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A nonequilibrium ensemble formalism: Criterion for truncation
of description

J. Galvao Ramos, Aurea R. Vasconcellos, and Roberto Luzzi
Instituto de Fsica “Gleb Wataghin,” Universidade Estadual de Campinas, Unicamp 13083-970 Campinas,
Sa@ Paulo, Brazil

(Received 30 November 1998; accepted 2 November)1999

In the framework of a nonequilibrium statistical ensemble formalism, consisting of the so-called
Nonequilibrium Statistical Operator Method, we discuss the question of the choice of the space of
thermohydrodynamic states. We consider in particular the relevant question of the truncation of
description(reduction of the dimension of the state space criterion for justifying the different

levels of truncation is derived. It depends on the range of wavelengths and frequencies which are the
relevant ones for the characterization, in terms of normal modes, of the thermohydrodynamic
motion in a nonequilibrium open system. Applications to the cases of thermal-sensitive resins and
of n-doped polar semiconductors are done, numerical results are presented, and experimental
observation is discussed. @000 American Institute of Physid$§0021-96060)50705-3

I. INTRODUCTION integrodifferential equations of evolution, to be solved for
given (in the experiment under consideratiomitial and
The study of dissipative systems not so near to equilibboundary conditions.
rium conditions, that is, outside the so-called linear or Onsa-  Practical theoretical analyses of real physical situations
gerian regime, has received plenty of attention in recent derequire to introduce a truncation of descriptidrhis trunca-
cades. This is the result of the demands created by severabn implies in retaining the information considered as rel-
recent important developments in science and technologyvant for the problem in hands, and to disregard nonrelevant
Accordingly, these facts have required the elaboration of apinformation?*?® For carrying on this procedure a criterion
propriate theoretical studies implying, mainly, those able toneeds be derived, which, in a sense, should be one playing an
provide satisfactory approaches in kinetic theory, irreversibleanalog of what is done in the case of the solution of Boltz-
thermodynamics and nonclassical hydrodynamics, as well agjann equation via the Hilbert—Chapman—Enskog method,
a response function theory, for systems arbitrarily away fromwhere the Knudsen number provides a kind of control pa-
equilibrium. All of them can be covered in a unified way rameter.
resorting to a statistical mechanics for nonequilibrium pro-  Considering a system of two classic fluids in weak mu-
cesses. A quite promising one, as noticed by Zwahisga  tual interaction, we derive a criterion for truncation of de-
particular form of a nonequilibrium ensemble formalism, scription in MaxEnt-NESOM thermohydrodynamics. For
namely, the Nonequilibrium Statistical Operator Method.petter visualization we introduce first a simplifying treat-
[The different approaches can be put under the unifying umment, consisting into decoupling the motions of matter and
brella of a variational principle—maximization of the infor- energy (i.e., thermostriction effects are neglecgteor the
mational statistical entropy—and we shall refer to it asmotion of mass we determine a criterion for the separation of
MaxEnt-NESOM(Ref. 2—7.] the domains of validity of classicdbr Onsagerianand of
MaxEnt-NESOM provides foundations for a statistical two extended thermohydrodynamics. The connection with
thermodynamics of irreversible processdsbbed Informa-  Bogoliobov's principle of correlation weakening and hierar-
tional Statistical Thermodynamics, IST for shdtt'! and a chy of relaxation time€=28is evidenced. Finally, applica-
nonclassical hydrodynami¢$ A MaxEnt-NESOM-based re- tions to the cases of thermosensitive resins and-dbped
sponse function theory is described in, for example, Refsdirect-gap polar semiconductors are done, numerical results
2,13-16, and some applications to the case of pump—probgre presented, and experimental observation is discussed.
experiments in the photoinjected plasma in semiconductors
are reported in, for example, Refs. 17-20. Irreversible ther-
modynamics and hydrodynamics as field theofeescribing
the values and evolution of space and time dependent mag- THERMOHYDRODYNAMICS OF A
rovariable$ are based in MaxEnt-NESOM on a generalizedgrROWNIAN-TYPE SYSTEM
nonequilibrium grand-canonical ensembte?® The latter is
characterized by the density of particles and the density of We consider a fluid oN particles of massn interacting
energy, together with their fluxes to all orders, as required byvith another fluid ofNg particles of mas$/. The first is the
the MaxEnt-NESOM-closure-like condition for the set of ki- system of interest to be analized, and the second, to be called
netics equation$:’?2?®Hence, the MaxEnt-NESOM-kinetic a bath and wititNg>N, is assumed to be constantly kept at
theory introduces a double infinite set of coupled nonlinear fixed temperaturd@, through a good thermal contact with
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an ideal reservoir at this temperature. For simplicity, and to p _ p
obtain a more clear picture of the question, we use a classical ull(p)= m (r-times - m
treatment. The Hamiltonian is

: (12

the brackets indicating tensorial productrefimes the gen-

H=Ho+Hos+H’, (1) erating velocity vectou(p).
where Hence, Eqs(6) and (7), and (8)—(11) define the set of
basic dynamical variables for the description of the thermo-
H.= darf d3p(p2/2m)a(r.p|T), 2 hydrodynamics of the system under consideration. The non-
0 f PP )Aa(r,pll) @ equilibrium statistical operator, which is a superoperator of

Ng these dynamical variables, is given and discussed in Ref. 21.

