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Rotating magnetic field current drive in a hollow plasma column
with a steady toroidal field
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(Received 31 August 2000; accepted 29 November 000

The effect of a steady azimuthal magnetic field on rotating magnetic field current drive is studied.
The configuration considered consists of an infinitely long plasma column with a finite radius
conductor, which carries a steady longitudinal current, running along its axis. The ions are assumed
to be fixed and the electrons are described using an Ohm’s law that contains the Hall term. A fully
two-dimensional computer code is developed to solve the resulting time-dependent equations. For
some values of the steady azimuthal field, two steady-state solutions with different efficiencies are
found. © 2001 American Institute of Physic§DOI: 10.1063/1.1343509

I. INTRODUCTION and to be able to compare with previous results, we use a
similar geometry and the same coordinates system. However,
Rotating magnetic fieldd(RMFs) have been used to drive unlike Refs. 9 and 10, we introduce a finite radius conductor
current in rotamaKs and field-reversed configurations at the center of the plasma column. This eliminates the sin-
(FRCS.? Although these devices generally operate without agularity in the toroidal field at =0 and allows for the use of
stationary azimuthaltoroida) magnetic field, some rotamak boundary conditions which are similar to those correspond-
experiments included a conductor at the axis of the dischargiag to a tokamak at the inner plasma interface. We use the
vessef producing configurations which are similar to spheri- same physical model as in most previous theoretical studies,
cal tokamakgSTs9. Due to the current interest in STs, which fixed ions and Ohm’s law with the Hall term for the elec-
has prompted the construction of several new devickte  trons, but employ a fully two-dimensionat () numerical
development of RMF current drive as an efficient method forcode to solve the time-dependent problem. The same nondi-
this concept would be of great importance. mensional parameters employed by Milfbplus the nor-
Theoretical studies of RMF current drive have generallymalized steady toroidal field, are used. These parameters can
considered fixed ions and employed Ohm’s law, with thebe easily related to those employed by WatterSon.
Hall term, to describe the electrons. In configurations with- ~ The structure of this paper is as follows. In Sec. Il we
out a steady toroidal magnetic field, both stationary and timgresent the physical model employed and derive the basic
dependent solutiongin two dimensions(2D)] have been equations describing the evolution of theomponents of the
obtained’ For these configurations, the effect of anisotropicmagnetic field and vector potential inside the plasma. In Sec.
resistivity and finite radius RMF coils has been also stulied.lll we describe the numerical methods and boundary condi-
Theoretical studies in configurations with a steady toroidafkions used and in Sec. IV the results are presented. Finally, in
field have been limited to the calculation of steady state soSec. V, we summarize and discuss our findings.
lutions for cylindrical plasma columns having an infinitely
thin wire that carries a steady longitudinal current along thg|. PHYSICAL MODEL AND ASSUMPTIONS
symmetry axis''° These studies assumed that, in steady , , , o ,
state, the time-dependent part of all physical quantities can . We consider the configuration shown in Fig. l_‘ The in-
be represented using only the first Fourier harmonidiNitely long (9/6z=0) annular plasma column has inner ra-
[expli(6—wt)}, wherew is the frequency of the rotating mag- diusr, and out_er rad|u_sb (zone I_I). Inside the columrizone _
netic field. Solving the resulting set of nonlinear equations, ! F <a) there is a uniform, stationary, axial current density
which depends on a limited number of parameters such atgat produces theacuumto.rmdal f|eld._Th.e coils that pro-
resistivity, driving magnetic field, and external longitudinal duce the transverse, rotating magnetic field are assumed to
current, Bertrafiand Watterso! showed the possibility of be far from the plasma and their effect is introduced via the

driving a significant amount of current in the azimuthal di- boundary cqnditions impo_sed B¢ (zone I,”: Fp<I<Tc, e
rection. >rp). The ions are considered to be fixed, the density of

Most previous theoretical studies of RMF current drive,bo'[h species is assumed to be equal and uniform, and elec-

both in configurations with and without a steady toroidal"on inertia is neglected. Using the following Ohm's law,
field, considered an infinitely long plasma columa/qz which contains the Hall term but not the electron pressure

=0) and employed cylindrical coordinates. For simplicity, 9radient:

1
a — E=7+—(jxB),
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FIG. 1. Cross section of the configuration employed.

where 7 is the plasma resistivityassumed uniforpnand n

the density, and Maxwell’'s equations, a set of coupled equ

tions for thez components of the magnetic fieldf) and

R. Farengo and R. A. Clemente

where é is the classical skin deptlf) , . is the electron cy-
clotron frequency calculated with the amplitude of the RMF,
and vo; is the electron—ion collision frequencyvd;
=yne’/m,). When y>1, the electrons can be considered
magnetized by the RMF. Knowing\ and B, the other
magnetic-field components and the current density can be
easily calculated.

