to
provide satisfactory approaches in kinetic theory, irreversible
thermodynamics and nonclassical hydrodynamics, as well as
a response function theory, for systems arbitrarily away from
equilibrium. All of them can be covered in a unified way
resorting to a statistical mechanics for nonequilibrium pro-
cesses. A quite promising one, as noticed by Zwanzig,1 is a
particular form of a nonequilibrium ensemble formalism,
namely, the Nonequilibrium Statistical Operator Method.
@The different approaches can be put under the unifying um-
brella of a variational principle—maximization of the infor-
mational statistical entropy—and we shall refer to it as
MaxEnt-NESOM~Ref. 2–7!.#

MaxEnt-NESOM provides foundations for a statistical
thermodynamics of irreversible processes~dubbed Informa-
tional Statistical Thermodynamics, IST for short!,8–11 and a
nonclassical hydrodynamics.12 A MaxEnt-NESOM-based re-
sponse function theory is described in, for example, Refs.
2,13–16, and some applications to the case of pump–probe
experiments in the photoinjected plasma in semiconductors
are reported in, for example, Refs. 17–20. Irreversible ther-
modynamics and hydrodynamics as field theories~describing
the values and evolution of space and time dependent mac-
rovariables! are based in MaxEnt-NESOM on a generalized
nonequilibrium grand-canonical ensemble.21–23 The latter is
characterized by the density of particles and the density of
energy, together with their fluxes to all orders, as required by
the MaxEnt-NESOM-closure-like condition for the set of ki-
netics equations.2–7,22,23Hence, the MaxEnt-NESOM-kinetic
theory introduces a double infinite set of coupled nonlinear

integrodifferential equations of evolution, to be solved for
given ~in the experiment under consideration! initial and
boundary conditions.

Practical theoretical analyses of real physical situations
require to introduce a truncation of description.This trunca-
tion implies in retaining the information considered as rel-
evant for the problem in hands, and to disregard nonrelevant
information.24,25 For carrying on this procedure a criterion
needs be derived, which, in a sense, should be one playing an
analog of what is done in the case of the solution of Boltz-
mann equation via the Hilbert–Chapman–Enskog method,
where the Knudsen number provides a kind of control pa-
rameter.

Considering a system of two classic fluids in weak mu-
tual interaction, we derive a criterion for truncation of de-
scription in MaxEnt-NESOM thermohydrodynamics. For
better visualization we introduce first a simplifying treat-
ment, consisting into decoupling the motions of matter and
energy~i.e., thermostriction effects are neglected!. For the
motion of mass we determine a criterion for the separation of
the domains of validity of classical~or Onsagerian! and of
two extended thermohydrodynamics. The connection with
Bogoliobov’s principle of correlation weakening and hierar-
chy of relaxation times26–28 is evidenced. Finally, applica-
tions to the cases of thermosensitive resins and ofn-doped
direct-gap polar semiconductors are done, numerical results
are presented, and experimental observation is discussed.

II. THERMOHYDRODYNAMICS OF A
BROWNIAN-TYPE SYSTEM

We consider a fluid ofN particles of massm interacting
with another fluid ofNB particles of massM . The first is the
system of interest to be analized, and the second, to be called
a bath and withNB@N, is assumed to be constantly kept at
a fixed temperatureT0 through a good thermal contact with
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an ideal reservoir at this temperature. For simplicity, and to
obtain a more clear picture of the question, we use a classical
treatment. The Hamiltonian is

H5H01H0B1H8, ~1!

where

H05E d3r E d3p~p2/2m!n̂1~r ,puG!, ~2!

H0B5 (
m51

NB

Pm
2 /2M , ~3!

H85 (
m51

NB E d3r E d3pV~ ur2Rmu!n̂1~r ,puG!. ~4!

In these equationsH0 and H0B are the Hamiltonians of the
free system and bath, respectively, andH8 stands for the
interaction between system and bath via the central potential
V(ur j2Rmu), where r j ( j 51,2,. . . ,N) and Rm (m
51,2,. . . ,NB) are the respective coordinates, and we callpj

and Pm the corresponding linear momenta. Moreover, we
have introduced the single-particle dynamical density func-
tion

n̂1~r ,puG!5(
j 51

N

d~r2r j !d~p2pj !, ~5!

with G indicating a point in the phase space of classical me-
chanical states of the system.

We consider thermohydrodynamic characteristics of this
system in the statistical approach provided by MaxEnt-
NESOM. For that purpose we start with a nonequilibrium
generalized grand-canonical ensemble.21–23 The description
of the nonequilibrium state of the system is done in terms of
the density of particles and the density of energy, namely,

n̂~r uG!5E d3pn̂1~r ,puG!5(
j 51

N

d~r2r j !, ~6!

ĥ~r uG!5E d3p~p2/2m!n̂1~r ,puG!

5(
j 51

N

~pj
2/2m!d~r2r j !, ~7!

and their fluxes of all orders, which are

În~r uG!5E d3pu~p!n̂1~r ,puG!, ~8!

Îh~r uG!5E d3p~p2/2m!u~p!n̂1~r ,puG!, ~9!

Î n
[ r ]~r uG!5E d3pu[ r ]~p!n̂1~r ,puG!, ~10!