Hop= 2 P;Z/ZM* (3) Fina_tl_ly,_the basic set of m_acrov_ariables_, which are the non-
w=1 equilibrium thermodynamic variables, is composed of the

Ng average values over the nonequilibrium ensemble of the dy-
' 3 3 _ o namical variables of Eq¥6)—(11). In this way, it is intro-

H _,Zl fd rj d“pur R#|)n1(r,p|l“). @ duced the space of states of a statistical thermodynamics

dubbed Informational Statistical ThermodynamitST for

shorp 8-11

The equations of evolution are simply the average over

nonequilibrium ensemble of Hamilton equations of mo-

tion, that is,

In these equationsly, andHyg are the Hamiltonians of the
free system and bath, respectively, add stands for the
interaction between system and bath via the central potenti%e
W(rj—R,[), where r; (j=1,2,...N) and R, (u
=1,2,... ,Ng) are the respective coordinates, and we pall
and P, the corresponding linear momenta. Moreover, we e _ NG

have introduced the single-particle dynamical density func- gt i (r,t)—f dr o, (TO{1;"(r[T),H}, (13
tion

where{ , } stands for Poisson’s brackets and
N

Ay(r pIT)= 2 o(r=r))8(p—p)), ®) |Jlf1(r,t)=f dril(r[T)e,(T|t), (14)
with T" indicating a point in the phase space of classical meindicates the corresponding nonequilibrium thermodynamic
chanical states of the system. macrovariable (=h orn; r=0,1,2,...) with o (T'|t) being

We consider thermohydrodynamic characteristics of thighe statistical operator taken in Zubarev's approstihe
system in the statistical approach provided by MaxEntright-hand side of Eq(13) is extremely difficult to calculate.
NESOM. For that purpose we start with a nonequilibriumA way around is to introduce a kind of perturbation expan-
generalized grand-canonical ensenf3i€> The description  sjon of this term, in the form of an infinite series of collision
of the nonequilibrium state of the system is done in terms obperators, corresponding, roughly speaking, to two, three,
the density of particles and the density of energy, namely, etc. particle collisions, plus a contribution associated to an

N equation of conservatiot?’ that is, in the present case these
: —23
ﬁ<r|r>=f dphy(r.pll) =2 &(r=r;), (6 equations aré
=1
J
EIJ[’](r,t)+V~IJ[r+1](r,t)=JJ(2)[’](r,t), (15)

h(r|T) = J dp(p?/2m)f(r,p|T)

whereV - stands for the divergence operator, and consider-
N

ing weak interactions, we have written the Markovian limit

= (p2r2m)s(r—r), (7)  of the equations of evolution, retaining contributions only up
j=1 . . : ;
to second order in the interaction strengths present in the
and their fluxes of all orders, which are collision operatod® defined in Refs. 2—4,29.
We can noticed that Eq15) represents a double sébr
IAn(f|1”)=f d>pu(p)y(r,p|T), 8 j=h andn) of a very large numberrE0,1,2,..) of

coupled equations. They are, as a general rule, nonlinear in-
R tegrodifferential equations, instantaneous in time because the
Ih(r|F)=f d3p(p?/2myu(p)fy(r,p|T), (99  Markovian approximation we have introduced, but are non-
local in spacdthat is, space correlations are pre3éht

i1 [ pul(p)y(r pl), (10
Ill. THE TRUNCATION PROCEDURE
IAH](r|F)=J d3p(p?2myul(p)f(r,p|T), (1D In order to discuss the introduction of a truncation pro-
cedure and its characterization—meaning a criterion for
with r=2,3,.. ., indicating the order of the flux and its cor- it—we further simplify the presentation in order to avoid

responding tensorial rank, and where we have introducedumbersome expressions that would obscure the physical in-
u(p)=p/m and ther-rank tensor, terpretation. For that purpose we decouple the equations for
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particle and for energy motion, what implies into neglectingwhere, as usuaV is the gradient operatdwe recall thatv -
thermostriction effects, and in what follows we concentrateis the the divergence operator
the attention on the movement of particles, characterized by Using Egs.(16)—(18) and Eq.(22), after some algebra

n(r,t) and its fluxed Lr](r,t), r=1,2,... . Further, both sys-

tem and bath are taken as being in mutual thermal equilib- 3

rium at temperaturd,. We proceed by introducing a trun-

cated description in which we take into account only the o3

density of particles and its first two fluxes. Using Ebp) we

obtain the equations of evolution for the basic variables,

namely,
%n(r,t)JrV-ln(r,t):O, (16)
E|n(r,t)+v-|L21(r,t)=—lT”n(l+)3, 17

where 12! is the unit second order rank tensor, and we have

defined the characteristic times,

1
-1 _
Tt (X) =0 —x(x+1) : (193
“1x)=0Q N 19b)
e (=0 s T (190
with x=m/M, and
_ NRBeF(0) [7Bo
Q= 3 2M’ (20

whereBy=1/kgTy, Ng is the density of particles in the bath,
and

1

FO)=5 2 qv(a), (21)
where(q) is the Fourier transform of the central potential
W(|r—R,|), V is the volume of the system, arglis the
modulus of vectonq.