. NUMERICAL METHODS AND BOUNDARY
CONDITIONS

Previous numerical calculations in configurations with-
out a steady toroidal field generally employed a Fourier ex-
pansion in 6 (and in most cases used just a few
harmonicg.”® We will show later that when a steady toroidal
field is present there could be a stroAgdependence that
makes the use of such expansions less attractive. We devel-
oped a fully 2D ¢, 6) finite differences code that employs a
second-order Runge—Kutta scheme to advance the equations
in time. The computational domain is divided in three re-
gions, which generally have different grid spacing in the ra-

ial direction. In 6<r <r,, region I, there is a uniform axial
current and no plasma. Sinéecontains only the contribu-

vector potential A,, B=V X A) can be obtained. Since the tion of the plasma and the RMF coils, and the contribution of

contribution of the uniform axial current %4, can be calcu-
lated analytically, we separaftg, in two parts:

A=Az vact Ay, pls N

the axial current is calculated analytically, we have
V2A=0, r<r,. 4

Since there are no azimuthal or radial currents in this region,

whereA, ., contains the contribution of the stationary axial B must be uniform(but can be time dependent

current andA, , the contribution of the plasma and the ex-

&B_&B

ternal coils. Assuming that the rotating magnetic field pro- =

duced by the coils can be written as
B®'=—-B,, cog wt— ), (2a)
B"'=—B,, sin(wt— ), (2b)

and normalizing the time witk, the radius witlr,,, and the
amplitude of the magnetic field witB,,, we obtain the fol-
lowing set of dimensionless equations:

B 1 V2B 4 vl d v2A JA
TP AFART
J JA By
- —(V? W ——— , (39
39( a r
JA 1 /A B 0B JA JB
—=—4V? Z —A—ﬂ — = | (, (3b)
aT 2)\2 r ar r 00 00
where
~ T B, AZ,pl
I'—E, 7= wt, B—B—w, A= Bwrb,

andB,, is the vacuum toroidal field at=1, normalized to
B, . The two dimensionless parameterand\ are defined
as

5 Pl 2y Y vei eny’

TR

Inside the plasma,,<r <1, region Il, we solve Eqg3). In

1<F<FC, region lll, there is vacuum and, therefor®,is
uniform andA satisfies

V2A=0, 1<r<r,. (5)

Equations(4) and (5) are solved by inverting the sparse ma-
trices obtained when Laplace’s equation is written in finite
differences. In Eq(4), the pointhO is treated separately
using local Cartesian coordinates to avoid the divergence of
the cylindrical Laplacian operator. It is important to note that
for each run of the code the matrix inversion needs to be
done only once.

We now discuss the boundary conditions used to solve
Egs.(3), (4), and(5) and the methods employed to calculate

B in regions | and Ill. Atr=r, we set
A(to)=r.sin(7— 6)(1—e ™), (6)

where the exponential is introduced to allow for a slow “turn
on” of the rotating field, as done by HugraSsnd FC is

taken large enough for the results to be independent of its
specific value. The values generally used fgrandr are,
respectively, 0.33 and 5. The value af is always much
smaller than the time needed to reach steady state and, hence,
it does not affect the results. The valuefgﬁs chosen so that

any additional increase produces negligible changes in the
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results. The boundary condition introduced with E&j. ba-
sically means that the coils which produce the RMF have an
infinite radius and was employed for simplicity. At1 and
r=r,, the radial derivative oA must be continuous,=
—dA,/dr), hence,

dA

ar

dA

ar

oA
ar

IA
ar

= and =

1+ 1~ r; s
To obtain the results presented below, the valu® af
region Il was kept constant throughout the computation but

it is also possible to introduce a flux conserver and adpust
after each time step to satisfy axial flux conservation. The
exact value given t® in this region is not relevant because
Eq. (3) only contains derivatives d8. In region |,B is uni-
form but not constantin time) and we calculate its value
using Stokes’ theorem. Considering a circumference of ra-
diusr,+h, whereh s the radial grid spacing in region II, we
can write

