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Damage Detection in a Benchmark
Structure Using AR-ARX Models and
Statistical Pattern Recognition

Structural health monitoring (SHM) is related tcetlability of monitoring the state and
deciding the level of damage or deterioration wittderospace, civil and mechanical
systems. In this sense, this paper deals with pipdication of a two-step auto-regressive
and auto-regressive with exogenous inputs (AR-ARK()el for linear prediction of
damage diagnosis in structural systems. This dand&gection algorithm is based on the
monitoring of residual error as damage-sensitiveleres, obtained through vibration
response measurements. In complex structures #nermany positions under observation
and a large amount of data to be handed, makinficdif the visualization of the signals.
This paper also investigates data compression lmygusrincipal component analysis. In
order to establish a threshold value, a fuzzy cimsedustering is taken to quantify the
damage-sensitive index in an unsupervised learmnde. Tests are made in a benchmark
problem, as proposed by IASC-ASCE with differembaige patterns. The diagnosis that
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was obtained showed high correlation with the atiogegrity state of the structure.
Keywords: structural health monitoring, damage detectioninpipal component analysis,

time series, fuzzy c-means clustering

Introduction

Nowadays, many accidents in structural systems echus/
various sources of damage,
earthquake), gradual wear (e.g. fatigue crackirejardination in
composite structure and corrosion) and predictdiderete events
(e.g. aircraft takeoffs and landings) have attichdtee attention of
engineers and researchers for the necessity olajeng strategies
of structural health monitoring (SHM). The interést SHM is
motivated by the potential of economical and litdesy benefits.
For instance, Farrar et al. (2005), based on thdx wbCoburn and
Spence (2002), stated that about $60 billion aeeahnual costs
associated with mechanical failure and earthquakenage.
Additionally, in-service failure corresponds to 20% of all losses
in the engineering sector, mainly in the petrocloafindustry.

Worden and Dulieu-Barton (2004) comment that thisren
increasing pressure on the market, due to econbnfteaper
constructions, lower fuel consumption) and perfaroea (higher
transportation speed) reasons, to introduce neviatwigight
structures. As a consequence of this approache ttesctures and
constructions are becoming inherently weaker; thesonances are
moving down into the frequency range of the exicitaforces that,
in turn, can cause failure of the system due toadyin loads. In
order to guarantee adequate performance throughelife of these
products, it has increased, in the recent yeaesnthitu monitoring
of engineering structures through periodic dynamigasurements.
And the SHM strategies use these data to estirhateurrent state
of the system (in general, by using statistical efiog)) based on a
damage-sensitive feature extraction.

Doebling et al. (1998) separated formally the SHMcpss into
four sublevels based on vibration measurements thadnatural
hierarchical structure: Level 1 — Detect damagejel @ — Detect
and locate damage; Level 3 — Detect, locate andtijyalLevel 4 —
Detect, locate, quantify damage and obtain the irdnw service
life. Inman (2001) proposes that, when dealing witrart materials,
3 other sublevels should be added to the prevines.o

Worden et al. (2000) mention that the detectionwbfether
damage is present or not is the most fundamentslieis
Unfortunately, the Level 1 is still a daunting plexin for practical
applications, mainly in complex system, due to 8ignificant
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uncertainties caused by modeling errors, unknovad Idata, etc,
(Chang, 2000). The challenge gets bigger whenribtspossible to
excite the structure with active sources due toghteior power
constraints and also when the operational conditiarot known. In

such as extreme evems (these cases, the SHM must be carried out using thelyibration

responses. On the other hand, when some knowlebiget dhe
physics of the system is available, its behaviar ba simulated
theoretically or numerically. However, physics-lthsassessment
approaches are usually computationally intensive. ofder to
overcome this difficulty, data-based techniques banused. They
rely only on previous measurements performed on hbalthy
system and should be able to indicate changesimtterial and/or
geometric properties, boundary conditions, andesgstonnectivity.
Some methodologies combine these two approachgsi¢skbased
and data-based) to reach a better confidence laveSHM
processes. Due to the drawbacks of the physicdb@stniques,
the present work deals with the use of data-basedsament
procedure, once it can provide a potentially effectlternative for
rapid monitoring system. However, in order to redabk upper
levels of the SHM process — quantify the damage @ltdin the
remaining service life — it is probably more effeetto use physics-
based assessment approaches.

There are several data-based techniques that lesverbcently
investigated. Carden and Fanning (2004) descritiereint common
methodologies for SHM. Among those, the authorgeagthat one
of the most promising methodologies is the modehstmiction
based on time-series signature, called “black bmddel. In this
approach, large prediction error comparing to thetua
measurement will occur if the system presents aatated damage.