Evidently, Eq.(16) is the equation of conservation for
the density of particles, Eq§l7) and(18) are balance equa-
tions for the fluxes, where on the right-hand side is present

term of decay of each of both fluxes, with characteristics

times 7, and 7, (they are the analogous of Maxwell's re-
laxation time in his study of viscous motith

To close the system of Eqel6)—(18), we need to obtain
an expression for the third order fluf® in terms of the

we obtain that

1 & 1
prviaay)
Teff(X) ot Gn(z)(x)

d

ot

Caz)(X)
Th2(X)

V2in(r,t)

1
- m—BOV-[Vzln(r,t)ﬂLZV(VIn(r,t))],

(23)

where

Cay)(X) = 1ImBo=KgTo/m=v{/3, (24)

with vy, being the so-called thermal velocity defined by
mva/2=3kgTo/2, and we have introduced the characteristic
times

Teit ()= 7o () + 702 (X) = 70 ()] G32(X), (253
Tn+(X) = Th1(X) + 72(X), (25b
On(2)(X) =[ Tn1(X) Tn2(X) ]2, (250

Neglecting the right-hand side of E(3), because its
contribution is proportional to the third order in the wave
number and we only mantain contributions up to the second
order in the wave numbeithe limit of wavelengths larger
than the interparticle separatioriq. (23) becomes

a3+ 1 a2+ 1
(9t3 Teff(X) (9t2 0%(2)()()

d

ot

Caz)(X)
Th2(X)

V2|n(r,t)=0.
(26)

Equation(26) is a differential equation of third order in
time, which we proceed to analyze. First, we notice the fact
that if in this Eq.(26) we neglect the third derivative in time
(smooth variation in timg it goes over a telegraphistlike
(parabolic-typg equation, namely,

! &2+ ! i V2in(r,t)=0 (27
= — —=V?In(r,t)=0,
Th)(X) 9% " Dpz(X) ot
wheret,,) is the velocity of propagation,
a
~2 _ Teff( X) :E Teft( X) 2
e P e T e L

and D;)(x), playing the role of a diffusion coefficient, is
given by

chosen three basic variables. This is done resorting to Dn(z)(x)=Eﬁ(2)(x)rn+(x)=cﬁ(2)(x)rnl(x)

Heims—Jaynes perturbation expansion for averafbst in
the limit of weak fluxes, what allows us to takeliaear
approximationin the fluxes, amounting to keep only the first

term in Heims—Jaynes expansion. For the sake of simplicit

we omit here the explicit expression fdf'(r,t) but instead

we present the result we need in the process of deriving Eq.

(23) below, namely,

1
Vo (VAR 0) = ——=[V21,(r,) +2V(V - In(r,0)],
0

mj
(22

= 3ViTm(X). (29)

Moreover, if in Eq.(27) we takeCT,,) going to infinity,

¥10wever keepind ) finite, we get a Fick-type diffusion

quation. We proceed next to look for a criterion for justify-
ng the use of different truncations of description. For that
purpose, we first begin to introduce a notation to characterize
the different possible domains of validitymplying in the
conditions which justify the use of a truncated descriptioin
IST. We call it Informational-Statistical Thermodynamics of
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r-rank, for short ISTr}, the one in which are retained the ~ We can now derive a boundary between {@Tand

densities and their fluxes only up to ordein the basic setof ST{l}, which are, respectively, the equivalent at the
nonequilibrium thermodynamic variables. mechanical-statistical level of description of Classical Irre-

We begin by considering the domains of validity, in Versible Thermodynamide.g., Ref. 34and earlier versions

wave number and frequency space, of {§T IST{1}, and ©Of Extended Irreversible Thermodynami¢s.g., Ref. 35
IST{2}. Such a boundary may be set at the wavelength

N o1(X) = Qo1y(X) = ZEn(2)(X) T+ (X)

A. Frontier of the domain of IST {0} with IST {1} = ZVinTn1(X) = 2D n(2)(X) [Cp2)(X), 37
First, we look for the eigenvalues of E@QR7), a(y), when the square root in E{B2) becomes null, passing from
which provide the frequency dispersion spectrum. The charreal to imaginary values. We recall that the characteristic
acteristic equation is timesr,, andr,; are given in Eqs(25b) and(19a), respec-
2 tively, the relation between the renormalized velocity and the
@XQ) " a@(xQ) 2_0 (30)  thermal velocity in Eq(28), and the diffusion coefficient in
Cn2)(X) Dni2)(X) ’ Eq. (29).
whereQ is the wave vector@ the wave numberassociated We stress the point that theoverdamped motion is
with each normal mode of propagation. characteristic of movements involving wavelengths
Solving Eq.(30) the eigenvalues are >N\ (01, and nearly pure diffusive motion follows in the case
of very long wavelengths or more precisely for \ oy .
@ (%,Q).=— Let us reconsider this last point in an alternative way.
(@Rl 2754(X) Equation(27) can be written as
n+
~Cﬁ(z)(x) 2 > ) v 5 Dngz)(X) @2
* (m) Chp¥Q% , (3D 51 Pn@()VeIn(r,t)= T ip(X) O n(r,t), (38

or, after using Eqs(28) and (29), they can be written as the left-hand side being of the form of Fick’s diffusion equa-