Î h
[ r ]~r uG!5E d3p~p2/2m!u[ r ]~p!n̂1~r ,puG!, ~11!

with r 52,3,. . . , indicating the order of the flux and its cor-
responding tensorial rank, and where we have introduced
u(p)5p/m and ther -rank tensor,

u[ r ]~p!5F S p

mD ¯ ~r -times! ¯ S p

mD G , ~12!

the brackets indicating tensorial product ofr -times the gen-
erating velocity vectoru(p).

Hence, Eqs.~6! and ~7!, and ~8!–~11! define the set of
basic dynamical variables for the description of the thermo-
hydrodynamics of the system under consideration. The non-
equilibrium statistical operator, which is a superoperator of
these dynamical variables, is given and discussed in Ref. 21.
Finally, the basic set of macrovariables, which are the non-
equilibrium thermodynamic variables, is composed of the
average values over the nonequilibrium ensemble of the dy-
namical variables of Eqs.~6!–~11!. In this way, it is intro-
duced the space of states of a statistical thermodynamics
dubbed Informational Statistical Thermodynamics~IST for
short!.8–11

The equations of evolution are simply the average over
the nonequilibrium ensemble of Hamilton equations of mo-
tion, that is,

]

]t
I j

[ r ]~r ,t !5E dG%«~Gut !$ Î j
[ r ]~r uG!,H%, ~13!

where$ , % stands for Poisson’s brackets and

I j
[ r ]~r ,t !5E dG Î j

[ r ]~r uG!%«~Gut !, ~14!

indicates the corresponding nonequilibrium thermodynamic
macrovariable (j 5h or n; r 50,1,2,. . . ) with %«(Gut) being
the statistical operator taken in Zubarev’s approach.3,4 The
right-hand side of Eq.~13! is extremely difficult to calculate.
A way around is to introduce a kind of perturbation expan-
sion of this term, in the form of an infinite series of collision
operators, corresponding, roughly speaking, to two, three,
etc. particle collisions, plus a contribution associated to an
equation of conservation,2,29 that is, in the present case these
equations are21–23

]

]t
I j

[ r ]~r ,t !1¹•I j
[ r 11]~r ,t !5Jj

(2)[r ]~r ,t !, ~15!

where¹• stands for the divergence operator, and consider-
ing weak interactions, we have written the Markovian limit
of the equations of evolution, retaining contributions only up
to second order in the interaction strengths present in the
collision operatorJ(2) defined in Refs. 2–4,29.

We can noticed that Eq.~15! represents a double set~for
j 5h and n) of a very large number (r 50,1,2,. . . ) of
coupled equations. They are, as a general rule, nonlinear in-
tegrodifferential equations, instantaneous in time because the
Markovian approximation we have introduced, but are non-
local in space~that is, space correlations are present!.22

III. THE TRUNCATION PROCEDURE

In order to discuss the introduction of a truncation pro-
cedure and its characterization—meaning a criterion for
it—we further simplify the presentation in order to avoid
cumbersome expressions that would obscure the physical in-
terpretation. For that purpose we decouple the equations for
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particle and for energy motion, what implies into neglecting
thermostriction effects, and in what follows we concentrate
the attention on the movement of particles, characterized by
n(r ,t) and its fluxesI n

[ r ] (r ,t), r 51,2,... . Further, both sys-
tem and bath are taken as being in mutual thermal equilib-
rium at temperatureT0 . We proceed by introducing a trun-
cated description in which we take into account only the
density of particles and its first two fluxes. Using Eq.~15! we
obtain the equations of evolution for the basic variables,
namely,

]

]t
n~r ,t !1¹•In~r ,t !50, ~16!

]

]t
In~r ,t !1¹•I n

[2]~r ,t !52
In~r ,t !

tn1~x!
, ~17!

]

]t
I n

[2]~r ,t !1¹•I n
[3]~r ,t !5

n~r ,t !1[2]

mb0tn2~x!
2

I n
[2]~r ,t !

tn2~x!
, ~18!

where 1[2] is the unit second order rank tensor, and we have
defined the characteristic times,

tn1
21~x!5VF 1

Ax~x11!
G , ~19a!

tn2
21~x!5VF 1

Ax~x11!
G 2x

x11
, ~19b!

with x5m/M , and

V5
nRb0F~0!

3
Apb0

2M
, ~20!

whereb051/kBT0 , nR is the density of particles in the bath,
and

F~0!5
1

V (
q

qc2~q!, ~21!

wherec(q) is the Fourier transform of the central potential
V(ur2Rmu), V is the volume of the system, andq is the
modulus of vectorq.

Evidently, Eq.~16! is the equation of conservation for
the density of particles, Eqs.~17! and~18! are balance equa-
tions for the fluxes, where on the right-hand side is present a
term of decay of each of both fluxes, with characteristics
timestn1 andtn2 ~they are the analogous of Maxwell’s re-
laxation time in his study of viscous motion30!.