Sohn and Farrar (2001) pose the SHM problem itisttal
pattern recognition and time series analysis pgradiSo, neither
sophisticated finite element model nor modal ansly&s driven to
reach the two first levels in the SHM process. Aeotpositive
aspect from Sohn and Farrar (2001) proposal wasigkeof signal
analysis only for the healthy system. Thus, the SM&é conducted
in an unsupervised learning mode which is a venyorant feature
once data from damaged structure are usually raitadle for most
real-world engineering system, (Fugate et al., 2080r instance,
for very expensive structures like aircrafts, thdés simply not
possible. The use of a neural network, perceptnorary other
supervised learning process, for example, is diffifor practical
applications due to the necessity of training daemaattern data. In
this case, training data could be obtained fronuete models or
by a previous knowledge of the history of damageals.
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The approach proposed by Sohn and Farrar (20&:Dnigposed
of a two-stage prediction model, combining an aefgressive (AR)
and an auto-regressive with exogenous inputs (ARXJel. The
model was constructed with selected and normalaezkleration
signals obtained from the undamaged structure. Ptaposed
approach was applied to an eight degree-of-free(lD®F) mass-
spring system. The authors consider measurements different
environmental conditions taken from the structaréhie undamaged
state. The one-step-ahead error prediction wasetbfas a damage-
sensitive index. If there was any damage in thecsire, the
previously obtained model using the reference $sgwauld not be
able to reproduce the new time series measured thendamaged
structure. A Gaussian statistical analysis basedthen standard
deviation ratio was used to detect damage.

Lei et al. (2003) modified this approach considgrithe
influence of the excitation variability and the erdof the ARX
prediction model in the damage-sensitive index. Tdmults were
investigated in the same benchmark structure useithd present
paper. A drawback of this approach seems to beisiualization of
the signal processing, due the high number of miea®nt points.

It is also possible to use a similar frequency-domaRX
model, which was originally developed by Adams &ittmang
(2000) for non-linear system identification. Park a. (2005)
combined this modified model with smart materiatdbed of the
structure, in order to quantify the difference betw the electrical
impedance measurement and the ARX frequency madelb The
authors obtained a robust active damage indicdtar,to the use of
smart materials. Furthermore, because the highGarssian nature
of data error distribution tails, extreme valuetistes (EVS) was
employed.

Lu and Gao (2005) proposed a different linear medéten in
ARX form without the excitation term. In this caslee acceleration
response signal was used as “input’” to the ARX rhodais
procedure differs from the one described by SolthFarrar (2001)
because it permits to skip the AR modeling while kiter uses the
AR error as “input” of the ARX model. The paper gEBts a
comparison between the performance of the modiéiBX model
and the AR-ARX model proposed by Sohn and Farr@®@1p The
results of an eight DOF mass-spring system denatestrthat the
model proposed by Lu and Gao (2005) had a bettéompeance for
the case of degradation in different places simelasly. Lu and
Gao concluded that this approach improved the ®entsifor
structural stiffness change, when compared to ttewigus AR-
ARX model. However, no simulations were driven ddasng
noisy measurement. So, further research is requiregktend the
applicability of this model for practical use.

A different technique proposed by Bodeux and Gealin(2001)
uses an autoregressive moving average vector (ARM@ddel.
The difference between this approach and the omesiqusly
described is that the first uses the natural frequeas damage-
sensitive, while the latter use the prediction redwe to the fact that
modal parameters are extracted with uncertaintiesn f the
ARMAY model. The parameter estimation is a functadrthe filter
order and it involves a non-linear optimization gedure. Besides,
the regression term includes residual error, aretethare great
difficulties with unbiased estimators. Another pieal disadvantage
of this damage feature, based on the natural freges is related to
the low sensitivity for some parameter variatidnsthese cases the
index is masked by the unavoidable experimentakr®rin general,
methods based on statistical pattern recognitiems® be suitable
under the conditions where clear physical basi®isavailable.

The main goal of this paper is to present a metlogyofor

SHM purpose to reach thé' level described before (detect damage)

based on the AR-ARX model, as described in Sohn Radar
(2001). The primary focus of the work is the apgtiicn of a fuzzy
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classifier. The paper is organized as follows.idilit, the basic
procedure for damage detection is presented byidenisy data
compression using principal component analysis (PB&ore the
damage feature extraction. The partitioning of daenage-sensitive
feature in three clusters (healthy-state, damagesanere damage)
is made by using the fuzzy c-means algorithm (Blezaled Pal,
1992). This approach is based on an iterative #lgorto minimize
the sum of point-to-centroid distances, summed @leclusters.
The paper concludes with some numerical tests lmerrchmark
structure proposed by ASCE Task Group on Health itdddng
(Johnson et al., 2000). The results obtained aaudsed and further
directions are suggested.

Nomenclature

A.i(g) = " Polynomial relative to output (roots are poles) in
known structural condition.

A,r(q) = Polynomial relative to output (roots aregm)lin
reference signal.

Ay(q) = Polynomial relative to output (roots aregmjlin
unknown structural condition.
aq = I" coefficients of the'l A,(q).

a, = I" coefficients of thed(q).

B,r(q) = Polynomial relative to input (roots are zériosthe
reference siglnal.

G; = Centroid of the'l cluster.