X,Q).=—[2 T 1 +i182,. (x)O2 tion. To evaluate when the latter is a good approximation we
*@(%Q) (2704 (x)] {2 (X)Q consider when the right-hand side can be neglected in com-
— [27n+(x)]*2}1/2. (32)  parison with the left. We look for the eigenvalueg of this

equation, but introducing a kind of perturbation procedure,
consisting of looking into the influence of the right-hand side
2C(2)(X) Ths (X)Q>1, (33 when _the .movement is nearly diffusive. The exact eigenvalue
equation is

Inspection of Eq(32) tells us that for

the motion consists alamped undulatory motigmpropagat-
ing with velocity€,)(x), a frequency given by the square , Day(X) ,
root in Eq.(32) (a renormalized soundlike dispersion rela-  #0)(X:Q)+Dn2)(x) Q= — 0 0w(xQ). (39
tion), and a lifetime of the order of 2 (X). ) ) ) . )

On the other hand, for values @ sufficiently small but introducing on the right, in place of;,), the eigenvalue

(large wavelengthssuch that the inequality a(z) of Eq. (36), Eq. (39) becomes

280 (2)(X) T+ (0)Q<1,, (34 a(1)(X,Q)= =D QL= X5(0)Q7], (40)
is satisfied,a(, is a real number and theotion is over-  where
damped consisting of two contributions decaying with life-
times X Dn2)() _ 1

) )\D(X): N (2)(X) = E)\(Ol)(X), (41)
— n
= a(2)(%,Q) + =7, (%), (35

with \ o1y is given by Eq.(37).

— a(2)(X,Q) -=Dy2)(X) Q% (36) Therefore, we can expect that the purely diffusive mo-
For very small wave numbersery long wavelengthssuch ~ tion ?s_predominant when _the Iast_contribut_ion in E40) is
that[rn+(x)]‘1>Dn(2)(x)Q2, the contribution with the life- Nnegligible as compared with the first, that is when
time of Eq.(35) dies down more rapidly than the other, and <
this overdamped motion consist of a diffusive motion. In Ao()Q=1, (42)
fact, a(,y of Eq. (36) is the eigenvalue of the equation of that is, for wavelengths much larger thag,, as shown in
diffusion with a diffusion coefficient given by Eq29); this  the previous analysis.
result is well known from textbook analyses of the telegra-  Moreover, concluding this subsection we stress the fact
phist equatiorf? We call attention to the fact that the transi- that, because the dispersion relation relates frequency and
tion from damped wave motion to near diffusive motion, wave number in the mode analysis of the motion, the above
becomes evident in experiments related to the technoindusonsidered frontier also implies to low frequencies. In fact,
trial process of thermal-laser stereolithographyriefly de-  using Egs.(37) and (32), we have the boundary expressed
scribed in next section. now in terms of the frequency as
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o(o1)(X) = {Eﬁ(z)(X)Q(Zm)(X) —[27,4.(X)] 72}1/22 0, (43

indicating a kind of “soft mode” transition, corresponding
to a change from damped undulatory motion to an over-
damped one, with diffusion at sufficiently long wavelengths.

B. Frontier of the domain of IST {1} with IST {2}

Let us consider now the transition from the regime OfConsequentIy,
IST{1} to IST{2}. For that purpose we write E¢26) in the

form,
1 az+ 1 9 v2|ner )
= - —=VoIn(r,
Th)(X) 9% Dpz)(X) ot
Teif(X) 3
=—zz v 7anny), (44
Too)(x) it

Ramos, Vasconcellos, and Luzzi

N (12)(X) = Q(13)(X)
=Ch2)(X) Test(X)

1

="Vt

V3

Teif( X)

12 _ D)
Tn2(X)

T X) = Cn2)(X)

a description in the truncated{§Tcan be
used when the motion, in its normal mode analysis, involves
wavelengths verifying that

N2> Q15(X) =N (12)(X) =Cp(2)(X) Tet(X). (52

Hence,damped undulatory motion—governed by a te-
legraphistlike equation—is characteristic of movements in-
volving wavelengths >\ 1,). When this restriction is not
met, that is\ becomes of the order of(;,) we need to go
over the domain of IS{B}. Moreover, from Eq(50) we can

Teif( X)

Tn2(X) |’ ®)

the left-hand side being the telegraphistlike equation of Eqsee that always (15)(X) <\ (o1)(X).
(27). Next we proceed in a similar way as done in the last

subsection. We look for the eigenvalueg, of Eq. (44), that

is, the solution of the equation,

Eﬁ(z)(x)
Dn2y(X)

= — Te(X) a(3)(X, Q). (45)

als(x,Q) + a(3)(X,Q) +Th(2)(X) Q2

C. Characterization of the descriptions

Summarizing, according to the results of the two previ-
ous subsections, we can characterize four regimes of thermo-
hydrodynamic behavior in the given system. The use of each
one depends, as we have seen, on the range of wavelengths
(or, alternatively, through the dispersion relation, on the
range of frequencigghat have a prevalence in the Fourier

Next we approximate the right-hand side entering the modugnalysis of the motion of the density of particles in the given
lus of the eigenvalue of the telegraphist equation.experimental conditions.

la2)(x,Q) |, of Eq. (31), in place ofa(3)(x,Q), and we

These four regimes arél) diffusive motion;(2) over-

reorganize the resulting approximated eigenvalue equatioBamped motion(3) damped undulatory motiori2) damped

by dividing it by the fourth power of the velocitg, ) to
obtain
a3)(X,Q)

Z a@E(xQ) ZZAEn(z)(X,Q)