To close the system of Eqs.~16!–~18!, we need to obtain
an expression for the third order fluxI n

[3] in terms of the
chosen three basic variables. This is done resorting to
Heims–Jaynes perturbation expansion for averages,31 but in
the limit of weak fluxes, what allows us to take alinear
approximationin the fluxes, amounting to keep only the first
term in Heims–Jaynes expansion. For the sake of simplicity
we omit here the explicit expression forI n

[3] (r ,t) but instead
we present the result we need in the process of deriving Eq.
~23! below, namely,

¹•~¹•I n
[3]~r ,t !!5

1

mb0
@¹2In~r ,t !12¹~¹•In~r ,t !!#,

~22!

where, as usual,¹ is the gradient operator~we recall that¹•

is the the divergence operator!.
Using Eqs.~16!–~18! and Eq.~22!, after some algebra

we obtain that

F ]3

]t3 1
1

teff~x!

]2

]t2 1
1

un(2)
2 ~x!

]

]t
2

cn(2)
2 ~x!

tn2~x!
¹2Gn~r ,t !

52
1

mb0
¹•@¹2In~r ,t !12¹~¹•In~r ,t !!#, ~23!

where

cn(2)
2 ~x!51/mb05kBT0 /m5v th

2 /3, ~24!

with v th being the so-called thermal velocity defined by
mv th

2 /253kBT0/2, and we have introduced the characteristic
times

teff
21~x!5tn1

21~x!1tn2
21~x!5tn1~x!/un(2)

2 ~x!, ~25a!

tn1~x!5tn1~x!1tn2~x!, ~25b!

un(2)~x!5@tn1~x!tn2~x!#1/2. ~25c!

Neglecting the right-hand side of Eq.~23!, because its
contribution is proportional to the third order in the wave
number and we only mantain contributions up to the second
order in the wave number~the limit of wavelengths larger
than the interparticle separation!, Eq. ~23! becomes

F ]3

]t3 1
1

teff~x!

]2

]t2 1
1

un(2)
2 ~x!

]

]t
2

cn(2)
2 ~x!

tn2~x!
¹2Gn~r ,t !50.

~26!

Equation~26! is a differential equation of third order in
time, which we proceed to analyze. First, we notice the fact
that if in this Eq.~26! we neglect the third derivative in time
~smooth variation in time!, it goes over a telegraphistlike
~parabolic-type! equation, namely,

F 1

c̃n(2)
2 ~x!

]2

]t2 1
1

Dn(2)~x!

]

]t
2¹2Gn~r ,t !50, ~27!

wherec̃n(2) is the velocity of propagation,

c̃n(2)
2 ~x!5F teff~x!

tn2~x!Gcn(2)~x!5
1

3 F teff~x!

tn2~x!Gv th
2 , ~28!

and Dn(2)(x), playing the role of a diffusion coefficient, is
given by

Dn(2)~x!5 c̃n(2)
2 ~x!tn1~x!5cn(2)

2 ~x!tn1~x!

5 1
3 v th

2 tn1~x!. ~29!

Moreover, if in Eq.~27! we takec̃n(2) going to infinity,
however keepingDn(2) finite, we get a Fick-type diffusion
equation. We proceed next to look for a criterion for justify-
ing the use of different truncations of description. For that
purpose, we first begin to introduce a notation to characterize
the different possible domains of validity~implying in the
conditions which justify the use of a truncated description! of
IST. We call it Informational-Statistical Thermodynamics of
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r -rank, for short IST$r %, the one in which are retained the
densities and their fluxes only up to orderr in the basic set of
nonequilibrium thermodynamic variables.

We begin by considering the domains of validity, in
wave number and frequency space, of IST$0%, IST$1%, and
IST$2%.

A. Frontier of the domain of IST ˆ0‰ with IST ˆ1‰

First, we look for the eigenvalues of Eq.~27!, a (2) ,
which provide the frequency dispersion spectrum. The char-
acteristic equation is

Fa (2)~x,Q!

c̃n(2)~x! G2

1
a (2)~x,Q!

Dn(2)~x!
2Q250, ~30!

whereQ is the wave vector (Q the wave number! associated
with each normal mode of propagation.

Solving Eq.~30! the eigenvalues are

a (2)~x,Q!652
1

2tn1~x!

6F S c̃n(2)
2 ~x!

2Dn(2)~x!
D 2

2 c̃n(2)
2 ~x!Q2G1/2

, ~31!

or, after using Eqs.~28! and ~29!, they can be written as

a (2)~x,Q!652@2tn1~x!#216 i $c̃n(2)
2 ~x!Q2

2@2tn1~x!#22%
1/2

. ~32!

Inspection of Eq.~32! tells us that for

2c̃n(2)~x!tn1~x!Q.1, ~33!

the motion consists ofdamped undulatory motion, propagat-
ing with velocity c̃n(2)(x), a frequency given by the square
root in Eq. ~32! ~a renormalized soundlike dispersion rela-
tion!, and a lifetime of the order of 2tn1(x).

On the other hand, for values ofQ sufficiently small
~large wavelengths! such that the inequality

2c̃n(2)~x!tn1~x!Q,1,, ~34!

is satisfied,a (2) is a real number and themotion is over-
damped, consisting of two contributions decaying with life-
times,

2a (2)~x,Q!1.tn1
21~x!, ~35!