¢ = Number of clustesrs.

e,i[k] = i"residual error between the measurements vibration
and the output prediction model in known condition.

g,[k] = residual error between the measurements tidorand
the output prediction model in unknown condition.

fij = pertinent function associated togbject of the'f cluster.

m = Number of measurement locations.

N = Number of environmental/operational condititmbe
observed.

n = Number of discrete-time points.

na = Order of polynomiah(q).

nb = Order of polynomiaB(q).

p = Order of AR model.

r = Number of lag to obtain the correlation funatio

Rix(r) =Correlation function of;(k) at I lag.

uj[k] = Acceleration signal at'jlocation and R instant.

z[K] = Standardized acceleration signal'atgcation and ®
instant.

z[K] = Vector of the response component.

xi[K] = Vectors of data in known structural conditiirealthy)
projected onto tPCA, i=1,2,...,N.

Xr[K] = Reference signal.

y[K] = Vector of data in unknown structural conditio
(undamaged or damaged) projected ofit@TA.

g = Time-delay operator.

v = Eigenvector of the covariance matrix.

w; = Natural excitation (one per floor).

Greek Symbols

Y = Covariance matrix m x m.

A = Eigenvalues of the covariance matrix.

&rlk] = Residual error of the ARX( na, nb) xq[k].
g,[K] = Residual error of the ARX( na, nb) y§k].
y = Standard deviation ratio (damage index).
o? = Model error power.

Mathematical Operators

m() = Mean.
§() = Standard deviation.
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Standardization Procedure

An ensemble of acceleration responsgg] (j=1,2,...,m and
k=1,2,...,n) denotes the response time series camedpy to m
measurement locations and n discrete-time intendalshe first
stage, each time series signaj[k], is standardized in order to
remove trends as follows, (Wirsching et al., 1995):

ujk]-mlu;)

1
) @)

zjlk]=

wherez[K] is the standardized signal af knstant,m(u;) ands(u;)
are respectively the mean and standard deviatiag[kif sequence
respectively.

Data Compression using Principal Component Analysis

Principal component analysis (PCA) is a techniqaeoted to
the extraction of compact information from a matrixy
investigating its dimensionality, which was intregd in
multivariate statistics for data reduction (Cho &h, 2002).

In this paper, PCA is used to perform data compesahen
information from multiple measurement points is ikalde. This
process changes the normalized acceleration tinmessérom
multiple points into a single time series, mainiagn the main
information in the reduced data.

Initially, a vector z[k] of the response components
corresponding to the m measurement locations imddrby using

Eq. (1):
2]=[zlk] zp[] -~ zm[K]"

Then, the mx m covariance matri¥, among spatial
measurement locations summed over all discrete-8amaples is
obtained by:

@

n
¥ = Zk] k] @)
k=1
The eigenvalue problem of the covariance matrilsBes
b 4 Vi = )\i Vi (4)

where); andv; are the eigenvalues and eigenvectors, respectivel

The eigenvectov; is called a principal component.

The goal is to reduce the m-dimensional vecfét into a d-
dimensional vectox[K], where d<<mFinally, z[K] is projected onto
the eigenvectors corresponding to the first d lstrgeggenvalues:

— T
xk]=[vy - vq]"ZlK]

In the present work, all time series are projeatatb the
principal component because, in the studied chse;dntribution of

these feature is dominant compared with the otimes 0Sox[k]
will be a singlevector and it is called gsattern vector

®)

Damage-Sensitive Index Extraction

It is very important to distinguish between undaethgand
damaged condition from the measured vibration $sgn@he
process of identifying damage-sensitive properfiesn data is a
crucial point. In this paper, the residual erroteen an AR-ARX
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linear prediction discrete-time model and measumee series is
used as damage index.

The first phase of the technique considers sigfiais the
undamaged structure (healthy state) in N environah@perational
conditions. Each ensemble of data is standardize&d (1) and
compressed using Eq. (5). The final signal is tigepn vectox[K],
where i=1,2,...,N.

The next phase is devoted to the construction oARmmodel,
with order p, for eacki[K]. The AR(p) model is written as:
Ay (a)xi [k] = e [k] (6)
whereg[k] is the " error between the measured signal and the
output from the prediction modeh,i(q) is the 1 polynomial in the

delay operator g, written as:

Asxi (Q) =1+ axilq_l + axizq_2 Tt axipq_p (")
where g, &, ..., &p are coefficients of thé"iA,;(q) polynomial
(i=1,2,...,N). For example, 2[k] means X[k-3].

The coefficients of the AR model can be found byesal
methods, such as Burg algorithm, least means s@ygmach, etc.
In this work, the set of coefficients in Eq. (7)eaestimated by
minimizing the power of each prediction errde,[k][>. This
procedure leads to the Yule-Walker equations gignWang
(2003)

p
R () = =>" Ay Rixx (r=1) for r>0
1=

Rixx (O) = _IZ:axil Rixx (_ |)+ o?