= —~ 2, (46
2o | T Do) 2,00 2“0
where we have introduced the quantity,
~2 1 3 3
AT (%,Q)= g[Teﬁ(x)/7n+(x)]7\(01)(X)Q, (47

with D2y given by Eq.(29).

undulatory motion accompanied of an overdamped motion.
These are the solutions, respective(§) of the diffusion
equation;(2) and (3) of the telegraphist-like equation, Eq.
(27); (4) of the third order equation, Eq26). Also, as no-
ticed, this corresponds to descriptions in {8 IST{1}, and
IST{2}. Only the transition from undulatory damped to over-
damped regimes is characterized by a clear cut frontier,
namely,\ o1y=2Cn(2)Tn+ . The others are characterized by
the conditions of the motion to proceed in a regime of pre-
dominance of wavelengths much larger tﬁ%F?:szM
(almost purely diffusiviy andX 12)="Tp2)7efr (@lmost purely

Inspection of Eq.(46) tells us that we recover the ap- undulatory damped

proximate dispersion relation for the telegraphist equation,

Eq. (32, i.e., ag)=a(, when it is verified that

AT} 2)(x,Q)
A < (48)
Ch2)(X)
We can alternatively write this inequality in the form,
Na2(X)Q<1, (49
after introducing the characteristic wavelength,

Teif(X)
2774(X)
_ [ Tn1(X) Tna(X)

2[ Tha(X) + Tnz(x)]z

with A 1)(X) given by Eq.(37), or also as

N(12)(X) = N o1)(X)

] N (o1)(X), (50)

We have determined, in the case of the Brownian-type
model of Eq.(1) and in terms of the relation of massrs
=m/M, the domains of validity of each of the regimes we
have considered. In Fig. 1 are displayed the characteristic
times,; and 7,,,, in units of the quantitywith dimensions

of time) Q! of Eq. (20). The boundary wavelengths, in the
scaled formx=(Q/vg)A=\/A, are shown in Fig. 2 in
terms ofx, thus providing the regions of validity of the trun-
cations that lead to the different regimes.

IV. SPECIFIC ILLUSTRATIONS AND EXPERIMENTAL
OBSERVATION

In this section we illustrate how it proceeds the change
of regime between IS} and IST2}, and its experimental
observation. First, we can mention the quite interesting and
illustrative example consisting in the study of the technoin-
dustrial process of thermal laser stereolithografiistter re-
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16 well defined good prototype is produced. We may say that
] this change of regime can be “seen” in the photographs of
Fig. 4 in Ref. 33, consisting in cylindrical mode{sings)
obtained using samples with varying valuesQ@py (ky in
Ref. 33. This is in what relates to thermal perturbatidhe
\ one relevant to the technoindustrial progesst density per-
turbation is also present; in some cases it can be seen with
the unaided eyéor using a simple magnifying lehpropa-
| gation of material waves in the pure resin but practically
4 dissapearing in the more and more doped resin. This indi-
; / cates the transition of regime in the motion of the density as
27 o, the one we are considering here. Figures 2 and 3 in Ref. 33
0] - , provide a description of the phenomenon, and numerical
0 2 4 6 8 10 analyses are given in the text.
RATIO OF MASSES x=m/M Another quite interesting illustration consists in the
FIG. 1. Dependence on the ratio of masses of the characteristic times of E&I.uesftlon of change of_reglme in the description of hYdrOdy'
(19), expressed in units d " of Eq. (20). namic properties now in the case of a system of mobile elec-
trons in the conduction band of radoped direct-gap polar
semiconductor. We can derive exact results for the charac-
ferred to as rapid prototypingThe theoretical and experi- teristic times in terms of the physical parameters of the ma-
mental aspects are describe in detail in Ref. 33, to which weerial and its thermodynamic state, and to obtain universal
refer the reader, and here we only briefly summarize théaws for the determination of the boundaries between the
results. domains of the different truncation approaches. In this case
The process consists in sintering of a thermosensitiveve need to take a quantum mechanical approach, which, ex-
resin (by illumination with an infrared C@lase) for creat-  cept for its particular algebra, is managed in the same way as
ing prototypes for casting of parts for automotive, medical,the classical one of the previous section.
etc. uses. Hence, it requires high definition in the production  We further extend the considerations of the previous
of the prototype, i.e., a rapid sintering well localized in the section—done for a classical fluid at room temperature—
small region of laser beam focalization. As shown in Ref. 33taking now the case when the electron system is driven out
if the system is in the domain of 182}, there follows propa-  of equilibrium by the action of continuous laser illumination
gation of second sountherma) waves at long distances and in phonon-assisted-free-carrier excitation. The nonequilib-
the sample is ruined. This occurs wh@@01)<r51, where  rium macroscopi¢thermodynamigstate of the electron sys-
o is the radius of the spot of laser-beam focalization on theem is characterized by the concentrafiband the quasitem-
resin (Qoy) is referred to aky in Ref. 33. “Tampering”  peratureT? it attains in the steady statsee, for example,
with the resin by adding aluminum powdéior example¢  Ref. 3. This quasitemperature is determined by the inten-
modifies(decreaseshe diffusivity Do, and hence changes sity of the pumping laser. This electron system interacts with
Q(oy) in such a way to hav&®1)>r, - [cf. EQ. (37)]. No  the lattice vibrations, which are assumed to remain at the
wave propagation of heat occufeegime of IST0}) and a  constant temperatui®, of a thermal reservoir. We keep only
the largely predominant Fhdich interaction between elec-
trons and phonons in this polar materifs.
Moreover, we introduce besides the pair of global homo-
geneous quantities and T} the local density and its two
first fluxes. In reciprocaQ-space they are