2a (2)~x,Q!2.Dn(2)~x!Q2. ~36!

For very small wave numbers~very long wavelengths! such
that@tn1(x)#21@Dn(2)(x)Q2, the contribution with the life-
time of Eq.~35! dies down more rapidly than the other, and
this overdamped motion consist of a diffusive motion. In
fact, a (2) of Eq. ~36! is the eigenvalue of the equation of
diffusion with a diffusion coefficient given by Eq.~29!; this
result is well known from textbook analyses of the telegra-
phist equation.32 We call attention to the fact that the transi-
tion from damped wave motion to near diffusive motion,
becomes evident in experiments related to the technoindus-
trial process of thermal-laser stereolithography33 briefly de-
scribed in next section.

We can now derive a boundary between IST$0% and
IST$1%, which are, respectively, the equivalent at the
mechanical-statistical level of description of Classical Irre-
versible Thermodynamics~e.g., Ref. 34! and earlier versions
of Extended Irreversible Thermodynamics~e.g., Ref. 35!.
Such a boundary may be set at the wavelength

l (01)~x!5Q(01)
21 ~x!52c̃n(2)~x!tn1~x!

5 2
3 v thtn1~x!52Dn(2)~x!/ c̃n(2)~x!, ~37!

when the square root in Eq.~32! becomes null, passing from
real to imaginary values. We recall that the characteristic
timestn1 andtn1 are given in Eqs.~25b! and~19a!, respec-
tively, the relation between the renormalized velocity and the
thermal velocity in Eq.~28!, and the diffusion coefficient in
Eq. ~29!.

We stress the point that thenoverdamped motion is
characteristic of movements involving wavelengthsl
.l (01) , and nearly pure diffusive motion follows in the case
of very long wavelengths or more precisely forl@l (01) .

Let us reconsider this last point in an alternative way.
Equation~27! can be written as

F ]

]t
2Dn(2)~x!¹2Gn~r ,t !52

Dn(2)~x!

c̃n(2)
2 ~x!

]2

]t2 n~r ,t !, ~38!

the left-hand side being of the form of Fick’s diffusion equa-
tion. To evaluate when the latter is a good approximation we
consider when the right-hand side can be neglected in com-
parison with the left. We look for the eigenvaluesa (1) of this
equation, but introducing a kind of perturbation procedure,
consisting of looking into the influence of the right-hand side
when the movement is nearly diffusive. The exact eigenvalue
equation is

a (1)~x,Q!1Dn(2)~x!Q252
Dn(2)~x!

c̃n(2)
2 ~x!

a (1)
2 ~x,Q!, ~39!

but introducing on the right, in place ofa (1) , the eigenvalue
a (2) of Eq. ~36!, Eq. ~39! becomes

a (1)~x,Q!52Dn(2)~x!Q2@12l̃D
2 ~x!Q2#, ~40!

where

l̃D~x!5
Dn(2)~x!

c̃n(2)~x!
5

1

2
l (01)~x!, ~41!

with l (01) is given by Eq.~37!.
Therefore, we can expect that the purely diffusive mo-

tion is predominant when the last contribution in Eq.~40! is
negligible as compared with the first, that is when

l̃D~x!Q!1, ~42!

that is, for wavelengths much larger thanl (01) as shown in
the previous analysis.

Moreover, concluding this subsection we stress the fact
that, because the dispersion relation relates frequency and
wave number in the mode analysis of the motion, the above
considered frontier also implies to low frequencies. In fact,
using Eqs.~37! and ~32!, we have the boundary expressed
now in terms of the frequency as

2695J. Chem. Phys., Vol. 112, No. 6, 8 February 2000 Nonequilibrium ensemble formalism
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v (01)~x!5$c̃n(2)
2 ~x!Q(01)

2 ~x!2@2tn1~x!#22%1/250, ~43!

indicating a kind of ‘‘soft mode’’ transition, corresponding
to a change from damped undulatory motion to an over-
damped one, with diffusion at sufficiently long wavelengths.

B. Frontier of the domain of IST ˆ1‰ with IST ˆ2‰

Let us consider now the transition from the regime of
IST$1% to IST$2%. For that purpose we write Eq.~26! in the
form,

F 1

c̃n(2)
2 ~x!

]2

]t2 1
1

Dn(2)~x!

]

]t
2¹2Gn~r ,t !

52
teff~x!

c̃n(2)
2 ~x!

]3

]t3 n~r ,t !, ~44!

the left-hand side being the telegraphistlike equation of Eq.
~27!. Next we proceed in a similar way as done in the last
subsection. We look for the eigenvaluesa (3) of Eq. ~44!, that
is, the solution of the equation,

a (3)
2 ~x,Q!1

c̃n(2)
2 ~x!

Dn(2)~x!
a (3)~x,Q!1 c̃n(2)

2 ~x!Q2

52teff~x!a (3)
3 ~x,Q!. ~45!

Next we approximate the right-hand side entering the modu-
lus of the eigenvalue of the telegraphist equation,
ua (2)(x,Q)6u, of Eq. ~31!, in place ofa (3)(x,Q), and we
reorganize the resulting approximated eigenvalue equation
by dividing it by the fourth power of the velocityc̃n(2) to
obtain

Fa (3)~x,Q!

c̃n(2)~x! G2

1
a (3)~x,Q!