(8)

where Ry(r) is the correlation function of[k] at the f" lag ando®
is the model error power estimated for the undachageicture. In
order to estimate the autocorrelation function, lteeginson-Durbin
recursion method is used. Equations (8) can beesgpd in the
matrix form as:

Rixx (O) Rixx ('1) Rixx (' p+ 1) Ay Rixx (1)
F\’ixx. (' ) ix>.< (O Rixx (' p+ 2) Axi2 — Rix>.< (2) (9)
Ruoc0) Ric02) - Rcl0) Jl2u) (Ruc )

It has been shown by Wang (2003) that the solutibivule-
Walker equations yields the optimal AR model foiekr prediction.

The orderp of the model, in general, is not knovenpriori.
There are several criteria to determine this orBler.example, Shin
et al. (2003) proposed a criterion based on thgutn-value
decomposition. The two most widely used methods Akaike’s
information theoretic criterion (AIC) and Akaikefgal prediction
error (FPE), (Aguirre, 2004). In this paper thestfione (AIC) is
used.

The monitoring of the structure is realized by afitey new
vectors of data to the unknown condition (undamagedamaged)
using the PCA technique. This new sequeygé has the same
length of the signak;[k]. In other words, n discrete-time points are
considered. In this phase, the previous step glwergq. (6) is
repeated with the same order p:

Ay (alylk]=ey[K] (10)
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whereA (q) is the polynomial

wd P (11)

Ay(q) =1+ aqu—l +ay2q—2 +...+a
and g, ap, ..., g, are the coefficients of thAy(q) polynomial
obtained by using the Yule-Walker method previowsgcribed.

The new AR model is compared with each model ofsiigeal
xi[K] in the reference database to select a sigr@] “closest” to
the unknown condition block[k]. This is obtained through the
minimization of the following Euclidean norm:

p
Distance= Y (ay —ay; )? (12)

1=1

The signal xg[k] whose coefficients satisfy the minimum
distance is called reference signal. This procedudefined by data
normalization to select a pattern vector from #ference data base.
If the y[K] vector is obtained from the same operationaidition
and there has been no structural change in thersyshe AR model
should be capable of predicting the dynamic behasfiche system,
which is given by the AR coefficients, and it stibille similar or
close to the reference signal (Sohn and Farrar] 200

The following stage is to obtain an ARX model fratme
reference signag[K] as:

Ag (xR k] = Bur (@)exr K] + 2= [K] (13)
whereg,g[K] is the residual error of the polynomials ARX(nb)
model,eg[K] is the residual error of the AR(p) model givey Eq.
(6), and:

— -1 -2 -na
xR (q) =1+ayr10 ~ *tayrod * * -+ ayrpad

( )_ 4 - b (14,15)
xR \8)=Dbyr1d ™ + byrod “ +-- + byrnpd

A

B
where na and nb are the orders of the polynormigiéy) andB,r(q)
of the reference signal respectively

Equation (13) represents the relationship betwéwn autput
xg[K] and the “input” eg[K]. The AR residual errorgglK], is a
function of all unknown external inputs and is ddesed to be an
approximation of the estimated system input. Tlieona and nb of
the polynomials given by Egs. (14) and (15) casdtearbitrarily.

The model associated with Eq. (13) is now appléethvestigate
the vector of data for the unknown conditions:

AR (Q)y[k] =Byr (Q)ey [k] tgy [k]

If the ARX model obtained from Eqg. (13) is not aodo
prediction for the new signaigk] and e/[k], then the residual error
g,[K] from Eq. (16) and its probability distributiowill change. A
procedure to cluster the residual error and to tie¢pdecision of
whether the variation of the residual error coroesfs to damage or
not is developed in the following section.

(16)

Unsupervised Statistical Pattern Recognition

The process for choosing a threshold value to ifyetite health
condition of the structure from undamaged to damaggte is

known as statistical modeling In the previous sections it was

obtained an index for which the effects of distud®s, such as
inputs and environmental variation, were normaliz&tis data
normalization procedure is necessary when measmtemef

different environmental and operational conditians not available
to construct the undamaged AR model.
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It is assumed here thatg[k] and g[k] are asymptotically
normally distributed. A common approach is to monihe standard
deviation ofg,[k] and compare its value with the standard deoviati
of the healthy stater[k]. Lu and Gao (2005) investigated this
feature for diagnosis and the results showed th& a suitable
index. They employed the following ratio of theratard deviation
of the residual errors frop{k] and x,[K]:

S(ay)
fexr)

If the index presents a non-Gaussian distributibis, approach
must be modified, which can be done by using extreralue
statistics (EVS). EVS fits only the data distrilmutitail. But, if it is
reasonable to assume that the set of data fale dmsthe normal
distribution curve, this procedure is not used.

An increase in this index value would indicate ttie location
of measurement is close to the damage. Howeverder to obtain
a rapid SHM process, the present paper focuses onlythe
diagnostic based compressed measurements. It @@noérned with
the location the damage”f2evel).

