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Chromosome numbers are given for 1011 populations of 242 species, representing the full range of taxa (49 of the about 52

presently recognized genera) in the Neotropical Nymphalid butterfly subfamily Ithomiinae (prime movers for mimicry

rings), including many additional geographical subspecies from 47 regions from México and the Caribbean islands

throughout all tropical South American countries to southern Brazil. Twelve Neotropical Danainae (in 3 genera), all but one

with n�/29�/31, and the Australian Tellervo (n�/32) served as sister groups for comparison. The numbers range near-

continuously from n�/5 to n�/120 with modal values (33�/84 counts) at n�/12�/18, and only 16 and 26 counts at the usual

modal number of all butterfly groups, n�/30�/31. Superimposition of these changes in karyotype on a cladistic phylogeny of

the subfamily indicates possible early halving of the complement to n about 14�/15, followed by much variation in each genus

and tribe. While at least 17 species in 15 genera show stable karyotypes over much of the Neotropics, at least 40 species show

large geographical variation in number of chromosomes, rarely accompanied by any evidence for reduction in fertility or

incipient speciation. The evolutionary opportunism of the members of this subfamily probably accompanies their known

population biology and community ecology: they are common, shade-loving, highly gregarious (occurring in small

multispecies ‘‘pockets’’ in deep forest) and often migratory as a community when the environment becomes unfavorable (too

hot or dry).

Keith S. Brown Jr., Museu de História Natural, Departamento de Zoologia, Universidade Estadual de Campinas, C.P. 6109,

São Paulo 13.083-970, Brazil.

As part of a broad survey of the genetics, ecology,

systematic relationships and evolutionary patterns in

butterflies of the Neotropics, the first author has fixed

in Bouin/Hollande male gonads from over 2000

populations of these insects over the past 35 years,

and the second and third have made chromosome

preparations from this material by sectioning and

staining with hematoxylin. Earlier papers in the series

of reports covering the results of this work (de LESSE

and BROWN 1971; SUOMALAINEN and BROWN 1984;

BROWN et al. 1992) dealt with members of the

Nymphalid tribe Heliconiini, for which the essentially

complete data revealed a coherent pattern of chromo-

some evolution, except in the primitive and still

enigmatic genus Philaethria (n�/12 to 88). Outside

this, only a single derived splinter group (Laparus

doris ) revealed appreciable variation in chromosome

number, paralleling its color-pattern polymorphism. A

further paper (EMMEL et al. 1995) included incom-

plete data on the Neotropical Papilionidae (74 popu-

lations of 50 species). The modal number n�/30 was

dominant in all branches of the family, with however

some variation in each tribe (n�/23 to n�/45 in two

distasteful species of Troidini, for example).

The Ithomiinae (Nymphalidae) are considered as

prime movers in most Neotropical mimicry rings

(BROWN and BENSON 1974; BROWN 1987) and show

great inter- and intraspecific variation in color and

pattern (BROWN 1979). Early work on their chromo-

somes (de LESSE 1967, 1970a, 1970b; de LESSE and

BROWN 1971; WESLEY and EMMEL 1975) also showed

large variations in their number, between subspecies or

even within single populations. Although neither the

systematic revision, nor the coverage in fixing all

major taxa, nor the examination of chromosomes is

complete for this subfamily of over 350 species

(BROWN 1985; LAMAS 2004), enough data are now

in hand to permit an overview of the patterns of

chromosome evolution at the tribal and generic levels,

especially in the more basal or isolated groups. These

are presented and discussed here, along with preli-

minary data on all the genera (including new counts

on over 1000 populations representing 242 species)

and an overall summary of the emergent patterns in

this complex group, which includes many large genera

with highly variable karyotype. Based on the chromo-

some patterns, a supplementary revision is presented

for the variable genera Melinaea and Mechanitis that
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form the core of ‘‘tiger’’-patterned black�/yellow�/

orange mimicry complexes throughout the Neotropics.

For comparison, numbers are also reported for

Neotropical species in the sister group of the Ithomii-

nae, the Danainae (ACKERY and VANE-WRIGHT

1984). While large in the Old World, this subfamily

is small in the Americas (only 14 species); the members

also serve as foci for large mimicry rings in all the

continents, but tend to join Ithomiinae-based rings in

the Neotropics.

MATERIAL AND METHODS

Field-fixing and laboratory sectioning and staining

methods follow those detailed in the earlier papers in

this series (SUOMALAINEN and BROWN 1984; BROWN

et al. 1992). Thus, field-collected male butterflies (from

over 3200 collecting days) were kept alive until just

before dissection, within 12 h of capture. The fused

and usually red-colored testis was removed dorsally

with fine-tipped forceps through an incision between

the sixth and seventh abdominal segments, described

(size and color), and dropped into Hollande?s mod-

ification of Bouin (picric acid-cupric acetate-water

5:8:200 plus 49% formaldehyde-acetic acid 20:3 added

afterwards). After at least 12 h (and up to many

years), the material was washed in tap water, trans-

ferred to 80% alcohol with a unique number, sent to

Finland and kept at low temperature. After paraffin

blocking, the testis was sectioned to 10 mm and stained

with Heidenhain’s iron hematoxylin. Photographs

(Leitz Orthomat camera, Agfa Agepe 35 mm film)

or drawings if all chromosomes could not be seen in

the same plane (Wild apparatus, bench level) were

prepared of dividing meiotic nuclei (normally first

metaphase) as observed through a 12.5�/ ocular and a

100�/ immersion objective. The final magnification is

about 2500�/.

Voucher specimens are deposited in the Museu

de História Natural of the Universidade Estadual

de Campinas, São Paulo, Brazil, accompanied by their

unique number.

RESULTS

Table 1 to 3 summarize results obtained to date for the

Ithomiinae; Table 4 contains the results for the 12

American Danainae. In all, individuals from 1011

populations of Ithomiinae were fixed; 1437 individuals

in 242 species and 592 subspecies gave usable karyo-

types. The Tables include data published by previous

authors, and a very few (8) counts on material fixed by

the first author in HOAc-EtOH and later squashed
and stained with aceto-lacto-orcein by P. C. Eliazar

and T. C. Emmel (Univ. of Florida, Gainesville). The

complete list of all individuals fixed can downloaded

from http://www.oikos.ekol.lu.se and from the author

K. S. Brown upon request. Figure 1 shows the

Ithomiinae results over a cladogram of this subfamily,

constructed with over 150 characters and 240 derived

states (BROWN and FREITAS 1994; FREITAS and
BROWN 2004). Figure 2 shows the distribution of

known numbers, from 5 to over 100 for genera and

species of Ithomiinae; Fig. 3 gives similar results for

the Danainae, including on a world scale. Selected

chromosome complements (meiotic plates) are illu-

strated in Fig. 4�/78.+

DISCUSSION

The modal class of chromosome complement in the

Ithomiinae is n�/14 (Fig. 2), almost half that seen in

most Lepidoptera including the sister groups Danai-

nae (Fig. 3) and Tellervinae (SUOMALAINEN 1969;