Dn(2)~x!
1Q25

D c̃n(2)
2 ~x,Q!

c̃n(2)
2 ~x!

Q2, ~46!

where we have introduced the quantity,

D c̃n(2)
2 ~x,Q!5

1

8
@teff~x!/tn1

3 ~x!#l (01)
3 ~x!Q, ~47!

with Dn(2) given by Eq.~29!.
Inspection of Eq.~46! tells us that we recover the ap-

proximate dispersion relation for the telegraphist equation,
Eq. ~32!, i.e., a (3).a (2) , when it is verified that

D c̃n(2)
2 ~x,Q!

c̃n(2)
2 ~x!

!1. ~48!

We can alternatively write this inequality in the form,

l (12)~x!Q!1, ~49!

after introducing the characteristic wavelength,

l (12)~x!5F teff~x!

2tn1~x!Gl (01)~x!

5H tn1~x!tn2~x!

2@tn1~x!1tn2~x!#2J l (01)~x!, ~50!

with l (01)(x) given by Eq.~37!, or also as

l (12)~x!5Q(12)
21 ~x!

5 c̃n(2)~x!teff~x!

5
1

)
v thF teff~x!

tn2~x!G
1/2

teff~x!5
Dn(2)~x!

c̃n(2)~x! F teff~x!

tn2~x!G . ~51!

Consequently, a description in the truncated IST$1% can be
used when the motion, in its normal mode analysis, involves
wavelengths verifying that

l@Q(12)
21 ~x!5l (12)~x!5 c̃n(2)~x!teff~x!. ~52!

Hence,damped undulatory motion—governed by a te-
legraphistlike equation—is characteristic of movements in-
volving wavelengthsl@l (12) . When this restriction is not
met, that is,l becomes of the order ofl (12) we need to go
over the domain of IST$3%. Moreover, from Eq.~50! we can
see that alwaysl (12)(x),l (01)(x).

C. Characterization of the descriptions

Summarizing, according to the results of the two previ-
ous subsections, we can characterize four regimes of thermo-
hydrodynamic behavior in the given system. The use of each
one depends, as we have seen, on the range of wavelengths
~or, alternatively, through the dispersion relation, on the
range of frequencies! that have a prevalence in the Fourier
analysis of the motion of the density of particles in the given
experimental conditions.

These four regimes are:~1! diffusive motion; ~2! over-
damped motion;~3! damped undulatory motion;~4! damped
undulatory motion accompanied of an overdamped motion.
These are the solutions, respectively,~1! of the diffusion
equation;~2! and ~3! of the telegraphist-like equation, Eq.
~27!; ~4! of the third order equation, Eq.~26!. Also, as no-
ticed, this corresponds to descriptions in IST$0%, IST$1%, and
IST$2%. Only the transition from undulatory damped to over-
damped regimes is characterized by a clear cut frontier,
namely,l (01)52c̃n(2)tn1 . The others are characterized by
the conditions of the motion to proceed in a regime of pre-
dominance of wavelengths much larger thanl̃D5 c̃n(2)tn1

~almost purely diffusive!, andl (12)5 c̃n(2)teff ~almost purely
undulatory damped!.

We have determined, in the case of the Brownian-type
model of Eq.~1! and in terms of the relation of massesx
5m/M , the domains of validity of each of the regimes we
have considered. In Fig. 1 are displayed the characteristic
timestn1 andtn2 , in units of the quantity~with dimensions
of time! V21 of Eq. ~20!. The boundary wavelengths, in the
scaled form l̃5(V/v th)l5l/L, are shown in Fig. 2 in
terms ofx, thus providing the regions of validity of the trun-
cations that lead to the different regimes.

IV. SPECIFIC ILLUSTRATIONS AND EXPERIMENTAL
OBSERVATION

In this section we illustrate how it proceeds the change
of regime between IST$1% and IST$2%, and its experimental
observation. First, we can mention the quite interesting and
illustrative example consisting in the study of the technoin-
dustrial process of thermal laser stereolithography~better re-
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ferred to as rapid prototyping!. The theoretical and experi-
mental aspects are describe in detail in Ref. 33, to which we
refer the reader, and here we only briefly summarize the
results.

The process consists in sintering of a thermosensitive
resin ~by illumination with an infrared CO2-laser! for creat-
ing prototypes for casting of parts for automotive, medical,
etc. uses. Hence, it requires high definition in the production
of the prototype, i.e., a rapid sintering well localized in the
small region of laser beam focalization. As shown in Ref. 33
if the system is in the domain of IST$2%, there follows propa-
gation of second sound~thermal! waves at long distances and
the sample is ruined. This occurs whenQ(01),r 0

21 , where
r 0 is the radius of the spot of laser-beam focalization on the
resin ~Q(01) is referred to askM in Ref. 33!. ‘‘Tampering’’
with the resin by adding aluminum powder~for example!
modifies~decreases! the diffusivity Dn(2) and hence changes
Q(01) in such a way to haveQ(01).r 0

21 @cf. Eq. ~37!#. No
wave propagation of heat occurs~regime of IST$0%! and a

well defined good prototype is produced. We may say that
this change of regime can be ‘‘seen’’ in the photographs of
Fig. 4 in Ref. 33, consisting in cylindrical models~rings!
obtained using samples with varying values ofQ(01) (kM in
Ref. 33!. This is in what relates to thermal perturbation~the
one relevant to the technoindustrial process! but density per-
turbation is also present; in some cases it can be seen with
the unaided eye~or using a simple magnifying lens! propa-
gation of material waves in the pure resin but practically
dissapearing in the more and more doped resin. This indi-
cates the transition of regime in the motion of the density as
the one we are considering here. Figures 2 and 3 in Ref. 33
provide a description of the phenomenon, and numerical
analyses are given in the text.