Another approach used to detect damage is thestBtati
Process Control (SPC). This method is based omaatahart for
automated continuous monitoring. This techniqueajplied to
structural monitoring using different damage-sévsitfeature, as
can be seen in Fugate et al. (2000), Sohn et @0j2and Silva et
al. (2005).

The present work proposes an approach that israquéntly
applied to SHM purposes: namely, the fuzzy c-me@rGM)
algorithm, which was first presented by Bezdek )98 he goal is
to identify a finite number of clusters to descritmee data set. In
fuzzy clustering, the membership of a data-pointiluster is a
fuzzy decision. A data-point is considered to bmeamber of every
cluster with a given possibility membership valhattranges from 0
to 1. The objective function of the fuzzy c-mealgodthm is based
on selecting representative objects from the detanssuch a way
that the total fuzzy dissimilarity within each deisis minimized in
an unsupervised manner.

The basic fuzzy c-means clustering algorithm izgilby:

y= an

min J=
f;.G

S5 -cif
j=1i=1

subjectto 0<f; <1

18
Zc:fij—l 0jo{1,2,--,N} (18)
i=1

N
0<Yfj<N  OiD{L2:-.c

=1

where f is the pertinent function associated to thebject of
the " cluster, Gis the centroid of theé"icluster, ¢ is the number of
clusters and m > 1, in general, is unknown. Itsgally used m = 2.
X; is the representative feature, and in this papés, Gonsidered as
being the standard deviation of the ARX model nesicerror and
the signal€x[k] andg,[K].

The optimum cost function, J, can be obtained Iltipviang the
steps:

15'— Chose the initial centers,@,,..., C.,

ond _ Computeif for each jO {1, 2,...,L), where L is the number
of features of each cluster (in the present pameetfeatures were
used). Ifl[ x; - G [|?> 0 fori=1,...,c then:
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1—1

2 \m-
s
fo=

1] z

1=1

19)
bei-clf

If [[x-G l[2=0fori0l 0{L,2, ...,c), then defingf i U1, as
any non negative real number that sati3fyf; =Z1and define;f=0
iol
forid{1,2,....c)- 1
39 _ Update the centers:

N m
Ci =

N (20)
2
=1

4h _ i convergence is achieved, stop the procedwroise,
return to the second step.

The solution comes from the optimality equatiores agrange
multipliers. Details about this procedure can henfbin Bezdek and
Pal (1992).

Benchmark Test Structure

Dyke et al. (2001) comment that an important pathe current
effort for the progress of the SHM technology is tlevelopment of
well-defined benchmark structures that allows penfince
comparison among various approaches for realisticlitions. The
associated effort led to a benchmark structurechvinas proposed
by ASCE Task Group on Health Monitoring. A schematiawing
of such a structure is shown in Fig. 1.

This frame is a 2 x 2 bay, four-story rectangulaekstructure
built at approximately one-third scale. The modeBi6m tall and
2.5m wide (Johnson et al., 2000). The geometrical physical
properties are shown in Table 1.

Two different finite element models were develofredrder to
generate data for simulation purposes. The firgt loas 12 DOF —
two horizontal translations and one rotation arothedvertical axis
per floor, except the ground level, which is corglieconstrained —
and the second is a 120 DOF model that requireg thrd floor
nodes to have the same horizontal translation asplaine rotation.
The columns and floor beams are modeled as EulereB#i beams
in both finite element models. The braces are bétts no bending
stiffness. A data generation program (free codiewal the user to
consider any case of damage pattern for testinggses. In the
present paper, the 120 DOF model was used. Fivageupatterns
are defined for this structure. These patterngsen in Table 2.

The complete program and more details about thehveark
structure are available in
http://wusceel.cive.wustl.edu/asce.shm/default.htm.
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0.5m

05m

Figure 1. Schematic benchmark structure (from Johns on et al., 2000).

Table 1. Properties of structure.

Floor
Property Beams Columns | Braces
section type B100x9 S75x11 1.25x25K3
cross-section ared, [m’] 1.133x10° [ 1.43x10° | 0.141x1C°
moment of inertia (strong 1.97x10° | 1.22x10° |0
direction),ly [m’]
moment of inertia (weak
direction) I, [m] 0.664x1¢F | 0.249x1C | 0
JSt[.m\ﬁ]enant torsion constant, 8.01x10° 38.2x1¢ |0
Young’s ModulusE [Pa] 2x10* 2x10° 2x107
mass per unit lengtim[kg/m] | 8.89 11.0 1.11

Table 2. Damage patterns.