LORKOVIC 1990). The karyotype of butterflies has a

constant total volume. Fissions and fusions, not
polyploidy, are responsible for changes in chromo-

some numbers. Well over half of all Lepidoptera

counted with n�/14 are Ithomiinae; almost half of

the 52 genera in this subfamily are dominated by this

class and neighboring ones, suggesting a very early

and strong stabilization of the karyotype at this

+As this paper went to press, a new arrangement of the Ithomiinae appeared in the Catalogue of Neotropical Lepidoptera, part
4A (LAMAS 2004). This Catalogue disagrees little from this paper in the definitions and ordering of species, genera and tribes.
It also unites or separates a number of the species and subspecies names used in Table 1�/3 and 5�/7, without major differences
in the relations among them (indeed, the chromosome numbers help to support unity or separation of a number of species,
mostly corresponding to the arrangement in the Catalogue). The most important divergences in higher classification (from
that in Fig. 1) are as follows: (1) Tribe E (Roswellia-Athesis-Patricia ) remains within the Melinaeini, with the first two genera
united under the second name; (2) Athesis (Roswellia ) vitrala becomes a full species; (3) Athyrtis is between Eutresis and
Olyras ; (4) Methona is placed as the earliest genus in the Mechanitini; (5) Napeogenini (tribe G) is anterior to Ithomiini (Tribe
F); (6) Rhodussa and Garsauritis are joined with Hypothyris, while Hyalyris is anterior to Napeogenes ; (7) Ollantaya is joined
with Oleria ; (8) Ceratinia is at the base of the Dircennini; (9) Prittwitzia and Ceratiscada are joined to Episcada ; (10) Episcada
has several species combined; (11) Dygoris is included in Godyris ; and (12) Hypomenitis is combined into Greta . There are
quite a few more minor differences, mostly species separations or unions that only time and biological work will resolve. The
chromosome numbers help to resolve many of the differences in nomenclature between the lists.
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Fig. 1. The chromosome numbers of Danainae and Ithomiinae over a cladogram of these subfamilies. The systematics and
cladogram are based on BROWN and FREITAS (1994) and FREITAS and BROWN (2004), with important contributions of
LAMAS (2004) and (for molecular data) N. WAHLBERG and A. BROWER (work in progress with AVFL). The origin of the
Ithomiinae has evidently been accompanied by an approximate halving of the modal lepidopteran n�/31 to a new modal
n�/14. The further diversification of the group has included both fusions and fissions. This process has run in parallel with the
acquisition of novel larval food plants, shown in parentheses. The food plants contain noxious chemicals; the butterflies have
not only adapted to tolerate these but also to use them as chemical defences (BROWN 1987). For details of the chromosome
numbers consult the Tables.
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level (Fig. 1). As expected, the chromosomes of

species with a low chromosome number are larger

than the ones of species with high numbers. In

contrast, very few species (11) in only six genera

show n�/30 or 31, and n�/29 is only rarely seen as a

variant of n�/30 or higher in the Ithomiinae. The

extraordinary radiation of ithomiine genera and

species with numbers between 11 and 20 might be

compared with that of the genus Heliconius with a

nearly stable complement of 21 chromosome pairs

(BROWN et al. 1992), but there is an important

difference. Unlike Heliconius, the Ithomiinae show

excessive infrageneric and even infraspecific variation

in karyotype, confirming the observations of earlier

authors (de LESSE 1967, 1970a, 1970b; de LESSE and

BROWN 1971; WESLEY and EMMEL 1975). Most of

the larger genera present very complex patterns of

chromosome number variation, as do some older

genera (Fig. 1), and very few general tendencies are

discernible.
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Fig. 2. The distribution of known chromosome numbers, from n�/5 to 120 for
species and subspecies of Ithomiinae.

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fig. 3. The distribution of known chromosome numbers for the Danainae. The light
part of the columns shows the numbers for the Neotropical species, while the shaded
parts show the distributions for the Old World species according to ACKERY and
VANE-WRIGHT (1984, pp. 92�/93).
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The haploid chromosome numbers within the sub-

family Ithomiinae range from n�/5 through n�/120.

We may note here that n�/5 is the lowest haploid

number recorded for any lepidopteran (FREEMAN

1969). The total range of variation within the sub-

family is one of the most extensive ones within the

Animal Kingdom. KANDUL et al. (2004) have shown

that the haploid chromosome numbers within the

Palearctic lycaenid butterfly genus Agrodiaetus range

from n�/10 to n�/125. This range of variation within

a genus is second only to one held by the genus

Apiomorpha of coccids, hemipteran insects that like

lepidopterans have holokinetic chromosomes. The

Ithomiine genus Godyris has an about equally ex-

tensive range: from n�/13 through n�/120. Several

other genera, e.g. Aeria , Hyalyris and Greta have only

slightly less extensive ranges of haploid chromosome

number variation.

A parsimonious scheme (Fig. 1) over a cladogram

updated from that in BROWN and FREITAS (1994)

suggests reduction of the complement to n�/14 as

early as the second New World node (Tithorea ), with

larger numbers then appearing very regularly in series

in later genera. An alternative might conserve the

larger number through all radiations to the most

advanced genera (Pseudoscada and Heterosais, both

with n�/30�/31), with reductions in almost all

branches, accompanied or followed by later increases,

but this requires many more steps. The choice is not

easy to make, however; and any narrative explanation

of such a complex pattern is somewhat forced (a ‘‘just-

so story’’). It seems best to simply accept a profound

and repeated instability in the genome and karyo-

type of these mimetic insects, perceivable even in

today’s reality within the boundaries of well-defined

and acceptable species and populations (Table 1�/3,

Table 5�/8). It would be in accord with current

suggestions about chromosomal lability accompany-

ing evolutionary opportunism (WAHRMAN and

GOUREVITZ 1973), which is a characteristic of mimetic

groups, as discussed in earlier papers in this series

(SUOMALAINEN and BROWN 1984; BROWN et al.

1992).

In contrast, the New World Danainae show a very

stable chromosome complement at the usual mode for
Lepidoptera, n�/29�/31 (Table 4, Fig. 3; two haploid

chromosome sets are illustrated in Fig. 4 and 5). Only

Lycorea pasinuntia , a recent species restricted to the

Amazon/Guiana region, deviates from the norm. In

their much larger radiation in the Old World tropics,

the Danainae show some tendency for increase

of number (up to n�/35�/47) with only a single

species with 13�/15 (ACKERY and VANE-WRIGHT

1984; Fig. 3). We thus regard the primitive number

of the Danaioid lineage (Fig. 1; FREITAS and BROWN

2004) of Nymphalidae as 30�/31, with early stabiliza-

tion in the Ithomiinae of numbers about half this. The

great variability can then be understood as a result of

marked chromosomal instability within populations,

long evolutionary time, and many ecological oppor-

tunities for radiation and differentiation associated
with a mimetic life-style and selection regime, with

frequent isolation in allopatric regions of favourable

super-humid vegetation (cloud forests, gallery forests,

and hilly regions near rivers, lakes or oceans).

Details of various groups

a. Small and monotypic genera and their closest

relatives. */ In the Ithomiinae, the species, the genera,

and their relationships have been traditionally and

quite stably defined by wing venation, minor wing-

color elements, and morphology of male genitalia and
hairpencils, plus palps and legs of both sexes. Recent

addition of information on female genitalia and early

stages produced only a few important rearrangements

to the generally well-accepted systematics (MIELKE

and BROWN 1979; BROWN 1985). The contrasting

lability of the ithomiine chromosome complement is

seen even within the smallest of the recognized genera,

which with 2�/3 species often show great variation in
karyotype, and if monotypic, often show a greatly

different number from that typical of the nearest

genera. Table 5 summarizes these comparisons and

Fig. 4�/78. Selected photograph of male meiotic metaphases of the Danaine (Fig. 4�/5) and Ithomiinae (Fig. 6�/78) species.
Magnification for Fig. 4�/38 is �/1700 and for Fig. 39�/78 �/1400. Additional photographs are available on http://
www.fmnh.helsinki.fi/Ithomiinae.