CLE - Tath ~n (27 -
f Ag(ra+h,0)rd0:f drr doB(r, ),
0 0 0

whereA, is also normalized witiB,r,. SinceB is uniform
inside the circle of radiui;a, we can write
R 1 27 R
B(l)EB(fa)=—A2U' Ayra+th,0)rdé
wr 0

a

Fath an (27 -
_J“ drrf dHB(r,ﬁ)].
ra 0

Equation(7) shows that to calculat8(l) we needB(ll),
which is given by Eq(3) andA(,(FaJr h, 6). The equation for
the evolution ofA, in region Il is obtained from thé com-
ponent of Ohm’s law, usin§= — dA/dt, and can be written
in dimensionless form as

(@)

A, 1 |oB LY A By - 02A+ Bor| 1 %A
Q= 5\ = ~ =~ T T~ N —= ~5 ~ T 4
ar  2\%|lar rl\ar ot ar?  r?| r 96?
Xl aA+ 9B o
a0 a0l ®

It can be seen that we only neédand B in region Il to
advanceA 4(r,+h,#) in time and calculat@®(l).
The numerical algorithm employed is as follows:

(1) The values of the basic dimensionless parameters,
employed in the plots presented below. The current density

Biors N, andy, are fixed and the initial values &,

Rotating magnetic field current drive in a hollow plasma.. . .
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(4)

(5
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defined to be the same everywhekg(r + h, #) does
not depend org and can be calculated from

2a(r +h)A(r +h)=m(r+h)2B.

The inverse matrices of Eq&4) and (5) are calcu-
lated.

B(r,) is calculated using Eq7) and the values of
A,(r,+h,6) and B(ll) obtained in the previous
time step.A(Fc) is calculated using Eq(6). Of
course, this is not necessary for the first time step
where the initial values are employed.

A(?a) and A(1) are calculated. This is done using
the following procedure:

(a) Using the values oA inside region I, fromr,
+h to 1—h, estimates fmA(Fa) andA(1) are
obtained.

(b) Using these estimates as boundary values, Egs.
(4) and(5) are solved.

(c) Using the values oA(r,—h) andA(1+h) cal-
culated with Egs.(4) and (5), new values of
A(r,) andA(1) are defined as

AT )= 3[A(T,—h)+A(T,+h)],

AW 1)= I[A(1—h)+A(1+h)].

(d) The new values are compared with the old ones.
If the relative difference between the two values
is less than a small quantity(typically,

10 3-10 %), the values are accepted, otherwise
the new values are used as boundary conditions
to solve Eqgs.(4) and (5) and the procedure is
repeated until convergence is achieved.

Equations3) and(8) are advanced in time using the
boundary conditions defined above. A small time
step,A 7= (/4) X 104, was employed to obtain the

results presented below.

Steps(3)—(5) are repeated until the equations are ad-

vanced up to the desired time. The code can also be started
by initializing A, B, andA, with any previous solution.

IV. RESULTS

Unless otherwise indicated, normalized quantities are

B, andAo are defined. In generaL the same value isiS normalized t(Bw/,lLorb and the efficiency is defined as the

given toB at all grid points and\ is set equal to zero
in regions | and IlI. In region IllA is defined as

ratio between the azimuthal plasma current and the current
that would be produced if all the electrons rotate rigidly with

frequencyw:

B AT ~ 1
A——7osm(6) r—=|,

r

where A7 is the time step. This is a solution to
Laplace’s equation in region Ill, which is consistent

2[B,(ry) ~B4(ra)]
ponew(rg—r)

for large values ofFC and short times with the To compare with existing results for configurations without a

boundary condition introduced in E¢f). SinceB is

steady toroidal fieldFRC), we use the same valuesfand
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FIG. 2. Efficiency vs steady toroidal field fop=14.9,A=11.07, andr, FIG. 3. Efficiency vs steady toroidal field foy=16.6, \=11.07, andr,
=0.15. =0.15.

vy as in Ref. 8, where they_ were chosen to be representativgfﬁciency obtained in this case f@,=0 (a=1) agrees
of the Star 'I;hrgster Experimeft. _ _ with the value obtained for a FRETwo solutions can be

