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Comments on the quantum Monte Carlo method and the density
matrix theory

José Roberto dos Santos Politia) and Rogério Custodiob)

Departmento de Fı´sico-Quı´mica, Instituto de Quı´mica, Universidade Estadual de Campinas, CP 6154,
13083-970 Campinas–São Paulo, Brazil

~Received 13 May 2002; accepted 15 January 2003!

Density matrix theory is implemented in a variational quantum Monte Carlo computation of
electronic properties of atoms and molecules. Differences between electronic densities from
conventional and density matrix methods are detected. However, calculated properties present
similar behavior and partial antisymmetry can be ignored in the cases studied. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1558393#
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In the last few years, quantum Monte Carlo metho
~QMC! have been widely applied in atomic and molecu
studies of many different systems such as electron gas,1 liq-
uid He,2 molecular and metallic hydrogen,3 carbon
clusters,4,5 and several molecules including LiH, H2O, H3 ,
and others.6–9

The simplest form of quantum Monte Carlo is the var
tional method~VMC!, which determines atomic and molec
lar properties from approximate solutions of the electro
Schrödinger equation through the expectation value of
corresponding operator. If a Hamiltonian (Ĥ) operates on a
trial wave function~c!, the variational principle states tha
the expected value to the energy (E(c)) is an upper bound to
the exact ground state energy (Eo),

Eo<
*C* ĤCdR

*C* CdR
5E~c! . ~1!

To perform Monte Carlo integration, Eq.~1! is written in an
appropriate form,

E~c!5
*c* c~Ĥc/c!dR

*c* cdR
5

*c* cELdR

*c* cdR
, ~2!

where the local energy is defined as

EL5
Ĥc

c
. ~3!

The total energy~E! can be obtained by Metropolis algo
rithm sampling points of the configuration space$Ri% from
the probability distributionucu2 providing the well-know av-
eraged energy

E~R!5^EL&c25 lim
N→`

S 1

N (
i 51

N

EL~Ri !D . ~4!
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In order to perform the integration of the electron
properties, trial wave functions are considered as the prod
of two determinants built from spin–orbital functionsw i and
a correlation factor,Ccorr, as

Ca,b5NUw1~r1! w1~r2! ¯ w1~r j !

w2~r1! w2~r2! ¯ w2~r j !

] ] � ]

w j~r1! w j~r2! ¯ w j~r j !

U
3Uw j 11~r j 11! w j 11~r j 12! ¯ w j 11~rn!

w j 12~r j 11! w j 12~r j 12! ¯ w j 12~rn!

] ] � ]

wn~r j 11! wn~r j 12! ¯ wn~rn!

UCcorr.

~5!

The electronic space and spin coordinates (r1 ,r2 ,...,r j ) and
the one-electron functions (w1 ,w2 ,...,w j ) refer toj electrons
of a spin. The space and spin coordinates (r j 11 ,r j 12 ,...,rn)
and the one-electron functions (w j 11 ,w j 12 ,...,wn) refer to
n- j electrons of opposite spin.N is normalization constant
This procedure is often used for the QMC methods beca
it allows for the calculation of the local properties by elim
nating the spin functions. However,a-b trial wave functions
represented by Eq.~5! ignore pure spin states and cann
fulfill the general antisymmetric requirement for multiele
tronic systems. Despite its fundamental deficiencies, the
of Eq. ~5! provides correct electronic properties for most
the systems in the literature4–9 not only for VMQ but also for
the diffusion quantum Monte Carlo~DQMC! method. The
success of this formalism relies in the case of DQMC larg
on the argument that the correct nodal properties of the w
function are preserved.6–9 On the other hand, space and sp
variables can be properly treated restricting fundame
antisymmetry constraints and electronic indistinguishabi
by means of the density matrix theory.10–12 In this model a
well-behaved density matrix must satisfy the antisymme
constraint for fermions and its integration over all the spa
and spin coordinates must be associated with the numbe
particles of the system. A convenient way to establish a l
1 © 2003 American Institute of Physics
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between the density matrix concept and a well-behaved
arbitraryn electron wave function is through then-order den-
sity matrix

G~n!~r18r28r38 ...rn8ur1r2r3 ...rn!