14

"Brownian" System

12 4

104

CHARACTERISTIC TIMES
"Anti-Brownian" System

o]
1

n(Q,1)=2 Nio(t), (53
IST{0} K

n
1

hk
QD=2 15NV, (54

Mg A

IST{1} |L2](Q't):%; ‘z_':

IST{2} In these equations,=7%2k?/2m* (in an effective mass ap-
: . i : . : . : . proximatior), k and Q run over the Brillouin zonen,q(t)
0 2 4 6 8 10 =(c' o |t) is Dirac—Landau—Wigner single-
.k+(l/2)Q k*(l/Z)Q . . X
RATIO OF MASSES x=m/M particle density matrix, where'(c) is the usual creation
FIG. 2. The domain boundaries in scaled wavelengths as a function of thganmhllatlon operatqbsand we are lettlng the Spln. index.
ratio of masses. Quantitiegyy and A1) are given in terms of the scale The average value is over the auxiliary coarse-grained non-
A=v Q7L equilibrium statistical operator in MaxEnt-NESOM, that is,

N
1

2
No(t) 112, (55

WAVELENGTHS CUTOFF
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n Tr{cT c Q(t 0)} (56) TABLE I. Scaling parameters and limiting wavelengtlas 300 K).
kQ k+ (12 Q k— (12 Q
) — —

as in Ref. 36 but augmented with the presence of the second 2o(s7) Ao(cm) A o(cm) A (1z(cm)
order flux. Finally 12! is the unit second rank tensor since GaAs 3.x10% 1x10°° 3.4x10°° 0.25x10°°
. . . . 3 —7 —7 ~7

because of isotropy!? is diagonal with all components ~ CdS 45¢10°  4.1x10 1.5x10 1.1x10
GaN 6.7 101 4.3x10°7 5.9x10°7 2.5x10°7

equal to one-third of its trace.

The equations of evolution are derived following the
same kinetic theo”??>?%as in the previous sectidef. Egs.
(16)—(18)] which in the reciprocal space read as

Coulomb potential €, is the static background dielectric
. constantandn is the concentraction of the mobile electrons;
ﬁn(Q’t)_'Q' 1(Q.1)=0, (57) this term gives rise to the plasma waves in the medijtan
. sult of the particles being chargedhich is the equivalent of
n(Qt) ~n the sound waves in the system of Sec. Ill. To simplify mat-
Th1(2) i QUIQIN(QY, ters we consider a low density, say= 10"°cm ™3, in order to
(58 neglect this term and then to have equations quite similar to
P those of Sec. lll. FinallyeE, is the coupling strength in
— 0,(Q,1) = (10/38m*)iQ-1,(Q,1) Frohlich’s electron—LO phonon interactidh.
ot Using Eqgs.(57)—(59) we proceed with an analysis iden-
n(Q,t) 0 (Q.1) tical to the one used in Sec. Il and, without going into de-
(59 tails of the straightforward but lengthy algebra involved, we
obtain the frontiers

d
S In(QD—iQen(Q) =~

T B2 t(2)

Equation(57) is the conservation equation for the density — = e — 1
(mattep, Eq.(58) is the balance equation for the density flux, Qo1)(2) =N o1 D) ={ZATn(D)[T1(D) + Ta( D ;5

and Eq.(59) the balance equation for one-third the trace of (65)
the second order flux. Moreoveg= 1/kgT% (reciprocal of — — _ 1 1% 2
the quasitemperature of the electrong=7%wq/KgT: Q(lZ)(Z):)‘(lz)(Z)z[ZTnz(Z) =2 m ] )
=Tg/TS , with wq the frequency of the LO phonons and (66)

kg Te=rf wq introduces Einstein temperature for this phonons _ _ —
(it can be noticed thaz plays here a similar role ta in ~ Where  m(2)=Qom(2);  702(2) = Qo7na(2); Moy
Sec.ll). We have taken into account only fifich interac- =M on/Aos Maz=Naz/Ao, With Ag=Qq (iwg/m*)Y2
tion of electrons with LO phonons since in this polar semi-Introducing in these Eq$65) and(66) the definitions ofA,
conductors it is much stronger than deformation potentiaBnd (o and Eqs(25a and(25b), we can rewrite Eqs(65)
and piezoelectric interactions. Moreover, we have introduce@nd (66) in the form
the reciprocal characteristic times,