Fig. 4�/38. (4) Anetia briarea , n�/31. (5) Danaus erippus, n�/30. (6) Aeria elara , n�/80. (7) A. eurimedia agna , n�/38.
(8) Athesis clearista , n�/24. (9) Athyrtis mechanitis, n�/50. (10) Callithomia hezia beronilla , n�/11. (11) C. lenea zelie, n�/12.
(12) Ceratinia tutia chanchamaya , n�/19. (13) Ceratiscada canaria , n�/24. (14) Dircenna dero ca. dero , n�/15. (15) Dircenna
dero euchytma , n�/16. (16) Dygoris dircenna , n�/36. (17) Elzunia humboldt bomplandii , n�/14. (18) E. pavonii , n�/20.
(19) Episcada carcinia , n�/60. (20) E. philoclea , n�/42. (21) Epityches eupompe, n�/17. (22) Forbestra equicola ssp., n�/63.
(23) F. proceris, n�/9�/7 mc. (24) Garsauritis xanthostola , n�/18. (25) Godyris kedema , n�/13. (26) G. nepos hewitsoni , n�/31.
(27) G. nero, n�/15. (28) G. petersii , n�/�/105. (29) G. sappho, n�/77. (30) G. z. zavaleta , n�/46. (31) Haenschia derama ,
n�/33. (32) Heterosais giulia nephele, n�/31. (33) Hyalenna pascua , n�/43. (34) Hyalyris antea frater,
n�/68. (35) H. oulita ssp., n�/28. (36) Hypoleria (Brevioleria) sarepta goiana , n�/44. (37) Hypoleria near pachiteae or
plisthenes, n�/8. (38) Hypothyris mamercus, n�/24.
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permits an overview of chromosomes in closely

related pairs of taxa. Whether a change in chromo-

some number was an important component in the

process that led to reproductive isolation between
incipient species is a subject that cannot be evaluated

by experiment today; but it does seem that a change

in the number of chromosomes has at least accom-

panied differentiation in other morphological char-

acters, which possibly restrict gene flow or

hybridisation.

b. Variation within a genus or species. */ Although

definition of species is not always clearly and objec-

tively possible in some groups of Ithomiinae, due to
uniform morphology or confusing color-pattern char-

acters, many genera have been adequately revised in

recent years (BROWN 1979, 1980, 1985; BROWN

and FREITAS 1994) and their species limits defined.

The two most difficult primitive genera, Melinaea and

Mechanitis, have repeatedly been subjected to new

revisions as further data came to light (FORBES 1948;

D’ALMEIDA 1951, 1978; FOX 1960, 1965, 1967; BROWN

1977, 1979; LAMAS 1988, 2004), and are once again

partially revised in the last paragraph (g) of this section

(Table 7�/8), on the basis of the new chromosome

information. Very complex patterns, still not comple-

tely characterized, are seen in some large derived

genera, discussed briefly in paragraph (e). Outside of

these cases, a number of well-accepted and integrated

species of Ithomiinae show appreciable geographic
variation in chromosome numbers (not due to variable

microchromosomes), with or without evidence for

partial barriers to gene flow in mixed populations

(Table 6). These cases are of special interest to the

geneticist, for they may be in an intermediate stage of

species formation, and could be expected to show

unusual cytogenetic phenomena, ecological peculiari-

ties, and possible mosaic evolution in different parts of
their ranges. Mostly members of larger mimetic groups

or species groups, and significantly concentrated in the

tribe Napeogenini (G, Table 2), they need to be care-

fully examined for further geographical variation and

possible reduction of fertility in zones of subspecies

intergradation, or between geographically isolated or

distant populations.

c. Chromosome number variation within popula-

tions. */ Certain species of Ithomiinae show variation

in chromosome number in different individuals of

the same population, and sometimes even in different
dividing cells in the same gonad. Although this

phenomenon is well known in some species, especially

in Lycaenidae (LORKOVIC 1941; de LESSE 1960;

EMMEL et al. 1973), it is not common in animals and

suggests truly extraordinary mechanisms of gameto-

genesis.

In the Ithomiinae, small variation in number was

observed quite frequently in dividing cells from a
single individual, usually amounting to no more than

1�/2 chromosomes or 5�/10% of the total complement

(Table 1�/3). This and larger intrapopulational varia-

tion (not always shown in the Tables and probably not

related to experimental technique or microscope/

sectioning variation), was seen most often in the

same species that showed large geographical variation

in number, marked with an asterisk (*) in Table 6.
Greatest variation was seen in the Napeogenini, as for

variation between populations. de LESSE (1967) noted

this in Napeogenes stella (n�/11�/13) in Victoria,

Colombia, where very different numbers (n�/12, 15)

were also seen in Ceratinia iolaia . Further species

which show notable chromosome variations in single

populations, not in Table 6, include several Melinaea

(M. mnasias, M. lilis, M. maenius, M. marsaeus ;
see paragraph (g)), Scada zibia (n�/17�/19), most

Mechanitis (see paragraph (g)), Oleria ilerdina (n�/

28�/30), Rhodussa cantobrica (n�/45�/51), Napeogenes

aethra deucalion (n�/12�/14), N. ithra (n�/14�/16),

Hypothyris semifulva (n�/15�/17), Ithomia amarilla

(n�/15�/18), I. pellucida (n�/12�/14), Godyris zavaleta

(n�/35�/45), Hypomenitis ortygia (n�/88�/95), Greta

diaphanus (n�/69�/74), Pseudoscada erruca (n�/29�/

31) and Heterosais giulia (n�/29�/31). All these

examples help to emphasize the appreciable lability

shown by the chromosome complement of a wide

range of Ithomiinae during meiosis; it is not known

whether this can give an excess of defective or inviable

gametes or zygotes.

d. Microchromosomes and supernumeraries. */ Some

of the variation seen in observed chromosome num-

bers, especially when these are large, is due to a

Fig. 39�/78. (39) H. thea , n�/5. (40) Ithomia amarilla , n�/15. (41) I. ellara , n�/20. (42) I. salapia derasa , n�/35. (43) Mcclungia
cymo salonina , n�/10. (44) Mechanitis lysimnia elisa , n�/15. (45) M. menapis, n�/24. (46) Melinaea lilis lateapicalis, n�/20.
(47) M. (ludovica?) crameri , n�/23. (48) Methona grandior, n�/14. (49) Napeogenes apulia , n�/13. (50) N. cyrianassa ssp. nov,
n�/32. (51) N. harbona domiduca , n�/6. (52) N. inachia pyrois, n�/22. (53) N. verticilla , n�/7. (54) Oleria astraea thiemei , n�/

15. (55) O. deronda innocentia , n�/10. (56) O. egra , n�/23. (57) O. ilerdina priscilla , n�/14. (58) O. victorine graziella , n�/9.
(59) O. zelica , n�/32. (60) Olyras crathis, n�/8. (61) Pagyris cymothoe, n�/30. (62) Patricia dercyllidas, n�/14. (63) Placidina
euryanassa , n�/28. (64) Prittwitzia hymenaea centralis, n�/14. (65) Pseudoscada timna , n�/31. (66) Pteronymia donella donata ,
n�/10. (67) P. hara semonis?, n�/54. (68) P. oneida asopo, n�/24. (69) P. zerlina , n�/18. (70) Rhodussa cantobrica nundina , n�/

51. (71) Sais rosalia ssp., n�/20. (72) Scada karschina , n�/20. (73) S. zibia , n�/18. (74) Talamancana lonera , n�/20.
(75) Thyridia psidii ino, n�/17. (76) Tithorea harmonia dorada , n�/14. (77) Velamysta peninna , n�/38. (78) V. phengites, n�/12.
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variable number of microchromosomes which appear

in the dividing plates (Fig. 20 and 23). This is most

evident in the genus Forbestra (tribe D, Table 1), where

two species (F. olivencia and F. proceris) have a low
basic number (n�/9) and a variable amount (1�/8) of

additional minute chromosomes; the third (F. equi-

cola ) has a high number (n�/60�/65), with most

chromosomes very small like the microchromosomes

of the other two species. This tendency for fragmenta-

tion must be important in the over-all complex

chromosome evolution of the Ithomiinae, for it

appears throughout the subfamily, especially in the
most variable or advanced groups. Among other

species notable for variable microchromosomes or

variable large numbers are (with tribe letters in

parentheses) the following (not all shown in the

Tables): (A) Aeria elara (n�/76�/82), (C) Eutresis

hypereia (39�/40, half of these very small), (D) Scada

batesi (n�/43, two very small), (E) Athesis clearista

(n�/24�/28�/10 mc), (G) Hyalyris metella (n�/98�/

100), (J) Godyris telesilla (n�/100�/120), G. zygia

(n�/75), G. zavaleta (n�/36�/46) and Hypomenitis

theudelinda (n�/about 100).