Hugrass' first reported, in configurations without @ gpserved for 0.53B,,<0.77. As in Fig. 2, the initial con-
steaQy toroidal field, that there are nonunique stez_idy stal§itions determine the branch towards which the plasma
solutions whem =6 andy~A\. As noted by Mllroy‘? thisis  eyolves. Starting with a plasma without azimuthal current,
due to the existence of hysteresis. Wheis increased, the the solution falls in the high efficiency brandfull line)
RMF does not penetrate completely u.ntll a critical valu.e ISwhen 0<B,,<0.53, in the low efficiency branckdashed
exceeded. However,.on'c.e full penetratlop ha;lbeen achleveﬁjﬂe) when 0.53< B, <0.77, and back into the high effi-
vy can be reduced significantly below this critical value be'ciency branch wheiB,,>0.77. To obtain a high efficiency
fore the RMF is expe_zlled_, and the_efficiency reduced. A Simi'steady state solution with 0.538,,,<0.77 (dotted ling, it is
lar effect is shown in Fig. 2, which presents a plot of thenecessary to start with a high efficiency solution havig
steady state efficiency as a function of the ”Ormfilizedgreater than 0.77smaller than 0.58and slowly decrease
steady, toroidal field By,) for y=14.9,\=11.07, andr,  (increas¢ B,,. The two high efficiency and the two low
=0.15 [aspect ratio A=(1+r,)/(1-r,)=1.35]. When efficiency solutions of Figs. 2 and 3 display a similar behav-
B.,r=0, and a plasma column that has no azimuthal currenior when features such as RMF penetration, diamagnetism,
is used as initial condition, the steady state efficiency obazimuthal current profile, anél dependence are analyzed. In
tained isa=0.48. This value is similar, but not equal, to the what follows, we will consider two cases: the low efficiency
value obtained for a FRC for the same valuesyoéind \ regime of Fig. 2, withy=14.9, and the high efficiency re-
(@=0.42) 8 The small difference could be due to the differ- gime of Fig. 3, withy=16.6.
ent geometrywe are considering a hollow plasma column In Refs. 7 and 8 it is shown that in configurations with-
and, in part, to the different numerical methods employedout a steady toroidal field, there is a direct relationship be-
As By, is increased, the solution follows the low efficiency tween the current drive efficiency and the degree of penetra-
branch (dashed line in Fig. Runtil B, reaches a critical tion of the RMF. The same experimehtkat show an initial
value (Bfgirtz 1.26). WhenB,,, becomes larger than the criti- increase in efficiency as the steady toroidal field increases
cal value the efficiency of the steady state solufiompsto  (see abovealso show that RMF penetration continues to
the full line in Fig. 2 and follows this line aBy,, is increased improve beyond the value oB,, where the efficiency
further. However, wheiB,,, is reduced, the steady state so- reaches its maximum value. This behavior is also seen in
lution follows the high efficiency brancfuotted line in Fig.  Fig. 4, which presents a plot of the averageder §) modu-
2), and a solution with efficiency equal to 1 is obtained forlus of the transverse fieldB¢= \/BZr +BZH, where all the
Bior=0. This solution can be also obtained starting wjth components of the magnetic field are normalizedpand
=16.6 andB,,,=0 (see belowand slowly decreasing. B, does not include the steady toroidal field compojpesta

We note that in the low efficiency branch the efficiency function of radius for three values @, for the low effi-
initially increases wherB,,, increases and later decreases.ciency branch of Fig. 2. It is clear that RMF penetration
This behavior was observed in the experimériad also improves asB,, increases. The minima in the curves for
reported in Refs. 9 and 10. Another important remark regardB,,,=0.5 andB,,=1.15 occur at approximately the same
ing Fig. 2 is that although the efficiency decreaseBgs radius where the current density revergsse below The
increasesin the high efficiency branghthe larger radius of effect of the steady toroidal field on RMF penetration for the
a tokamak, compared with a FRC, could partially compen-high efficiency branch of Fig. 3 is shown in Figgaband
sate for this reduction. Figure 3 presents a similar plot fors(b). Figure Ja) is a plot ofB,, vst for three values 0B,
y=16.6 and the same values )ofandFa as in Fig. 2. The and shows that in this case the transverse field inside the
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FIG. 4. Modulus of the transverse fieldveraged ovep) vs normalized
radius fory=14.9,\=11.07, ancfa= 0.15 (low efficiency branch

plasma can be larger than outside, wisf# 0, and that its
amplitude has a maximum as a functionBy,. This is seen
more clearly in Fig. &), which presents a plot oBt,(f
=0.175) vsB,,, for y=16.6(high efficiency branchand the
same values ok, andr, used above.