Another quite interesting illustration consists in the
question of change of regime in the description of hydrody-
namic properties now in the case of a system of mobile elec-
trons in the conduction band of an-doped direct-gap polar
semiconductor. We can derive exact results for the charac-
teristic times in terms of the physical parameters of the ma-
terial and its thermodynamic state, and to obtain universal
laws for the determination of the boundaries between the
domains of the different truncation approaches. In this case
we need to take a quantum mechanical approach, which, ex-
cept for its particular algebra, is managed in the same way as
the classical one of the previous section.

We further extend the considerations of the previous
section—done for a classical fluid at room temperature—
taking now the case when the electron system is driven out
of equilibrium by the action of continuous laser illumination
in phonon-assisted-free-carrier excitation. The nonequilib-
rium macroscopic~thermodynamic! state of the electron sys-
tem is characterized by the concentrationn̄ and the quasitem-
peratureTe* it attains in the steady state~see, for example,
Ref. 36!. This quasitemperature is determined by the inten-
sity of the pumping laser. This electron system interacts with
the lattice vibrations, which are assumed to remain at the
constant temperatureT0 of a thermal reservoir. We keep only
the largely predominant Fro¨hlich interaction between elec-
trons and phonons in this polar materials.37

Moreover, we introduce besides the pair of global homo-
geneous quantitiesn̄ and Te* the local density and its two
first fluxes. In reciprocalQ-space they are

n~Q,t !5(
k

nkQ~ t !, ~53!

In~Q,t !5(
k

\k

m*
nkQ~ t !, ~54!

I n
[2]~Q,t !5

1

3 (
k

U \k

m* U
2

nkQ~ t !1̂[2] . ~55!

In these equationsek5\2k2/2m* ~in an effective mass ap-
proximation!, k and Q run over the Brillouin zone;nkQ(t)
5^c

k1(1/2)Q
† c

k2(1/2)Q
ut& is Dirac–Landau–Wigner single-

particle density matrix, wherec†(c) is the usual creation
~annihilation operators! and we are omitting the spin index.
The average value is over the auxiliary coarse-grained non-
equilibrium statistical operator in MaxEnt-NESOM, that is,

FIG. 1. Dependence on the ratio of masses of the characteristic times of Eq.
~19!, expressed in units ofV21 of Eq. ~20!.

FIG. 2. The domain boundaries in scaled wavelengths as a function of the
ratio of masses. Quantitiesl (01) and l (12) are given in terms of the scale
L5v thV

21.
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nkQ~ t !5Tr$c
k1 ~1/2! Q
† c

k2 ~1/2! Q
%̄~ t,0!%, ~56!

as in Ref. 36 but augmented with the presence of the second
order flux. Finally 1̂[2] is the unit second rank tensor since
because of isotropyI n

[2] is diagonal with all components
equal to one-third of its trace.

The equations of evolution are derived following the
same kinetic theory22,23,29as in the previous section@cf. Eqs.
~16!–~18!# which in the reciprocal space read as

]

]t
n~Q,t !2 iQ•In~Q,t !50, ~57!

]

]t
In~Q,t !2 iQwn~Q,t !52

In~Q,t !

tn1~z!
1 i

n̄

m*
QV~Q!n~Q,t !,

~58!

]

]t
wn~Q,t !2~10/3bm* !iQ•In~Q,t !

5
n~Q,t !

m* btn2~z!
2

wn~Q,t !

tn2~z!
. ~59!

Equation ~57! is the conservation equation for the density
~matter!, Eq.~58! is the balance equation for the density flux,
and Eq.~59! the balance equation for one-third the trace of
the second order flux. Moreover,b51/kBTe* ~reciprocal of
the quasitemperature of the electrons!; z5\v0 /kBTe*
5TE /Te* , with v0 the frequency of the LO phonons and
kBTE5\v0 introduces Einstein temperature for this phonons
~it can be noticed thatz plays here a similar role tox in
Sec.III!. We have taken into account only Fro¨hlich interac-
tion of electrons with LO phonons since in this polar semi-
conductors it is much stronger than deformation potential
and piezoelectric interactions. Moreover, we have introduced
the reciprocal characteristic times,

1

tn1~z!
5V0

2

3
z3/2e2z/2F S 112n01

n0

n̄ DK1~z/2!

1S 12
n0

n̄ DK0~z/2!G , ~60!