Mon( )= Zon 7. (0= 2va 22| 5 )
1 2 v o)\ 2)=2Cn2)(2) T4 (2) = —Vin=——5| T7+(2),
I = 31241212 Y V3 Tn2(2)
)~ 32 %27 1+ 20+ 7)Kl(z/z) 67
Vo — _ ?ff(z) 1/2_
+|1-=|Ky(2/2) |, 60 =T g B
( ,,) o(2/2) (60) N (12)(2) =Cp(2)(2) Teri(2) ‘/thh = (2) Teil(2), (68)
1 kgTo - which are of the same form of Eq&7) and(51).
Tho(2) - §< haog )Z Vo™ Ko(2/2), 6D Hence, for the classical-mechanical case of an ideal gas
in interaction with a bath consisting of other ideal gas, and
where the quantum-mechanical case of an electron systiee®e
2hwo\ ¥ ek, Landau quasiparticl¢sn interaction with a bath consisting
Qo= —=% (— : (62)  of the lattice vibrationga gas of LO—phononsand for low
m hwg . ;
plasma frequencylow concentration of carriefsthe fron-
vo=[explhwy/kgToy—1]71, (63)  tiersh g1y and i, are formally identicalcf. Egs.(37) and
L, . (51) with (67) and 68].
v=[e’=1]"", (64) We can see that written in reduced variables Hg5)

andK, andK, are Bessel functions. In EG60) 7, is the and (66) are universal for all direct-gap pola_r .semiconduc—
electron momentum relaxation tiffeand Eq.(61) gives the tors, e.g., those of the typg =V, lI=VI, lll-nitrides, etc. In
electron density second flux Maxwell's characteristic time 12Ple | we present numerical values@p and A, for three
[the analogous of the one in E(.8)] which resembles that typical semiconductors, together with values by and

of energy® Finally, in Eq. (58) the last term on the right- A (12) corresponding to a quasitemperature of 300 K.

hand side accounts for the Coulomb interaction between In Fig. 3 are displayed, as a function of the nonequilib-
electrons, dealt with in the random phase approximatidfl, rium steady state of the system characterized, for fixehly
where V(Q) =4me?/ €,Q? is the Fourier transform of the a varying quasitemperatuié (determined by the action of
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0.5 1.0 1.5 2.0 V. CONCLUDING REMARKS
. : . ; .
T2 i We have considered a statistical ensemble formalism
= which provides microscopiémechanical-statisticafounda-
a

tions to the thermohydrodynamics of fluids or fluidlike sys-
tems like the plasma in semiconductors. This is, as noticed,
the so-called Nonequilibrium Statistical Operator Method,
and we have resorted to Zubarev’s approach.

Here we have addressed a particular aspect of MaxEnt-
NESOM, which arises when dealing with thermodynamic
and thermohydrodynamic problems; it is the question of us-
ing truncation procedures, that is, an imposed restriction on
the chosen set of basic macrovariables to be used for the
description of the evolution of the macrostate of the system.
Here we have considered a simple syst&mnd of a Brown-
ian system of particles interacting with a thermal bath of a
much larger number of other particjedMoreover, attempt-
ing to provide a better visualization of the results, we have
resorted to a description at a classical-mechanical level. Of
} course these results can be extended to the case of fluids
Qo described at a quantum-mechanical level. Some specific re-
1o sults on this question, in the case of the thermohydrodynam-
r ics of the fluid of carriers in the photoinjected plasma in
¥ . " . " semiconductors, are reported in Refs. 20 and 43, and here we
0.5 1.0 1.5 2.0 . . .

have presented, in a brief form, the case of polar semicon-

SCALED QUASITEMPERATURE T}/Tx ductors in Sec IV.

: o ) In Sec. lll we have shown that a truncation criterion can
F_IG. 3. The dc_)maln boundarlgs in scaled wavele_ngths versus carrier qu%e derived, whichrests on the characteristics of the hydro-
sitemperature in the case of direct-gap polar semicondugfaidine and ’
left ordinate, and the scaled characteristic tim@gashed line and right dynamic motion that develops under the given experimental
ordinatg. The shaded area corresponds to an intermediate interphase bgrocedure
tween descriptions IT} and 1ST2}, that is, corrections to the IST} First, in a qualitative manner, we can say that, as a gen-
description begin to be relevant. L L
eral “thumb rule,” the criterion indicates that more and
more restricted truncation can be used when larger and
larger are the prevalent wavelengths in the motidiere-
the constantly acting external pump, and given in units offore, in simpler words, when the motion becomes more and
Einstein temperature, i.e., @& '=T}/Tg), the two main  more smooth in space and time, the more reduced can be the
characteristic timegright ordinate and dashed linesnd the  dimension of the space of basic macrovariables to be used
frontiers in wave numbeQ ;) and Q(;,) (left ordinate and  for the description of the nonequilibrium thermodynamic
full lines). If we consider GaAs Tg=430K and A, state of the system.
=10*A), the frontier wave numbers al}=300K are This is connected with Bogoliubov’s principle of corre-
Qop=3x10'cm* andQz=4x10°cm™. lation weakening and hierarchy of relaxation times, as our