Description

All braces of the first floor removed

All braces of the first and third floor removed

One brace removed from the first floor (drawn ashed line in Fig.
1

One brace removed in from the first and the tHodrs,
simultaneously (drawn as dashed line in Fig. 1)

As the previous damage pattern but with the flagarb from (2.5m,
0, 0.9m) to (2.5m, 1.25m, 0.9m) partially unscrevred the
column at (2.5m, 0, 0.9m)

(@)
@

©)
4

®)

Results

To illustrate the SHM process, tests in the benckmsructure
(120 DOF model) were performed. Five different sc@s for the
undamaged state, varying the operational condifg@ncentage of
noise added in the input), which is shown in TaBlewere
considered. Table 4 describes the 15 cases coedidsr unknown
conditions (undamaged or damaged situations). Wasgth noting
that data from cases 6 to 8 (see Table 4), despéefact the
structure presents no damage, were not used tdregonthe AR-
ARX model. They were considered as unknown conafitiand used
to test false-positive.

In each scenario sixteen acceleration “measurentérattions
were considered— two in the x-direction and twahe y-direction
per floor (in the middle at Fig. 1, the accelenasion x-direction are
omitted for the sake of clarity). Gaussian pulsecpsses, with
various RMS percentages, are added to simulates¢hsor noise
vector.
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Table 3. List of studied undamaged scenarios.

Damage Patterp I(D'\?)ak Amplitude Force % RMS noise
Case 1 No damage 150 10
Case 2 No damage 200 15
Case 3 No damage 120 20
Case 4 No damage 180 25
Case 5 No damage 230 30

One excitation per floor was applied. The excitagiovere
modeled as a filtered Gaussian white noise — widfse stochastic
processes with Gaussian distribution, filtered vt order low-
pass Butterworth filter and 100 Hz cutoff frequenby Fig. 1 the
excitations are designated by the letter

The data generation was obtained with a samplitegaB512Hz
and time period of 2 sec, resulting in 1024 datatgo

A typical acceleration signal obtained from casis $hown in
Fig. 2 (one from 16 measurement points). In Figit 3 shown a
signal from case 12 (damaged). All signals weradsedized by
using Eq. (1).

The set of all data was compressed by using PCA.A®A of
the covariance matrix of 16 measurements pointscéwe 1 is
shown in Fig. 4. This figure shows that the firghpipal component
alone holds about 29% of the total information. $hraw time
series from all points are first projected onto 1ffé°CA. The other
cases are very similar. Fig. 5 and Fig. 6 provide ¢compressed
signals for cases 1 and 12, for illustration, resipely.

Table 4. List of unknown situations (undamaged or d ~ amaged).

Damage PatterhPeak Amplitude Force (N)% RMS noise
Case 6 | No damage 200 25
Case 7 | No damage 100 15
Case 8 | No damage 150 20
Case 9| Pattern1 150 10
Case 1Q Pattern 1 200 20
Case 1] Pattern 1 250 15
Case 14 Pattern 2 200 15
Case 13 Pattern 2 150 10
Case 14 Pattern 2 250 15
Case 1§ Pattern 3 200 10
Case 14 Pattern 3 150 20
Case 17 Pattern 3 250 15
Case 14 Pattern 4 150 20
Case 19 Pattern 4 200 15
Case 2(Q Pattern 4 250 15

* These set of data was not used to construct ReARX model.

The next phase comprehends the extraction of e from
the data for classification purposes. The procedareelect the
order by using AIC criterion indicates that 13 @didate to the AR
order model (order of polynomial described by Eg)).(Figure 7
shows the criterion plot. Only the healthy datasésal to 5) were
used to estimate the order. It was used the figdt &f data to
determine the order.

The coefficients for the 13- order polynomialA,(q) was
constructed from the cases of Table 3 (healthg)stat solving the
Yule-Walker equations. It was considered only i half of data
(512 points) to obtain the AR(13) model. The secbal was used
to validate the model. For illustration purposdse fpolynomial
obtained for case 5 is presented below:

Aya(g) =1-0.7139q" -0.008041¢f +0.264° +0.1947¢"
+0.07343¢ +0.06422¢° +0.03945¢ +0.1407¢F
-0.1267¢° +0.02401'° +0.01012¢ - 0.05424G2
+0.092944"3

Amplitude (m/s ?)

Variance %

[=)

Time (s)

Figure 2. Representative undamaged time response (C  ase 1).

Amplitude (m/s 2)

B
|
|
|

18 2
Time (s)

Figure 3. Representative damaged response (Case 12)

2 4 6 8 10 12 14 16 18
Eigenvalues of the covariance matrix

Figure 4. PCA of the covariance matrix of 16 measur ement points (Case

1).
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Figure 6. Compressed damaged time response (Case 12 ).

Akaike Information Criterion

Figure 7. AR order selection by using AIC criterion

Each model was compared with the one-step-aheaticteée
model output and the measured output. The resoitedse 5 are
presented in Fig. 8a while Fig. 8b shows a zoonaidefig. 9
presents the tests of residuals associated with riwdel. The
residual analysis shows that the correlation beatvikexs[k] model
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output and the residual erregs[k] remains within the confidence
interval (99%), except at zero lag. Therefore, ghediction error is
close to white noise process. The other casesaesimilar with
fit about 75%. So, this set of models under heatthydition may be
considered as validated.