The dynamics of field penetration and current drive is

also affected by the steady toroidal field. This is shown in
Figs. 6 and 7, which present plots of the current drive effi-

1.35

1304 TTTe-
1251

1.20—-
1.15_- ...................................
1.10—.
1.05—-

1.00

0.95

B

tor

FIG. 5. (a) Modulus of the transverse fieldveraged ove#) vs normalized
radius for y=16.6, \=11.07, andr,=0.15 (high efficiency branch (b)

Modulus of the transverse fieldveraged ovep) at r=0.175 VSBy,, for

y=16.6,\=11.07, and ,=0.15 (high efficiency branch

Rotating magnetic field current drive in a hollow plasma.. ..

1197

time (periods)

FIG. 6. Current drive efficiency vs normalized time far=14.9, A
=11.07, ancfa=0.15 (low efficiency branch

ciency as a function of time for three values of the steady
toroidal field. Figure 6 hagy=14.9 and corresponds to the
low efficiency branch of Fig. 2. Figure 7 has=16.6 and
corresponds to the high efficiency branch of Fig. 3. Figure 6
shows that although the final efficiency varies B, in-
creases, the initial slope in the curves of efficiency versus
time remains basically unchanged. A different behavior is
shown in Fig. 7: wherB,,,=4, the initial slope is signifi-
cantly larger and saturation is reached sooner tharBfgr
=0. WhenB,,,= 8 saturation is also reached sooner, but due
to the much lower final efficiency the slope is always smaller
than forB,,=0.

The effect of the steady toroidal field on the azimuthal
current density profile is shown in Figs. 8 and 9. Figure 8
presents a plot of the averagéaver #) azimuthal current
density versus for the low efficiency branch of Fig. 2 and
three values o0B,,,. WhenB,,,=0 (full line) there is a large
region, up tor~0.5, inside the plasma with negligible cur-
rent density and a narrow region=0.9, on the outside
where the electrons rotate rigidly with frequeney When
Bio;= 0.5 (dashed ling the current density increases on the

inside, in the region 03r=<0.5, and decreases fo=0.6,

time (periods)

FIG. 7. Current drive efficiency vs normalized time for=16.6, A
=11.07, ancfa=0.15(high efficiency branch
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1.00
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0.2 0.4 0.6 0.8 1.0

FIG. 8. Averagedover 0) azimuthal current density as a function of nor- FIG. 10. Ratio between the aVeraged, tOtaI, azimuthal field and the vacuum

malized radius fory=14.9,\ = 11.07, and ;= 0.15(low efficiency branch  field for y=14.9,\=11.07, and',=0.15 (low efficiency branch

giving an overall increase in the total plasma current. Finallytotal field of over 20%(compared with the vacuum value
when B,,,=1.15, the current density is comparable to thatFor B,,,= 1.15 the width and depth of the well decrease but
obtained withB,,,=0 for r=<0.6 and significantly smaller at the diamagnetism continues to be significant. For the high
larger radius. Figure 9 presents a plot of the averaged azgfficiency branch of Fig. 3, witty =16.6, the diamagnetism
muthal current density versagor the high efficiency branch 1S negligible, as shown in Fig. 11. _ _ .

of Fig. 3 and three values @&,,,. WhenB,,,=0 the elec- PI’eVIOU.S thgorit)lcal studies in configurations wth a
trons rotate with frequency and the efficiency is 1. As the steady toroidal fiely assumed that in .s'teady state the tlme-
steady toroidal field increases, a region with negligible, everl€pendent part of all physical quantities can be described
reversed, current density appears, resulting in a reduction iHSing only the first Fourier harmonic. To check this approxi-

the total current. A, increases further, the width of this mation we investigated the dependenceAaind B with re-
region increases. spect tod— 7, in steady state. In all the cases analyzed the