e. Large and poorly defined genera (Table 2, 3, 7

and 8). */ The largest genera of the Ithomiinae are all

composed of primarily transparent-winged species in

the most advanced radiations: (F) Ithomia (22

species), (G) Napeogenes (23), (H) Oleria (40), and

(I) Pteronymia (46). With the chromosome numbers in

hand, it becomes apparent that a number of somewhat
smaller genera are also confusing in their patterns of

species differentiation; (G) Hyalyris (13 species), (H)

Hyposcada (8), (I) Callithomia (only 3?), Dircenna (7),

Hyalenna (only 5?), and Episcada (20), (J) Godyris

(14), Hypoleria sensu lato (13; divisible into three

genera), Hypomenitis plus Greta (30), and Pseudo-

scada (4, possibly divisible into 2 genera). All of these

genera also have transparent wings in most species and
races, with few useful characters for identification, and

variable and often poorly understood genital morphol-

ogy. While it could be expected that the chromosome

numbers, even though highly variable in some of these

genera, would eventually help in the recognition of

monophyletic units which may correspond to the

typically widespread species known in other genera,

the intraspecific variations mentioned in the above
paragraphs will continue to make species determina-

tions difficult in these fifteen genera. At the present, the

chromosomes give suggestive support to a majority of

species separations and subspecies associations as

shown in Table 2 in Ithomia, Napeogenes, Hyposcada,

Hyalenna, Episcada, Godyris, Hypoleria and Hypome-

nitis, but need to be further expanded and correlated

with other morphological characters. While some

limited systematic progress might be claimed for

Oleria and Greta , many more counts are still needed

in these genera. The genera Hyalyris, Dircenna and

Pteronymia remain chaotic, in some cases even wor-
sened by the chromosome information, and the num-

bers are relatively uninformative in Callithomia and

Pseudoscada .

f. Widespread species or genera with very stable

karyotypes. */ In contrast to the cases discussed in

previous sections and presented in Table 5�/6, a

number of species and genera seem to have attained

a remarkably stable chromosome complement over

ranges covering most of the Neotropical region (Table
1�/3). The following widespread and highly differen-

tiated species have essentially identical numbers (in

parentheses) in all regions examined (range shown

after number): Tithorea harmonia (14) Mexico-Argen-

tina, Aeria eurimedia (36�/40) Costa Rica-Rondônia,

Aeria elara (76�/80) Venezuela-S. Brazil, Methona spp.

(13�/14) Venezuela-S Brazil, Thyridia psidii (17) Costa

Rica-S Brazil, Sais rosalia (20) N Venezuela-SE
Brazil, Ithomia agnosia (18) N Venezuela-S. Brazil,

Hypothyris leprieuri (20) Guyane-SW Brazil, Ceratinia

neso (14) N Venezuela-SW Brazil, Prittwitzia hyme-

naea (15) N Venezuela-Argentina, Hypoleria ocalea

(10�/11) N Colombia-SC Brazil, Mcclungia cymo (11)

Venezuela-SE Brazil, Pseudoscada spp. (30�/31) N

Colombia-Argentina, and Heterosais spp. (31) Pa-

namá-SC Brazil. No simple pattern emerges for this
list of ‘‘stable’’ species, neither in the stabilized

number (10 to 80), the generic or ecological character-

istics (from rare in deep forest to migratory and

eurytopic), nor the phylogenetic position (the two

extremes of the subfamily are included), but at least

they may be recognized and used as controls for future

studies of karyotype variation, its mechanisms and its

influences.

g. Supplementary revision of the genera Melinaea and

Mechanitis. */ Table 1 contains the chromosome

numbers for 168 populations of essentially all the

species and most of the subspecies in two genera of

large, common ‘‘tiger-striped’’ Ithomiinae. In Mechan-

itis (Table 7), the chromosome data confirm the union

of macrinus with ‘‘doryssus’’ , labotas and solaria , but

separate this Transandean complex (n�/22�/24) from

M. lysimnia (n�/15�/20), the widest spread �/ n�/23
versus 15 �/ occurring where the two species are

potentially sympatric in eastern Colombia. The three

principal subspecies of lysimnia have different num-

bers (nesaea , n�/17; lysimnia , n�/19 and elisa , n�/

15), but these usually intergrade in color-pattern and

number (n�/16, 18) whenever they meet. In two places

in southern Mato Grosso and southern Bahia, how-

ever, two subspecies occur together or nearby with

224 K. S. Brown et al. Hereditas 141 (2004)



Table 1. Summary of chromosome numbers in Tellervo and in the ‘‘primitive’’ radiation of Ithomiinae. Locality codes are shown at the end of Table 2. Localities

in bold indicate places of origin of material for meiotic metaphases shown in Fig. 6 through 78.

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

Tellervo zoilus zoilus 32 3/5 1 QA3 (EMMEL et al. 1974)
A Aeria o. olena 27 3/3 3 AR(a),ES,SP

eurimedia (4 different) 883888 10/16 7 AC3,CC3,RG3,RO
elara (3 different) 88888088 8/28 8 AC,AN,DF,GO,MT,RG2,RO

Elzunia humboldt (4 different) 14 5/8 1 AN,CC,EE,TV,VC
pavonii 820 3/7 3 MP3

Tithorea harmonia (16 different, from
salvadoris to caissara )

814 22/45 25 AM2,AN(a),AR(a),BO,CM,EB,EV,
GO(d),HU,MP,MT2,MX(b),PA,RG,
RO2,RR2,SP,TR(e)

t. tarricina, franciscoi, parola 11 5/10 3 AN,CT2,VC2

B Methona m. megisto , new ssp. 14 3 /4 3 AM,MT,PA
curvifascia 14 4/9 3 AC,EE2,HU
g. grandior 14 2/4 4 AC,AM
confusa (3 different) 14 11/20 18 AC,AM2,CM,EB,EE2,RO2,RR,TV
themisto ssp. nov. 14 1/1 1 GO(d)
singularis 13 2/4 1 PB,PE

C Olyras crathis (4 different) 8 5/15 12 CC,EV,RG2,TV
Eutresis h. hypereia 20�/19�/20 2/6 4 EV,RG
Athyrtis mechanitis salvini 8508 8/13 11 AC2,RO6
Melinaea mnasias (4 different) 888268 5/7 5 AP,BA,CM,GY(c),RR
(see details of this
genus in Table 8)

l. ludovica 17�/23 12/19 18 AM5,AP2,GY(c),PA,RO,RR2
paraiya; crameri 8238 4/5 5 BA,RJ(d),SP,EV,BO
i. idae, vespertina 13 4/4 4 AN,CC,CZ,WE
maelus (8 different) 81588 10/23 18 AC2,AM2,EB3,EE,HU,RO
lilis (6 different) 882288 7/11 11 CC,CH,EV,MX,OX,RG,TR(e),TV
ethra 830 5/8 7 BA,ES,PE,RJ,SP
mneme (3 different) 817 5/21 18 AM,AP2,GY(c),RO
menophilus (3 different) 82088 6/12 11 AC,EE(a),EE,RO3
marsaeus (4 different) 8178 9/16 15 AC2,PA,RO4,VV2
phasiana, satevis 15 3 /4 4 AC2,EB
maenius (6 different) 8822888 10/18 17 AC,AP2,EE4,GY(c),RO,VV

D Thyridia psidii (6 different) 17 11/15 12 AC,CH2,EE2,ES,GO,MP,MT2,RO
Sais rosalia (6 different) 20 11/26 14 AC,ES,GO,MT,PA,RG,RO3,RR2
Scada z. zibia, xanthina, zeroca 8188 4/6 2 CC3,CH

batesi; batesi quotidiana 43 2/7 2 AC,EE
reckia 28? 3/9 1 BA2,PE
ethica (6 different) 82188 7/14 10 AC2,AM,EE,PA,RO,RR
karschina 20 2/7 3 BA,ES
kusa 21 2/5 1 MP2
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Table 1 (Continued )