The residual errogg[K], i = 1,2,...,5, was obtained from Eq. (6)
and it is shown in Fig. 10. These signals are wsetinput” of an
ARX model with the order set arbitrarily na = 5, alb and time
delay was set to 1. The length of the residualrerod AR models
corresponds to 512 points.
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Figure 8. a) Measured output and one-step-ahead pre
for case 5 (undamaged) with AR(13) model; b)zoom de

dicted model output
tail.

Each signal in Table 4 (unknown condition) wasfitto an AR
model of order 13 and with the same number of goifithe
reference signal was obtained by using Eq. (12 ARX model
for the reference signal was constructed by udiegsecond half of
the data, because the “input” (residual error) wia® obtained by
using the set of points from 513 to 1024 (512 sas)pl

After constructing the ARX model for each referesagnal for
the 15 unknown cases studied (Table 4), the respecstodel was
used to predict these signals. If there was danmaglee structure,
the ARX model previously obtained using the refeeersignal
would not be able to reproduce the new time serieasured from
the damage condition. A typical response can be se€ig. 11 for
case 12 (damage pattern 2).
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Correlation between residual error

Figure 9. Cross correlation function of residual fo

and output model

model.
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It was discussed before that if the data point tiatr the line
corresponding to the normal probability plot, it neasonable to
assume that the ARX residual error is asymptogicalbrmally
distributed in healthy-state. Besides, if the ksigovalue is close to
3.0 and the skewness is near to zero, the disoibus close to
Gaussian. Figure 12 shows this statement.

0.999
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0.25

0.10
0.05

0.02
0.01

0.003
0.001

ARX residual error

error for case 1 —
ss 0.0432.

Figure 12. Normal probability plot of ARX residual
healthy state, with kurtosis value 2.934 and skewne

The first four statistics moments of the raw tinegiesg, [K] are
summarized in Table 5.

Table 5. Basic statistics of the raw time series of ARX residual error.

v}

2 o ol A bty o T e
500 550 600 650 700 750 800 850 900 950 1000
1 T T T T T T T T T T

<

3 of iy b
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wn
500 550 600 650 700 750 800 850 900 950 1000

Samples

Figure 10. One-step-ahead prediction error AR(13) f or the undamaged
cases. The second half of data are used as input of ~ the ARX model.

Case| Mean STD SkewnegsKurtosis
1 -0.0033| 0.1398| 0.0432 2.9340
2 -0.0040| 0.1666| 0.0526 2.9812
3 -0.0047| 0.1926| 0.0458 2.9933
4 -0.0053] 0.2171| 0.0298 2.9986
5 -0.0059| 0.2405| 0.0116 2.9961
6 -0.0053| 0.2171| 0.0298 2.9986
7 -0.0040| 0.1666| 0.0526 2.9812
8 -0.0047| 0.1926| 0.0458 2.9933
9 0.0036 | 0.16360.0834 2.9823
10 0.0058| 0.22370.0652 3.0084
11 0.0047| 0.19350.0809 2.9849
12 0.0009| 0.2814-0.1590 | 2.7619
13 0.0010| 0.2529-0.1127 | 2.6384
14 0.0009| 0.2814-0.1590 | 2.7619
15 0.0100| 0.32040.0355 3.0430
16 0.0008| 0.2552-0.0096 | 2.7511
17 0.0053| 0.27800.0247 2.8342
18 -0.0007 0.2405| -0.0030 | 2.7709
19 0.0053| 0.26180.0717 2.7826
20 0.0053| 0.26180.0717 2.7826
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Figure 11. Signals (with zoom) in the comparison be

ARX prediction error (reference signal) and the dam
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tween the healthy

aged case 12.

Copyright

If there is damage in the structure, the probabdistribution
should change. Figure 13 illustrates this by comngarthe
probability density function of the residual erfosm damaged case
12 with the reference signal.
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Figure 13. Comparison of the probability density fu nction of residual error

from damaged case 12 with the reference signal.

Table 6 presents the standard deviation of residuars for
various damage sources and the ratio given bylHq. (

The increase in the bold values was probably cabhgaethmage
or operational variability. It is very difficult tolassify these data in
healthy or damage states only by observing the nadlues, as it
was made in Sohn and Farrar (2001). In order tesifia them
according to a more rigorous statistical criteridnis proposed in
this paper the classical fuzzy c-means algorithnhe Tbasic
clustering procedure was described earlier in teegnt work.

Figure 14 shows the set of data to classify thiglues error with
m=2 and ¢ = 3 in Eqg. (18). It is known only thealat healthy state.
The number of cluster used is ¢ = 3 and it is daatedt with the
undamaged, damaged and severe damaged conditichg idata
classification. The result of the fuzzy clusterisgpresented in Fig.
15. The evolution of the cost function is showrfig. 16. The cost
function reached the minimum value after 6 itersgioFigure 17
shows the percentage of membership of each datst poieach

cluster.

Table 6. Standard deviation of residual errors for

various damage sources.