1

tn2~z!
5V0

4

9 S kBT0

\v0
D z3/2n0ez/2K0~z/2!, ~61!

where

V05S 2\v0

pm* D 1/2S eE0

\v0
D , ~62!

n05@exp$\v0 /kBT0%21#21, ~63!

n̄5@ez21#21, ~64!

and K0 and K1 are Bessel functions. In Eq.~60! tn1 is the
electron momentum relaxation time38 and Eq.~61! gives the
electron density second flux Maxwell’s characteristic time
@the analogous of the one in Eq.~18!# which resembles that
of energy.38 Finally, in Eq. ~58! the last term on the right-
hand side accounts for the Coulomb interaction between
electrons, dealt with in the random phase approximation,39,40

where V(Q)54pe2/e0Q2 is the Fourier transform of the

Coulomb potential (e0 is the static background dielectric
constant! andn̄ is the concentraction of the mobile electrons;
this term gives rise to the plasma waves in the medium~re-
sult of the particles being charged! which is the equivalent of
the sound waves in the system of Sec. III. To simplify mat-
ters we consider a low density, sayn̄.1015cm23, in order to
neglect this term and then to have equations quite similar to
those of Sec. III. Finally,eE0 is the coupling strength in
Fröhlich’s electron–LO phonon interaction.38

Using Eqs.~57!–~59! we proceed with an analysis iden-
tical to the one used in Sec. III and, without going into de-
tails of the straightforward but lengthy algebra involved, we
obtain the frontiers

Q̄(01)
21 ~z!5l̄ (01)~z!.$z/4t̄n1~z!@ t̄n1~z!1 t̄n2~z!#%21/2,

~65!

Q̄(12)
21 ~z!5l̄ (12)~z!.H zt̄n2~z!F 1

t̄n1~z!
1

1

t̄n2~z!G
3J 21/2

,

~66!

where tn1(z)5V0t̄n1(z); tn2(z)5V0t̄n2(z); l̄ (01)

5l (01) /L0 ; l̄ (12)5l (12) /L0 , with L05V0
21(\v0 /m* )1/2.

Introducing in these Eqs.~65! and~66! the definitions ofL0

andV0 and Eqs.~25a! and ~25b!, we can rewrite Eqs.~65!
and ~66! in the form

l̄ (01)~z!52c̃n(2)~z!t̄1~z!5
2

)
v thF t̄eff~z!

t̄n2~z!G
1/2

t̄1~z!,

~67!

l̄ (12)~z!5 c̃n(2)~z!t̄eff~z!5
1

)
v thF t̄eff~z!

t̄n2~z!G
1/2

t̄eff~z!, ~68!

which are of the same form of Eqs.~37! and ~51!.
Hence, for the classical-mechanical case of an ideal gas

in interaction with a bath consisting of other ideal gas, and
the quantum-mechanical case of an electron system~free
Landau quasiparticles! in interaction with a bath consisting
of the lattice vibrations~a gas of LO–phonons!, and for low
plasma frequency~low concentration of carriers!, the fron-
tiers l (01) andl (12) are formally identical@cf. Eqs.~37! and
~51! with ~67! and 68!#.

We can see that written in reduced variables Eqs.~65!
and ~66! are universal for all direct-gap polar semiconduc-
tors, e.g., those of the type III–V, II–VI, III-nitrides, etc. In
Table I we present numerical values ofV0 andL0 for three
typical semiconductors, together with values ofl̄ (01) and
l̄ (12) corresponding to a quasitemperature of 300 K.

In Fig. 3 are displayed, as a function of the nonequilib-
rium steady state of the system characterized, for fixedn̄, by
a varying quasitemperatureTe* ~determined by the action of

TABLE I. Scaling parameters and limiting wavelengths~at 300 K!.

V0(s21) L0(cm) l̄ (01)(cm) l̄ (12)(cm)

GaAs 3.131012 131025 3.431025 0.2531025

CdS 4.531013 4.131027 1.531027 1.131027

GaN 6.731013 4.331027 5.931027 2.531027
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the constantly acting external pump, and given in units of
Einstein temperature, i.e., asz215Te* /TE), the two main
characteristic times~right ordinate and dashed lines! and the
frontiers in wave numberQ(01) and Q(12) ~left ordinate and
full lines!. If we consider GaAs (TE.430 K and L0

.103 Å), the frontier wave numbers atTc* .300 K are
Q(01).33104 cm21 andQ(12).43105 cm21.

Experimental observation of the change from one do-
main of hydrodynamic modes to another, e.g., from damped
undulatory mode to a diffusive mode, can be done using light
scattering. The values ofQ which can be analyzed are deter-
mined by the experimental geometry, going from zero in
backward scattering to twice the photon wave number in
forward scattering~hence, typically from near zero to
roughly 104– 105 cm21). One can then follow the values of
Q in this interval and what should be observed is that the
so-called Brillouin doublet~Stokes and anti-Stokes bands of
damped plasma waves! with bandwidths of the order oftn1

21

collapse, on decreasing values ofQ, in a shiftless so-called
Rayleigh band with a width of the order ofDn(2)Q

2, where
D is the diffusion coefficient. This is clear in the case of
liquids,41 but is not possible to see in the plasma in semicon-
ductors since at low plasma frequencies the doublet of
plasma wave bands becomes embedded in the Raman–
Doppler band of scattering by single-particle excitations
~e.g., Ref. 42!.