5C* ~r18r28r38 ...rn8!C~r1r2r3 ...rn!. ~6!

Any quantum mechanical operator applied onG (n) acts
only on the unprimed coordinatesr1r2r3 ...rn , but not on
r18r28r38 ...rn8 . Subsequently, the dashed coordinates are
placed settingr185r1 , r285r2 , and so on. In this way, any
local atomic or molecular property averaged over the s
coordinates can be defined as

OL5
** ...*ÔG~n!dj1dj2 ...djn

** ...*G~n!dj1dj2 ...djn
, ~7!

wherej are the spin coordinates. Equation~7! defines a local
property depending only on the spatial coordinates and
formally exact, generally, preserves the correct spin stat
the system, and does not violate indistinguishability of f
mions or antisymmetry of a trial wave function. These fe
tures suggest that Eq.~7! is a formally superior representa
tion to the local properties than Eq.~3! using wave functions
defined by Eq.~5!. The purpose of this Communication is
show that Eq.~7! can be suitably implemented in a VMC
computation of electronic properties of atoms and molecu
The results reported here are restricted to the behavior o
electronic energy of simple systems in order to evaluate p
sible differences between the present alternative and the
ventional mathematical treatment. It can be anticipated
our results show that both methods present similar beha
and possibly partial antisymmetry can be ignored in mos
the properties studied. However, it must be said that dif
ences between both electronic densities were detected
have not provided significant discrepancies between the
ditional method and the more rigorous alternative introdu
in this work. More complex systems and the use of the d
sity matrix theory along with diffusion Monte Carlo method
will be treated in forthcoming works.

Most of the conventional properties investigated w
variational Monte Carlo using density matrix from Hartre
Fock wave functions~d-VMC! are restricted to operators no
depending of the spin coordinates. In this case, Eq.~7! can
be simplified and the integration over the spin coordinate
carried out on then-order density matrix providing

V~n!5~x18x28 ...xn8ux1x2 ...xn!

5E E ...E G~n!~r18r28 ...rn8ur1r2 ...rn!dj1dj2 ...djn

~8!

and the local property as

OL5
ÔV~n!~x18x28 ...xn8ux1x2 ...xn!

V~n!~x18x28 ...xn8ux1x2 ...xn!
. ~9!

Other methods used along with quantum Monte Ca
simulations can also be associated with the spin avera
density matrix. For instance, substitution ofC* C by V in a
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Metropolis algorithm is straightforward. The same is corre
regarding the use of the Fokker–Planck method to impr
the importance sampling during the Monte Carlo simulatio

When Hartree–Fock wave functions are used, a con
nient and efficient algorithm to compute then-order density
matrix @Eq. ~8!# and the energy components@Eq. ~9!# can be
obtained from the Fock–Dirac first-order density matrix,13–15

r~r1 ,r2!5(
j 51

n

w j* ~r1!w j~r2!, ~10!

using the expression

Va,b5NUr~r18 ,r1! r~r18 ,r2! ¯ r~r18 ,rn!

r~r28 ,r1! r~r28 ,r2! ¯ r~r28 ,rn!

] ] � ]

r~rn8 ,r1! r~rn8 ,r2! ¯ r~rn8 ,rn!

UCcorr.

~11!