FMED) y

No damage (case 1) 0.1398 0.1398] 1.00

No damage (case 2) 0.1666 0.1666) 1.00

No damage (case 3) 0.1926 0.1926 1.00

No damage (case 4) 0.2171 0.2171] 1.00

No damage (case 5) 0.2405 0.2405 1.00

No damage (case’6) 0.2171 0.2171 1.00

No damage (case’7) 0.1666 0.1666 1.00

No damage (case’8) 0.1926 0.1926 1.00
Damage (pattern 1 — case 9) 0.1398 0.1636 1.17Q7
Damage (pattern 1 — case 10 0.217]] 0.223y 1.0303
Damage (pattern 1 — case 11 0.1666 0.193b 1.1610
Damage (pattern 2 — case 12 0.1664 0.2814 1.6890
Damage (pattern 2 — case 13 0.1398 0.2529 1.8091
Damage (pattern 2 — case 14 0.1664 0.2814 1.6890
Damage (pattern 3 — case 15 0.24058 0.3204 1.3320
Damage (pattern 3 — case 16 0.24058 0.255p 1.0609
Damage (pattern 3 — case 17 0.24058 0.2780 1.1560
Damage (pattern 4 — case 18 0.217] 0.240p 1.1077
Damage (pattern 4 — case 19 0.2405 0.2618 1.0864
Damage (pattern 4 — case 20 0.2405 0.2618 1.0864
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Std of residual error
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Figure 14. Set of data to classify. These data are

Std of residual error
from reference signal

the values in Table 6.
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Figure 15. Fuzzy cluster derived from data with fuz

withm=2andc=3.
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zy c-means algorithms
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Figure 16. Evolution of the fuzzy c-means algorithm

* This set of data was not used to construct the ARX model. It was By analyzing Fig. 15 and Fig. 17, one can obsemaé ¢ases 12,
considered in unknown condition to test false-sit + Correspond to the 13 and 14 are classified in a severe damage clubket is true,
reference signal. because these data corresponds the damage patterhege all
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braces in the first and third floor are removece($able 2). Figure
17 shows that, in these cases, the percentage wiideoce
corresponds to approximately 80% for cases 12 @ndntl almost
60% for case 13.

All cases in healthy condition were well recognized it is not
observed any false positive (false alarming oftja@ases 9, 10 and
11, which correspond to the damage pattern 1, wete well
classified. Case 9 is classified by the monitosggtem in cluster 2
(damage), which is true, but the confidence of ttesision is only
about 40 % (Fig. 17). The analysis of case 11nslai. The biggest
problem happens with case 10, where the fuzzyeriugt classifies
this set of data as a healthy-state, which is lgleafalse negative.
To justify this incorrect decision it is very impant to remember
that it was performed data compression using l6sorements
points. The damage pattern 1, associated to case 16lative to
removal of all braces from the first floor. Obvibysthis change
affects more the four measurements performed irlttféoor. The
way it was conducted the PCA, this information geidden (or
diluted) in the pattern vector, resulting in a nmderstanding in the
classification of case 10 and in the low confidewbtserved for
cases 9 and 11. It is important to note that tleeafsPCA must be
made carefully when the confidence is classifiedelto threshold.
In these cases, it is recommended to use some reaais before
PCA to be sure of the correct classification, segto performance
the procedure by using complete data. Alternativée second
component of the PCA procedure could also be censid In this
case, it would be possible to extract the corrdassification.
However, the goal in the present paper is to detastage by using
few features.

100 I I I I \

T T
—©—Cluster 1 - No damage ! ! ! | |
I I

90« Cluster 2 - Damage

% of Membership in each cluster

Health and damage cases studied

Figure 17. Grade of membership of each data pointi  n each cluster.

All other cases are well classified. Cases 15 tal@®onstrated
the correct classification and it was observed thase cases are
closer to undamaged cluster instead of severe daniagter.

Final Remarks

The method of structural health monitoring proposatd
exemplified in this paper showed to be able torietee the damage
state in an unsupervised learning mode. The mettes many
desirable features for utilization in real-worldrusttures, as for
instance: it is based only on output measuremamss single
pattern vector by application of PCA; its procedisreonducted in
an unsupervised learning mode; and the informattwout the level
of confidence of the threshold value are basedumayf decision.
Hence, the method is very attractive for the immetation of a real
monitoring system, mainly in large and complex aites, where

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright
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the knowledge about the physics is limited. The loiotion of this
approach with wireless sensing system is also \attyactive,
because it allows conducting an automatic monigprimithout
human supervision by using digital filters implerreghin a DSP
board. However, in order to improve the predictistep it is
important to extend the procedure to permit it &mdie with non-
stationary signals and non-linear systems. It & amportant to
investigate what would happen if the environmenialitation were
a colored noise. In this sense, further researdieisg conducted
dealing with all these issues, including the stuafynon-linear
systems and the use of excitations signals otlzer ttie white noise.
The goal is to extend the capabilities and to ealuthe
effectiveness of the present approach when dealith

experimental data from a real structure.
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