Experimental measurements in rotamaks with a stead{’@n contribution to the)—  dependence ok comes from
toroidal field and theoretical calculations in infinitely long e first harmonic. There are, however, clear differences be-

plasma columns, also with a steady toroidal fieldhave  tween the high and low efficiency branches. For the high
shown the existence of poloidal currents in the former ancefficiency branch, thé— 7 dependence can be approximated
axial currents in the later, which are generally diamagnetic2lmost exactly using only the first harmonic, while for the
We studied this issue for the two conditions indicated above!OW €fficiency branch higher-order harmonics also contrib-
For the low efficiency regime of Fig. 2 there is a significantUt€- This can be seen in Fig. 12, which presents plots of
diamagnetic effect, which is shown in Fig. 10. This figure A(r =0.85) vs# (fixed 7, well after a steady state situation
presents a plot of the ratio between the avera@aer ¢)  has been reachgébr two cases: the full line haB,=4 and
azimuthal field and the vacuum field as a functiorroFor ~ ¥=16.6 and corresponds to the high efficiency branch, and
B,r=0.5 the diamagnetic well extends from=0.3 to the the dashed line has,, = 0.5 andy=14.9 and corresponds to

; . L the low efficiency branch. Thé— 7 dependence d8 is simi-
outer plasma boundary, with & maximum reduction in theIar for the high and low efficiency branches. It varies with

<j>

-16

2 4
0_-
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A m T TR T T T e e Neoromaanrany .
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FIG. 9. Averagedover ) azimuthal current density as a function of nor-

malized radius fory=16.6, A=11.07, and?a=0.15 (high efficiency
branch.

FIG. 11. Ratio between the averaged, total, azimuthal field and the vacuum
field for y=16.6,A=11.07, and ,=0.15 (high efficiency branch
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at the center of the plasma, thus providing a better represen-
tation of a tokamak. The second is the use of a fully 2D
numerical code which solves the time-dependent equations
obtained from the basic physical model without further as-

0.5
= sumptions.
§ oo Nl i Although we did not attempt to make a detailed com-
S SR N parison with the experimental results of Ref. 3, it is clear that
< many of the qualitative features observed in these experi-

057 ments are reproduced by the low efficiency branch of Fig. 2.

Our results show that for some values of the external toroidal
T field, there are two steady state solutions with different effi-
ciencies. When the steady toroidal field is large compared to
(rad) 4 ° the rotating field, the case of interest for STs, the efficiency
is small but the total current could still be significant if op-
eration at frequencies of the order of®1Blz is possible.
Further studies should be done to find the best operating
regime for STs and the corresponding efficiency and re-
quired power. In addition, two fluid models should be devel-
oped to remove some of the most critical assumptions of the
Ipres;ent physical model.

After this work was completed, two new pap€rS’have
been published on RMF current drive in FRCs. These papers
how that the axial equilibrium condition is a key ingredient

o explain important features of the experimental regiks,

the fact that the RMF penetrates only to the field Hulin
addition, Ref. 13 uses a magnetohydrodynamics model with
Sinite ion flow, thus removing some of the most critical as-
sumptions of previous studies. Clearly, the importance of
these effects in configurations with a steady toroidal field
needs to be addressed.

-1.04

FIG. 12. Azimuthal variation ofA(r =0.85) for A\=11.07 andr,=0.15.
Full line: high efficiency branchR,,,=4, y=16.6); dashed line: low effi-
ciency branch B,,,=0.5, y=14.9).

B, and also with the radial position. Whé,,=0 there is

a gentle oscillation that could be approximated fairly wel
with a co$2(6— 7)] dependence at all radii. This is in agree-
ment with the approximation usually employed in theoretical
analysis of RMF current drive in FRCs, where it is assume
that B has only even harmonics. IncreasiBg,, a localized
maximum which has a large contribution from higher-order
harmonics appears at large radius. At small radius, the d
pendence can be approximated using a simple&sin). This
can be seen in Fig. 13, which presents a pldBef 6 (fixed

7) for B,,;=4 andy=16.6 (high efficiency branchat vari-
ous radii. The complicated structure Bf(andj) implied by
Fig. 13 requires further investigations. As expected, exacthyACKNOWLEDGMENTS
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FIG. 13. Azimuthal variation oB at various radii for the high efficiency
branch withB,,,=4 (y=16.6,A=11.07, and',=0.15).