Tests for a set of atoms and simple diatomic molecu
using either separation of spins or density matrix formali
showed, as expected, equivalent accuracy for both meth
as well as numerical convergence. Figure 1 shows an
ample of the behavior of the accumulative average ene
for a simulation of LiH1 using Hartree-Fock molecular or
bitals obtained from conventionalab initio calculation with
single-zeta Slater type functions16 and bond length of 3.0495
a.u. The molecular orbitals obtained from STO-10G basis
are given by

1sg50.99743.1sLi
~S!10.01385.2sLi

~S!10.00221.1sH
~S!

and

FIG. 1. Typical convergence of the accumulative average energy for L1

using Hartree-Fock molecular orbitals.
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2sg520.09685.1sLi
~S!20.02837.2sLi

~S!11.01689.1sH
~S! .

The exponents of the Slater functions arez1s,Li52.690 63,
z2s,Li50.639 61 andz1s,H51.0000.

The acceptance ratio was 0.56 and two distinct se
steps were used to determine the average energy: a! 33104

and b! 13106. The Hartree-Fock energy fromab initio cal-
culation for this wave function is27.7053 a.u. and the re
sults obtained by the simulations using Eq.~3! and Eq.~9!
and 33104 steps are27.703660.0008 a.u. and27.7029
60.0008 a.u., respectively. The same total energy~27.7046
60.0001 a.u.! is obtained using either separation of spins
density matrix method and 13106 steps. The results are e
sentially the same although better performance with res
to the ab initio result can be obtained incorporating impo
tance sampling methods in the simulation. Variational Mo
Carlo simulations, including d-VMC, present the best co
vergence rate with an acceptance ratio between 40%
60%.

However, some intriguing differences in the electron
densities can be observed when simple Hartree-Fock ato
or molecular orbitals are used by both methods. The e
tronic density of the lithium atom is taken as example. T
nucleus is fixed at the center of the coordinate system an
electrons are confined in the planexy. Two electrons are held
fixed with arbitrary coordinates (x51.269 867 a.u.,y
50.834 961 a.u.) for electron 1 and (x521.669 867 a.u.,y
50.834 961 a.u.) for electron 2. The third electron is allow
to move along thexy plane. Two density matrices are dete
mined from the Hartree-Fock single-zeta wave function
Clementi and Roetti,16 each of them with different multielec
tronic wave functions: one using determinants with sepa
tion of spins and the other the complete Slater determin
Both density matrices are integrated over the spin coo
nates. Electrons 1 and 3 are assigned as alpha spin in s
ration of spins description and electron 2 is a beta spin. S
tematic analysis shows that the cusps are well defined
both surfaces and tend to zero when the electron is mo
away from the nucleus. The differences between the sur
profiles arise when electron 3 is near electron 1~see Fig. 2!.
The surfaces show opposite tendencies fromx51.5 to 1.
Figure 2 shows that the density matrix with spin separat
provides a surface with a minimum, while the use of t
complete Slater determinant provides a maximum at
same coordinates. The electronic correlation in most Hart
Fock calculation is comparatively small regarding the to
energy of the system and, although differences exist betw
both treatments, they are apparently not significant for
cases studied.

In summary, the combination of density matrix an
variational Monte Carlo is capable of recovering the an
symmetry and preserve indistinguishable characteristic of
electrons. The consistence of the combination can be ea
demonstrated by reproducing Hartree-Fock calculations
ing the conventional Slater determinant to generate the d
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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sity matrix. Tests show that the convergence of d-VMC
always reached independent of the acceptance ratio and
tial configuration. The best accepted ratio is near to 50%
it is common to most Monte Carlo simulations.

The reproducibility of the Hartree-Fock energies a
some frequently calculated properties as dipole moment
higher moments suggest that the nodal properties are
served by both methods and consequently the computa
ally most efficient method@Eq. ~3!# should be used.

Differences between electronic densities calculated w
the conventional method and the more rigorous alterna
suggest that specific properties in highly correlated syste
can present disagreement when calculated by both meth
Studies in this sense and exploring diffusion quantum Mo
Carlo are in progress.
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FIG. 2. Density matrices for Li in the ground state calculated from Hartr
Fock atomic orbitals with single-zeta basis functions and wave functi
with separation of spins and conventional Slater determinant.
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