V. CONCLUDING REMARKS

We have considered a statistical ensemble formalism
which provides microscopic~mechanical-statistical! founda-
tions to the thermohydrodynamics of fluids or fluidlike sys-
tems like the plasma in semiconductors. This is, as noticed,
the so-called Nonequilibrium Statistical Operator Method,
and we have resorted to Zubarev’s approach.

Here we have addressed a particular aspect of MaxEnt-
NESOM, which arises when dealing with thermodynamic
and thermohydrodynamic problems; it is the question of us-
ing truncation procedures, that is, an imposed restriction on
the chosen set of basic macrovariables to be used for the
description of the evolution of the macrostate of the system.
Here we have considered a simple system~kind of a Brown-
ian system of particles interacting with a thermal bath of a
much larger number of other particles!. Moreover, attempt-
ing to provide a better visualization of the results, we have
resorted to a description at a classical-mechanical level. Of
course these results can be extended to the case of fluids
described at a quantum-mechanical level. Some specific re-
sults on this question, in the case of the thermohydrodynam-
ics of the fluid of carriers in the photoinjected plasma in
semiconductors, are reported in Refs. 20 and 43, and here we
have presented, in a brief form, the case of polar semicon-
ductors in Sec IV.

In Sec. III we have shown that a truncation criterion can
be derived, whichrests on the characteristics of the hydro-
dynamic motion that develops under the given experimental
procedure.

First, in a qualitative manner, we can say that, as a gen-
eral ‘‘thumb rule,’’ the criterion indicates thata more and
more restricted truncation can be used when larger and
larger are the prevalent wavelengths in the motion. There-
fore, in simpler words, when the motion becomes more and
more smooth in space and time, the more reduced can be the
dimension of the space of basic macrovariables to be used
for the description of the nonequilibrium thermodynamic
state of the system.

This is connected with Bogoliubov’s principle of corre-
lation weakening and hierarchy of relaxation times, as our
quantitative analysis have shown. However we have consid-
ered here only three cases involving a quite small number of
basic variables ~corresponding to IST$0%, IST$1%, and
IST$2%!, the results we derived point to a conjecture for a
general truncation criterion, namely,a truncation of order r
(meaning keeping the densities and their fluxes up to order r)
can be introduced, once we can show that in the spectrum of
wavelengths, which characterize the motion, predominate
those larger than a ‘‘frontier’’ one, l (r ,r 11)

5 c̃n(r )teff(r,r11) . In this expressionc̃n(r ) is the velocity of
propagation of the motion andteff(r,r11) is a characteristic
time involving the different characteristic times which ap-
pear in the equations of evolution~or 1867-Maxwell-type
relaxation times for fluxes30!. We notice that in our calcula-
tions l (01)5 c̃n(2)t (01) and l (12)5 c̃n(2)t (12) , where t (01)

52t1 and t (12)5teff . These expressions, we recall, are
identical for both types of systems we have considered, the
classical one and the quantum one, with the quantities in-
volved depending on the type of interaction between system

FIG. 3. The domain boundaries in scaled wavelengths versus carrier qua-
sitemperature in the case of direct-gap polar semiconductors~full line and
left ordinate!, and the scaled characteristic times~dashed line and right
ordinate!. The shaded area corresponds to an intermediate interphase be-
tween descriptions IST$1% and IST$2%, that is, corrections to the IST$1%
description begin to be relevant.
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and bath~surroundings!. In the classical case also on the
ratio of masses,x, and in the quantum one on the ratio of the
carrier temperature and the Einstein temperature of the polar
phonons,z.

From the results of previous sections, the dependence on
x of the two main characteristic times, namelytn1 andtn2 ,
are given by Eqs.~19a! and~19b!, respectively. Figure 1 tells
us thattn1 is larger thantn2 for x.1, the crossover corre-
sponding tox51. Forx.1 we can consider the system as a
Brownian one, and forx,1 as a, say, anti-Brownian one. As
we have already noticedl (01) is always larger thanl (12) ,
what is clearly evidenced in Fig. 2, and we reinforce the fact
already stressed in the previous section that there is a clear
cut frontier between the domains of IST$0% and IST$1%, but
not in the following frontier, which is characterized by an
inequality @cf. Eq. ~49!#. Moreover, the predominance of a
purely diffusive regime in the domain of IST$0% is also de-
fined by an inequality, the one of Eq.~42!.

In Sec. IV we considered two illustrative examples, al-
lowing for experimental observations of the transition of do-
main. One is the study of the process of sintering of ther-
mosensitive resins in laser-thermal stereolithography. The
experimental results validate~in the case for thermal motion!
the criteria we have developed here~complete details in Ref.
33!. Another is the case of the fluid of electrons inn-doped
direct-gap polar semiconductors. We have been able to de-
rive general results for this family of materials, with numeri-
cal values to be obtained by simply specifying the two scal-
ing quantities,V0 and L0 , for each kind of material. The
transition of domain between IST$0% and IST$1% can be evi-
denced via experiments of Raman scattering.
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