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

Mechanitis l. lysimnia 18�/19 5/10 7 AR(a),BA,GO,RJ(d),SP
(see details of this
genus in Table 7)

nesaea, connectens 16�/178 7/31 23 BA2;GO,MT2,PB,RO
menecles, ocona, acreana, elisa 15 7/26 15 CM,EB(a),EB2,EE,MT,RO
macrinus (4 different) 22,23 4/8 5 CH,CZ,EV,RG
polymnia (7, Transandean) 81888 11/31 24 AN(a),CC,CZ,EV,GU(a),MX,RG,

VC2,VV,WE
(9, Amazonian to SE Brazil) 8158 27/58 43 AM,AP3,CM,DF(d),EB,EE,GO,HU,

MG,MP,MT5,PA3,RJ,RO3,RR3
menapis (4 different) 8824�/25888 8/19 14 AN(a),CC3,EV,RG,VC2
dariensis, mantineus 20 2/5 4 DA,WE(incl. a)
mazaeus (6 different, Amazon Basin) 14,15 7/15 14 AC,AM2,EE,RO,VV2
(4 from peripheries) 8816 10/36 21 EE3,CM,GY(c),PA2,RO,VV2

Forbestra proceris 9�/6�/8 2/4 4 AC2
olivencia (4 different) 9�/1�/6 5/11 10 AC2,AM,EB,EE
equicola (4 different) 8886388 5/11 11 AC,AM,AP,EE,RO

E Roswellia acrisione (f), a. vitrala 32,34 2/4 2 EE(f),MP
Athesis clearista , c. colombiensis 24 5/11 8 AN,EV,RG2,VC

28�/10 1 /2 2 RG
Patricia d. dercyllidas 14 1 /2 2 VC

d. demylus 14 1/1 1 EE(f)

Explanation of Tables: nomenclature follows Lamas (2004) with few exceptions (Results, footnote). Superscript dots before and after a number indicate variation, as much as
3�/6 over or under the given figure, encountered infrequently, rarely in the same population.

Localities are grouped by region; a number at the end indicates more than one population sampled within this region; a letter in parentheses indicates previous work (a�/

de LESSE 1967, b�/de LESSE 1970a, c�/de LESSE 1970b, d�/de LESSE and BROWN 1971, e�/WESLEY and EMMEL 1975, f�/Eliazar and Emmel, pers. comm., g�/MAEKI and
REMINGTON 1960, h�/MAEKI 1961).

Locality codes: AC�/Acre (SW Brazil), AM�/Amazonas (N Brazil), AN�/NC Colombia, AP�/Amapá (N Brazil), AR�/N Argentina, AV�/Amazonas (S Venezuela),
BA�/Bahia (Brazil), BO�/Bolivar (SE Venezuela), CC�/Chocó (W Colombia), CH�/W Panama, CM�/Chanchamayo (C Peru), CR�/Costa Rica, CT�/NW Venezuela,
CZ�/Canal Zone (Panama), DA�/E Panama, DF�/Brası́lia, DR�/Dominican Republic, EB�/E Bolivia, EE�/E Ecuador, ES�/Espı́rito Santo (Brazil), EV�/NE
Venezuela, GO�/Goiás (C Brazil), GU�/Guatemala, GY�/Guianas, HU�/Huallaga Valley (C Peru), JM�/Jamaica, LO�/NE Peru, MG�/Minas Gerais (Brazil), MP�/

upper Rı́o Marañón (NW Peru), MT�/Mato Grosso (Brazil), MX�/SE Mexico, OX�/S Mexico, PA�/Pará (Brazil), PB�/Paraı́ba (NE Brazil), PE�/Pernambuco (NE
Brazil), PT�/S Colombia, QA�/N Queensland (Australia), RG�/N Venezuela, RJ�/Rio de Janeiro (Brazil), RO�/Rondônia (SW Brazil), RR�/Roraima (N Brazil), SC�/

Santa Catarina (S Brazil), SP�/São Paulo (SE Brazil), TR�/Trinidad, TV�/Táchira (SW Venezuela), VC�/Valle de Cauca (W Colombia), VV�/Meta (E Colombia), WE�/

W Ecuador.
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Table 2. Chromosome numbers in ‘‘advanced’’ Ithomiinae: smaller or better-defined genera. Localities in bold indicate places of origin of meiotic metaphases

shown in Fig. 4 through 78.

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

F Pagyris cymothoe 30 3/9 4 RG,TV,VV
Placidina euryanassa 28 2/2 2 BA,RJ(d)
Ithomia iphianassa (5 different) 811�/12 8/18 11 AN2,CC2,RG,VC,VV,WE

p. pellucida , ssp. 14 2/2 1 MP,TV
terra (4 different) 15�/17 4/6 5 CC,CH,CM,EE
amarilla 15�/1688 1/9 3 EE
jucunda bolivari 16 2/2 1 CH2
diasia (3 different) 17 5/12 10 CC3,CH,WE
celemia plaginota 17�/18 1/3 2 CH
agnosia (4 different) 8188 7/18 17 GO,EE3,PE,RG,RJ
p. patilla, leila 18 3/3 3 CH,GU(a),MX(a)
lichyi (3 different) 18 3/9 2 AC,BA,RJ(incl.d)
h. hyala , ssp. 19 2/5 2 CC,WE
lagusa theuda, linda 19 3/6 6 EE,VC2
avella 20 1/1 1 VC
drymo 20 2/4 4 ES,RJ(d)
ellara 20,21 1/2 2 CM
salapia (3 different) 34�/35888 6/20 11 AC2,CM,EE3

G Epityches eupompe 17 2/4 2 BA,RJ
Napeogenes harbona domiduca 6 1/1 1 CM

verticilla 7 1/1 1 CM
gracilis 12 1/2 2 CM
pharo (4 different) 10,11,13 5/9 6 AC,PA,RO2,VV
aethra deucalion , ssp. 12,13,14 4/9 7 AC2,RO2
a. apulia, lycora 13 2/3 3 EE,VV
sylphis (4 different) 1488 8/11 8 AM,AP,PA2,RO4
s. stella, opacella 812,13,14 4/9 7 AN2(incl.a),CC2
(stella?) duessa, jamariensis 15 2/6 4 AC,RO
cranto ssp. nov. 18 1/1 1 WE
inachia johnsoni , pozziana (NW) 13,14 2/6 4 EE,VV
ssp. nov. (SW) 16,17,18 5/7 7 MT3,RO2
pyrois, 2 sspp. nov.(C) 22 3/5 2 AM2,PA
(inachia?) sulphurina , ssp. nov. 24,26,28 4/10 5 BA,PE3
cyrianassa (7, Amazon) 8328 11/22 13 AM2,AP2,BO,PA,RO,3,RR2
rhezia, yanetta 35,37 4/9 5 BA2,ES2

Hyalyris leptalina ssp. nov. 18 1/3 1 ES
c. cana 20 1/1 1 RG
oulita? oulita lurida? 26,28 2/8 2 CM,EB
o. ocna, adelinda 843 2/2 3 EE,VV
coeno (4 different) 848�/49 4/23 12 MP,RG,TV,VV
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Table 2 (Continued )

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

excelsa ssp. nov 60 1/2 2 TV
antea flebilis, frater 8668 2/7 6 CM,TV
metella 98�/100 1/5 3 CM

Garsauritis x. xanthostola , ssp. nov. 18,20 2/4 3 AM,AP
Rhodussa cantobrica nundina , ssp. nov 50�/51 3/9 5 RO3
Hypothyris thea, theatina, vestita 5 4/6 5 AM2,PA2

(fluonia?) rowena 9 1/3 2 VV
fluonia (4 Amazonian ssp.) 881588 5/14 6 AC2,GO,MT,RO
euclea (8 Amazonian and Atlantic
subspp.)