Experimental observation of the change from one do-quantitative analysis have shown. However we have consid-
main of hydrodynamic modes to another, e.g., from dampe@red here only three cases involving a quite small number of
undulatory mode to a diffusive mode, can be done using lighbasic variables(corresponding to IS{D}, IST{1}, and
scattering. The values @ which can be analyzed are deter- IST{2}), the results we derived point to a conjecture for a
mined by the experimental geometry, going from zero ingeneral truncation criterion, namelg,truncation of order r
backward scattering to twice the photon wave number iMmeaning keeping the densities and their fluxes up to order r)
forward scattering(hence, typically from near zero to can be introduced, once we can show that in the spectrum of
roughly 1¢—1F cm™1). One can then follow the values of wavelengths, which characterize the motion, predominate
Q in this interval and what should be observed is that thehose larger than a “frontier” one A .1y
so-called Brillouin double{Stokes and anti-Stokes bands of =Ty, 7t r+1)- In this expressiort, ) is the velocity of
damped plasma wavewith bandwidths of the order of;ll propagation of the motion and. 1) IS @ characteristic
collapse, on decreasing values@f in a shiftless so-called time involving the different characteristic times which ap-
Rayleigh band with a width of the order m‘n(z)QZ, where  pear in the equations of evolutiofor 1867-Maxwell-type
D is the diffusion coefficient. This is clear in the case of relaxation times for fluxeS). We notice that in our calcula-
liquids*! but is not possible to see in the plasma in semicontions No1)=Cn(2)T(o1y @nd X (12=Cy(2)7(12), Where gy
ductors since at low plasma frequencies the doublet of=27, and 7(;5=7.. These expressions, we recall, are
plasma wave bands becomes embedded in the Ramandentical for both types of systems we have considered, the
Doppler band of scattering by single-particle excitationsclassical one and the quantum one, with the quantities in-
(e.g., Ref. 42 volved depending on the type of interaction between system

IST [2] ]

AoQ
=
1
1
b=
T2

SCALED WAVENUMBER Q@

SCALED CHARACTERISTIC TIMES

IST [1]

IST [0]
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and bath(surroundings In the classical case also on the ®L. S. Garcia-Colin, A. R. Vasconcellos, and R. Luzzi, J. Non-Equilib.
ratio of masses, and in the quantum one on the ratio of the _Thermodyn.19, 24 (1994.

carrier temperature and the Einstein temperature of the pola

phononsz.

?,A. R. Vasconcellos, R. Luzzi, and L. S. Garcia-Colin, Phys. Revi3A
6622(199).
M. A. Tenan, A. R. Vasconcellos, and R. Luzzi, Fortschr. Phy&. 1

From the results of previous sections, the dependence on(1997.

x of the two main characteristic times, namely, and r,,,,
are given by Eqs(199 and(19b), respectively. Figure 1 tells
us thatr,; is larger thanr,, for x>1, the crossover corre-

1R, Luzzi, A. R. Vasconcellos, and J. G. Ramos, Fortschr. P4ys401
(1999; Statistical Foundations of Irreversible ThermodynaniitsTexte
zur Physik Series, edited by W. Ebeliieubner, Sttutgart-Leipzig, in
press.

sponding tox=1. Forx>1 we can consider the system as a'2J. G. Ramos, A. R. Vasconcellos, and L. S. Garcia-Colin, Braz. J. Phys.

Brownian one, and fox<<1 as a, say, anti-Brownian one. As
we have already noticell oy is always larger tham (),

27, 585(1997).
By, P. Kalashnikov, Teor. Mat. FiZ, 94 (1971); [Theor. Math. Phys9,
1003(197D].

what is clearly evidenced in Fig. 2, and we reinforce the factsy p_kajashnikov, Sov. Phys. Usp, 94 (1972.
already stressed in the previous section that there is a cle&R. Luzzi and A. R. Vasconcellos, J. Stat. Phgs, 539 (1980.

cut frontier between the domains of I} and IST1}, but

not in the following frontier, which is characterized by an 4,

inequality [cf. Eq. (49)]. Moreover, the predominance of a
purely diffusive regime in the domain of 190} is also de-
fined by an inequality, the one of E¢12).

In Sec. IV we considered two illustrative examples, al-
lowing for experimental observations of the transition of do-

1A, R. Vasconcellos, R. Luzzi, and L. S. Garcia-Colin, Physica24, 478

(1995.

A. C. Algarte, A. R. Vasconcellos, and R. Luzzi, Phys. Rev6411311

(1996.

18R, Luzzi, A. R. Vasconcellos, D. Jou, and J. Casage¢ez, J. Chem.
Phys.107, 7383(1997.

1A, R. Vasconcellos, R. Luzzi, and A. S. Esperli®hys. Rev. 52, 5021
(1995.

2R, Luzzi, A. R. Vasconcellos, J. Casas?daez, and D. Jou, Physica A

main. One is the study of the process of sintering of ther- 248 111(1998.
mosensitive resins in laser-thermal stereolithography. Thé&J. Madureira, A. Vasconcellos, and R. Luzzi, J. Chem. Phgs, 2099

experimental results validate the case for thermal motion
the criteria we have developed héoomplete details in Ref.
33). Another is the case of the fluid of electronsnirdoped

(1998.

223, R. Madureira, A. R. Vasconcellos, R. Luzzi, J. Caségeuaz, and D.
Jou, J. Chem. Phy408 7568(1998.

2], R. Madureira, A. R. Vasconcellos, R. Luzzi, J. Casésevaz, and D.

direct-gap polar semiconductors. We have been able to dg;Jou, J. Chem. Phyd08 7580(1998.

rive general results for this family of materials, with numeri-

“R. Balian, Y. Alhassid, and H. Reinhardt, Phys. R&p1, 1 (1986.
2R, Balian, http:/xxx.lanl.go\1 July 1999, cond-mat/9907015.

cal values to be obtained by simply specifying the two scalzsy. N Bogoliubov, inStudies in Statistical Mechanics edited by J. de

ing quantities,()}y, and Ay, for each kind of material. The
transition of domain between IS0} and IST1} can be evi-
denced via experiments of Raman scattering.
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