148 18/42 32 AC,AM,AP2,BA,CM,EB2,EE3, ES,
GO,MT,RG,RO,TR,TV

valora, philetaera 8168 4/10 7 AN,CC,CZ,VC
ninonia (9 Amazonian subspp.) 881688 16/46 36 AC,AP2,AM5,BO,MT,PA2,RO2, RR2
daeta 18�/19 4/9 8 BA,ES,MG(a),RJ(a)
evanescens 21�/23 3/10 9 BA2,PE
semifulva (3 different) 8817 5/10 8 AC2,RO3
v. vallonia , ssp. n. 88208 2/3 3 PA,RR
d. daphnis, madeira 820 2/9 4 AM,RO
leprieuri (4 different) 820 10/16 14 AC2,GY(c),MT3,RO4
anastasia (3 different) 17,20,21 3/6 3 AC2,RO
mamercus (4 different) 82488 6/13 7 AC,EE,RO4
lycaste (5 different) 888458 5/11 7 CC,EV,GU(b),RG,VC

H Hyposcada sp. 12 1/2 2 CC
(the genus Oleria is in
Table 3)

sp. 12 1/2 1 AM
illinissa abida 12 1/3 2 CC
attilodes? 13 2/2 2 EE2
zarepha 14 4 14 AP
illinissa (4 different) 13,15 4/9 2 AM,EE,PT,RR
v. virginiana, consobrina 15 2/2 2 AN,CC
anchiala (3 different) 15 3/7 5 AC,EE,RO
[like makrena ] 19 1/1 1 EE

Megoleria orestilla 35 1/4 1 EE(f)
Ollantaya aegineta cleobulina 6? 1/1 1 CM

canilla 14 1/3 2 CM
I Callithomia hezia beronilla 11 1/1 1 CC

alexirrhoe (5 different) 12 6/6 5 AM,GY(c),MT,PA2,RO
lenea (5 different) 1288 12/19 11 BA,EB2,MT5,PA,RO,RR2

Dircenna loreta (4 different) 812 12/21 14 EE3,MT,PA,RG,RO4,VV2
(the genus Pteronymia
is in Table 3)

adina (3 different) 14 4/8 7 EE2,RG,TV
dero (4 different) 14,15 14/44 20 AC,CM,EB2,EE,ES2,GO,MG2,

MT,PE,SP,VV
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Table 2 (Continued )

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

‘‘dero’’ euchytma (Transandean) 16,17 7/12 11 AN(a),CH2,RG2,VC2
p. paradoxa , ssp. 17 2/3 3 VC,WE
jemina (5 different) 8198 5/14 11 CH,CM,EB,EV,RG

(may be hybrids or
contaminants)

‘‘dero celtina ’’ 23 1/3 3 AR(a)
‘‘dero rhoeo, dark ’’ 30,33 1/3 2 GO

Hyalenna sp. nov. 13 1/1 1 WE
a. alidella 15 1/2 2 VC
minna 22 1/2 2 CM
pascua 438 3/9 5 RJ,SP2

Haenschia derama 33 1/4 3 CM
Episcada hemixanthe 16 1/2 2 BA

mira 17 3/5 3 AC,EE,VV
c. clausina, striposis 8218 3/5 4 EB,RJ(d),SP
montanella 24 1/3 2 SP
munda 26�/27�/few 1/5 4 SP
philoclea 28�/many 3/6 4 RJ,SP2
polita 288 5/6 4 AC2,CC,TV2
sylpha 31 2/7 1 RG,TV
s. salvinia, cabenis 88348 5/7 5 MX,OX,VC3
carcinia 60�/62 3/5 2 BA,SP2

Prittwitzia hymenaea (4 different) 815 7/12 10 AR(a),BA,DF,GO,MG(d),RJ,RG
Ceratiscada doto ssp. 12 1/1 1 BO

canaria 24,27 2/7 3 BA,ES
Ceratinia iolaia 12,14,15 1/5 5 AN(incl.a)

neso (7 different) 14 9/21 14 BO,CM,EE2,RG,RO2,RR,VV
tutia (10 different) 8817888 17/32 17 AC3,AN,CC,CM,EE4,RG3,RO, VC,VV2
c. cayana, giparanaensis 19�/1,23 2/2 2 RO,RR

Talamancana lonera 20 1/1 1 CH

J Velamysta phengites 12 1/1 1 EE
pupilla cruxifera 22 1/1 1 EE
peninna ms. ssp. 38 1/3 2 CM

Dygoris d. dircenna , ssp. nov. 36 2/4 4 CM,VV
Godyris kedema (3 different) 13 3/9 4 EV,RG,VV

nero 15 2/2 2 CH,OX
crinippa ssp. 24 1/1 1 CM
nepos hewitsoni , ssp. nov. 31,32 2/2 2 CM,EE
panthyale ssp. 44 1/1 1 CM
duillia 46,47 1/1 1 VV
zavaleta (5 different) 888840888888 7/27 17 CM,EE,RO3,TV,VV
zygia 75 2/3 3 CH2
sappho 77 1/2 1 CM
gonussa, petersii, telesilla 98�/120 5/11 9 AN,CC2,WE2
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Table 2 (Continued )

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

Greta p. polissena, umbrana 12 3/6 1 CH,WE2
(andromica?) andania 8368 2/8 5 CM,EE
a. andromica, lyra 8428 8/18 6 AN2(a),CC,CH,RG,TV,VC,WE
morgane oto 88478 3/5 2 CH,MX(b),OX
quisqueya 70 1/6 2 DR
diaphanus 78 1/5 2 JM
annette 73,80 4/4 2 CH,OX3

Hypomenitis cyrcilla? 24 1/1 1 CM
dercetis 27 4/7 2 EE2,RG,TV
enigma 42 1/3 3 WE
alphesiboea 60 2/2 1 EE,VV
ortygia ssp. 68 1/1 1 CM
ochretis ’’very many’’ 2/2 1 AN,VC
theudelinda about 100 1/6 2 EE(f)

Mcclungia cymo (4 different) 811 6/9 4 BO,GO2,MG2,MT
fallens (3 different) 13 4/12 5 AC,RJ,RO

Hypoleria s.l. aelia pachiteae, plisthenes 8 14/28 11 AC3,BA,DF(d),GO2,MG,MT2, RO3,SP
orolina (5 different) 8158 7/15 6 AC2,DF,GO,MT,RO,SP

Hypoleria ocalea (4 different) 10,11 6/15 9 AN2,MT2,RG,RO
adasa (3 different) 208 4/8 3 ES,GO,RJ(d),RR
lavinia (4 different) 26,29�/30 5/10 6 CC2,CZ,TV,WE
alema (12 different) 36�/38, 40�/43 16/34 15 AC2,AP,BA,EE,ES,GO,MT4,PA,PE,

RO2,VV
sarepta virginia , �/2 different 44,45 6/11 8 AC3,AM2,SP

Pseudoscada erruca 8308 7/12 4 ES,MG4,RJ2
timna (5 different) 8318 12/34 16 AC2,AN(a),CC2,CH,C-

M,EE2,RG,VV,WE
florula (4 different) 30�/31 7/23 11 AC2,BA2,EE,ES,RJ
acilla quadrifasciata , ssp. 31 5/16 13 GO(d),MT3,RO

Heterosais giulia (5 different) 8831 15/31 20 AN(a),CH,CM,EB,EE,HU,MT3,
RG,RO3,VV,WE

edessa 30�/31 4/7 PE,BA,ES2
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Table 3. Chromosome numbers in two large, poorly resolved genera: Oleria and Pteronymia. Localities in bold
indicate places of origin of meiotic metaphases shown in Fig. 54�/59 and 66�/69.

Tribe Genus Species, subspecies n�/ Pop./ind. Ind. Localities

H Oleria victorine graziella 9 2/6 4 RG2
deronda valida 10 1/1 1 CM
fasciata 11 1/2 1 CM
gunilla lota, lubilerda�/2 10,11 5/15 5 AM2,EE2,VV
amalda, a. modesta 12 3/8 3 CC2,WE
olerioides 12 1/1 1 CM
peruvicola 13 1/2 2 CM
makrena?�/2 8138 7/16 6 CC,CH,CM,CZ,VC,WE2
manora 14 2/5 4 RO,RJ(d)
cyrene 14 1/6 5 CM
aegle 14,15 1/2 2 AP
ilerdina priscilla, quintina 8148 6/25 18 AC2,CM,EB2,HU
alexina didymaea�/2 8815 7/10 6 PA,RO,RR,EB
a. astraea, burchelli, similigena 815 5/25 12 AC2,AM,AP,BA3,EE,ES
p. paula 16 2/3 3 MX2(b)
phenomoe 18,19 3/8 2 RG,TV2
onega crispinilla�/1 822 4/12 5 AC3,CH
e. egra, divisa 23�/24 3/11 2 AM2,AC
e. estella 27�/28 2/5 4 EE2
padilla pseudmakrena�/2 30 3/12 2 CM,RG,VV
o. onega, ilerda, machadoi�/1 308 5/8 5 AP2,CM,EE,VV
zelica (2 different) 32,29 2/7 7 VE,WE
athalina 41 1/1 1 CM
aquata (3 different) 8843888 8/26 7 AC,BA2,ES,GO,MT2,RO

I Pteronymia donella donata 10 1/1 1 DA
alida 13 1/2 1 RG
vestilla? (2 different) 14 3/6 5 AN,PA,VC
sylvo 14 5/7 2 AR(a),GO,MG,RJ(d),RO
euritea 14 2/6 6 ES,RJ(d)
cotytto 15 1/1 1 MX(b)
são guntheri , ssp. nov. (Lamas) 15 2/3 1 AC,CM
artena (3 different) 15 3/4 3 EE,TV,VV
forsteri 16 1/1 1 AC
latilla (3 different) 16 3/11 5 CC,RG,TV
veia linzera�/4 88178 7/10 9 CM,EE,HU,TV,VC2,WE
o. oneida 20 1/1 1 EE
granica? 23 1/1 1 EE
oneida? asopo (2 different) 824888 4/7 3 EE2,RG,TV
zerlina nubivaga 26 1/2 1 RG
aletta 26 4/10 3 AN,CC,RG,TV
teresita thabena 38 1/10 2 EE(f)
hara semonis? 54 1/2 1 VC
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Table 4. Chromosome numbers of the American Danainae. The taxonomic division follows ACKERY and VANE-

WRIGHT (1984). The numbers n�/29 for D. eresimus and (n�/29-30) for D. gilippus come from MAEKI (1961); the

number for D. plexippus comes from a population kept at the University of Madras, India (RAO and MURTY 1975).

Tribe Genus Species, subspecies n�/ No. fixed/counted

Pop./ind. Ind. Localities

A Anetia thirza 31 1/2 1 OX
briarea 31 1/5 2 DR
pantheratus 31 1/2 1 DR

B Lycorea cleobaea (2 different) 30 2/2 2 AN(a),RJ(d)
pasinuntia (3 different) 22 10/17 10 AC3,AM3,EV,GY(c),RO2

(Ituna) ilione (2 different) 30 3/5 4 EE2(incl. a),VV

C Danaus cleophile 30 1/2 1 DR
plexippus 30 1/1 ? Madras, India
erippus 30 1/2 2 SP

(Anosia) eresimus (5 different) 830 6/8 5 CT,DR,DA,EV,MX(gh)
plexaure 30�/31 1/2 2 BA
gilippus (2 different) 298 3/6 3 BA,ES,MX(gh)

Not counted: Anetia jaegeri , A. cubana.

Table 5. Chromosome number comparisons in monophyletic sister-groups (within small genera, or between them and

their closest relatives).

Tribe (Fig. 1) Genus (most primitive or
widespread species)

n/n More advanced or restricted species,
or putative sister-genus

A Elzunia humboldt 14/20 Elzunia pavonii
Tithorea harmonia 14/11 Tithorea tarricina
Aeria olena 27/38, 80 Aeria eurimedia, A. elara

E Athesis clearista 24/14 Patricia (2 spp.)

C Olyras crathis 8/20�/19�/20 mc Eutresis hypereia
Melinaea (10 spp.) 13�/30/50 Athyrtis mechanitis

D Thyridia psidii 17/18�/43 Sais rosalia, Scada spp.
Mechanitis lysimnia 15�/19/22�/23 Mechanitis macrinus
Forbestra olivencia 9�/mc/63 Forbestra equicola

I Callithomia (3 spp.) 11�/12/12�/38 Velamysta spp.

H Ollantaya canilla 14/6 Ollantaya aegineta cleobulina
Hyposcada (11 spp.) 12�/15/9�/43, 35 Oleria (�/20 spp.), Megoleria susiana

G Epityches eupompe 17/6�/37 Napeogenes spp.

F Pagyris cymothoe 30/11�/35 Ithomia spp.

G Garsauritis xanthostola 18�/20/50�/51 Rhodussa cantobrica

I Hyalenna sp. nov., H. alidella 13,15/22, 43 Hyalenna minna, H. pascua
Ceratiscada doto 12/24�/27 Ceratiscada canaria
Prittwitzia hymenaea 15/17�/62 Episcada spp.

J Dygoris dircenna 36/13�/120 Godyris spp.
Mcclungia salonina 11/8�/45 Hypoleria spp.
Heterosais, Pseudoscada 31, 30�/31/12�/100 Greta, Hypomenitis
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Table 6. Ithomiine species with appreciable geographic variation in their chromosome numbers, in different localities

(see also Table 7�/8). Asterisk (*) indicates variation within populations also.

Tribe Genus Species Localities n�/ Comments

E Athesis clearista Colombia, W
Venezuela

24 Related Roswellia has 32, 34

NE Venezuela 28�/10 mc

F Ithomia *iphianassa C Colombia 10 Intergrade freely giving
Venezuela, W Ecuador 12�/13 n�/11,12

terra W Colombia 14 n�/16 also known
Eastern Peru 17 in between these

G Garsauritis xanthostola Amapá, N Brazil 20
Manaus, C Amazon 18

Napeogenes *inachia E Colombia 13�/14 The conspecificity of these
populations might be questioned!

Rondônia, SW Brazil 16�/18
Amapá-Para, N Brazil 22

sulphurina Pernambuco, Bahia 24,26,28
*stella Central Colombia 11�/13 Almost surely all are

W Colombia 12�/14 conspecific
Hypothyris *ninonia Amazonian Brazil 15�/18 Possibly not the same species

*n. daeta Eastern Brazil 18�/23
vallonia Roraima, N Brazil 24 Sister sp. (gemella )

Pará, E. Brazil 20�/21 has n�/18�/20 in Roraima,
SW Venezuela 22 Venezuela

fluonia E Colombia 9 Conspecificity is quite certain for
all theseE Ecuador 16�/17

S-C Brazil 13
*euclea C America�/

W Colombia
16�/17 Intergrades in W Colombia,

n�/16�/17
Amazon to S Brazil 12�/15

*lycaste Guatemala 48
W Colombia 42�/45
W Ecuador 50

H Oleria *aquata SE Brazil 46
SW Brazil 43

zelica W Colombia 29 Most species have the same
number in bothW Ecuador 33

I Dircenna dero C America to
W Ecuador

16�/17

S Brazil�/Argentina 14�/15
Ceratinia *tutia C America�/

W Colombia
15�/16 Almost surely these are

conspecific with each other
N Venezuela 19�/20
Acre, SW Brazil 15
Rondônia, SW Brazil 18

Ceratiscada canaria Bahia, E Brazil 24
Esp. Santo, E. Brazil 27

J Hypoleria lavinia Costa Rica to W
Colombia

26

W Ecuador 29
alema SW Venezuela 30
oreas SW Brazil 36

NE Brazil 40�/42
NW Brazil 38,40
E Colombia 37�/38
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Table 7. Chromosomes and systematics of Mechanitis species and subspecies.

Species Subspecies examined Localities n�/ Comments

lysimnia menecles, ocona, acreana, elisa CM,EB,EE,MT,RO 15 no variation in these western sspp.
lysimnia AR,BA,RJ 18�/19 Form ‘‘connectens’’ (GO,MT) has

n�/16�/17
nesaea BA,PB 17 Form ‘‘sulphurescens’’ has n�/18

macrinus macrinus, utemaia, solaria ,
new ssp.

CH,CZ,EV,RG 22�/24 Consistently higher n than lysimnia ,
for names see LAMAS (1988)

polymnia lycidice, isthmia, veritabilis,
werneri, caucaensis, kayei,
chimborazona (Transandean)

AN,CC,CZ,EV,MX,VC,WE 17�/19 Occasionally to n�/20 or more,
especially in Sucre/Trinidad

bolivarensis, dorissides,
proceriformis, eurydice,
polymnia, mauensis, new ssp.,
angustifascia, casabranca

MP,RR,VV,EE,
CM,PA,AM,MT,CM,
EB,HU,GO, MG,RJ

14�/16 n�/16 seen very rarely, possibly due to
non- pairing in an otherwise stable
complement

menapis menapis, occasiva, caribensis,
new ssp.

DA,CC,VC,RG,EV 24�/25 occasionally lower (22�/23 in
E Venezuela) or higher (28 in
W Colombia)

dariensis, mantineus DA,WE 20 lowest numbers at extremes of range
mazaeus mazaeus, elevata, egaensis,

pannifera, visenda, pothetoides,
various forms

GY,VV,EE,AM, RO,PA,AC 14�/16 darker forms tend to lower numbers
(14) in W Amazon and Andean
foothills but most pops. have variable
14�/16

messenoides, deceptus VV,EE,CM 15�/16 very occasional counts of 14 seen

Table 8. Chromosomes and systematics of Melinaea.

Species Subspecies examined Localities n�/ Comments

mnasias eratosthenes, rondonia, thera,
comma , new ssp.

AP,CM,GY,RR,
BA,PA,RO

23�/27 Seems coherent and amply distinct; also
includes 7�/10 other ssp.

iudovica ludovica (some populations) AP,PA,RO,RR 17�/19 Varies within populations or individuals
ludovica, paraiya AM,BA,GY 20�/23 May be due to incomplete pairing at times
crameri, paraiya BA,BO,EV,RJ,SP 23,24 Highest n at extremes of range

idea idae, vespertina AN,CC,CZ,WE 13 Separated from ludovica by chromosomes
ethra (none) BA,ES,PE,RJ,SP 29,30 E Brazil; separated from maelus/maeonis
maelus zamora, maeonis, cydon,

tarapotensis, flavomaculata,
mnemopsis, scylax

AC,AM,CH,
EB,EE,HU,TV

14,15, 17 Consistent form of wing markings (FW
Cu, HW cell) and low number

lamasi , new ssp. AC,RO 14�/17 higher numbers can be seen in this region
lilis imitata, parallelis, lilis, dodona CH,CC,MX,OX

RG
21�/24 Variable within and between populations,

includes also 7 more Transandean ssp.
sola, lateapicalis EV,TR,TV 20�/21 Lowest n at NE, S extremes of range

mneme mneme, mauensis, new ssp. AM,AP,GY,RO 16,17 Consistent in pattern and number
menophilus menophilus, orestes, zaneka AC,EE,RO 19�/22 Consistent E to E Pará
marsaeus messenina, mothone, clara,

pothete
AC,EE,TV,VV
RO,PA

16�/18 Also includes marsaeus, macaria, rileyi ;
sympatric with maelus, menophilus, maenius

phasiana, satevis AC,EB 15 lowest numbers in SW, satevis was in
ludovica

maenius mediatrix, isocomma, simulator,
cocana, egesta, juruaensis

GY,AP,VV,EE,
RO,AC

20�/23 Up to n�/25 in some areas; often hard to
separate superficially from marsaeus
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different numbers and without intermediate numbers.

This might suggest incipient speciation, which is not

affirmed here because elsewhere in the same states, the

same pairs do intergrade. Trans- and cis-Andean

populations of the widespread polymnia complex

also show different numbers (n�/17�/20 versus n�/

14�/16), but blend into each other in eastern Colom-

bia, unlike macrinus and lysimnia . M. menapis has

quite a variable number (n�/20 to 28) but does not

seem to be divisible for this reason only. The union of

the mid-elevation messenoides with the low-elevation

mazaeus is supported by both morphological and

chromosome intergradation in many mixed popula-

tions, with variable n�/14�/16. M. limnaea and

M. bipuncta , provisionally united with lysimnia in

the latest revision (BROWN 1977), have not yet been

fixed for counts. The within species and within

population variation in number in Mechanitis is

extraordinary and makes it tempting to simply forget

about rigid species definitions in the genus, accepting

each population or regional subspecies as a unit unto

itself, without obligatory evolutionary links to others;

but such would represent an appreciable loss of

information necessary to proceed with further studies

of the group.

The genus Melinaea (Table 8) continues to present

similar doubts. Some changes to the arrangement in

BROWN (1977), already incorporated into BROWN

(1979 and later), are clearly indicated by the chromo-

some numbers. M. lilis (n�/20�/24) and M. maelus

(n�/14�/17), sympatric in northeastern Colombia and

southwestern Venezuela, parallel the macrinus-lysim-

nia case seen in Mechanitis, and both must be

separated from M. ethra of southeastern Brazil (n�/

29�/30); from its compatible number, M. scylax would

seem to be a race of M. maelus isolated in western

Costa Rica, in the middle of the lilis range. The

Transandean M. idae (n�/13) must be separated from

the M. ludovica complex (n�/17�/24), whose subspe-

cies vary appreciably in number within and between

populations; the Bolivian satevis (n�/15) would be

more extreme for this species and may be associated

with M. marsaeus (M. m. phasiana also shows n�/15).

While M. mnasias (n�/24�/27), M. mneme (n�/16�/

17), and M. menophilus (n�/19�/22) seem to continue

cohesive as in the previous revision, the rational

distribution of many Amazonian and Andean popula-

tions associated with M. marsaeus and M. maenius

among these two species continues to be problema-

tical. Lower numbers (n�/15�/17) are associated

with a widespread species (marsaeus ) which can

include both dark mid-elevation forms (mothone and

messenina ) and foothill forms like macaria and satevis

(n�/15), and extends east to Pará as m. pothete.

Other mid-elevation dark forms (simulator, n�/20)

and the foothill egesta�/hicetas (n�/23�/25) fit better

into maenius (n�/21�/22) which also shows a more

strongly red-colored testis than M. marsaeus. Two
similar ‘‘transitional marsaeus (pothete �/clara)’’ from

south of Ariquemes, Rondônia showed n�/18 and 20,

suggesting that one might be maenius juruaensis, or

that the variations in these species may exceed the

possibilities for final decision on separations or

associations based on phenotype alone, requiring

more sophisticated techniques to properly place all

subspecies (juruaensis was associated with maenius in
BROWN 1977, but with marsaeus in BROWN 1979).

In a single location, the usual maximum number

of easily distinguished phenotypes in this complex

is five, but foothill or transitional areas may show

several additional forms, often seeming to intergrade

among themselves and with the primary types.

CONCLUSIONS

In conclusion we may note that the basal karyotype of

Ithomiinae has originated through what appears to be

a process of concerted fusion. The starting point has

been n�/30�/31 as in Danainae and Tellervinae.

Numbers have evolved further through fusions and
fissions to as low as n�/5 and as high as n�/ about

120. Some genera have stable chromosome numbers,

while others exhibit extensive variation among and

within species. This variation seems to be geographi-

cally differentiated. We hope that understanding

chromosomal differentiation will help to understand

the taxonomy and ecology of this important neotro-

pical group of butterflies.
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gêneros Mechanitis Fabr. (e) Melinaea Huebn. (Lep.
Ithomiidae). �/ Bol. Mus. Nac. (Zool.) 100: 1�/27.

D’Almeida, R. F. 1978. Catalógo dos Ithomiidae americanos
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Lépidoptères Rhopalocères néotropicaux. �/ Ann. Soc.
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