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Abstract. – There is a striking convergence between Burgers turbulence and the continuous
spontaneous localization (CSL) model of quantum mechanics. In this paper we exploit this
analogy, identify the CSL counterparts of quantities in turbulence, such as the Reynolds number
and the injected energy, show that the velocity of a particle subjected to the localization process
satisfies Burgers equation and indicate a time region for experimental tests of the CSL models.

Introduction. – The study of nonlinear growth processes has recently become of central
interest in physics, an example is provided by the KPZ equation [1, 2]. Originally devised
to describe crystal growth, it has been since then applied to a wide range of systems, from
bacterial growth [3, 4] to directed polymers [5]. One of the essential features of the KPZ
equation is its nonlinear term introduced in order to account for lateral growth beyond the
linear approximation such as described by the Edwards-Wilkinson model [6].

The KPZ equation is given by

∂h(x, t)
∂t

= ν∇2h(x, t) +
1
2
(∇h(x, t))2 + φ(x, t), (1)

where h(x, t) is the surface position, ν is the viscosity and φ(x, t) is a space- and time-
dependent noise.

There is an interesting connection between the KPZ equation and the Burgers equation.
The latter is a nonlinear diffusion equation for the velocity field of a fluid in N dimensions.
The velocity is a gradient field, v = −∇h, and its equation is written as

∂v

∂t
+ (v · ∇)v = ν∇2v + f(x, t), (2)
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where the external stirring force is given by f = −∇φ and its correlation is [7]

〈fµ(x, t)fν(x, t′)〉 = εδ(t− t′)
[
δµν − (x − x′)µ(x − x′)ν

N∆2

]
exp

[
− (x − x′)2

2N∆2

]
. (3)

ε is the energy injected into the fluid per unit time and unit mass and ∆ is the length scale
at which energy is injected.

In terms of the random potential the correlation function is

〈φ(x, t)φ(x′, t′)〉 = ε∆2Nδ(t− t′) exp
[
− (x − x′)2

2N∆2

]
. (4)

Through the Hopf-Cole transformation [5], v = −2ν[∇Z(x, t)]/Z(x, t), the Burgers equa-
tion can be put into a linear form with a multiplicative noise

∂Z(x, t)
∂t

= ν∇2Z(x, t) +
φ(x, t)
2ν

Z(x, t). (5)

The above equation is a Schrödinger equation in the imaginary time. A similar equation for
real time has been considered by several authors in a different context, such as the description
of quantum open systems [8,9] or the continuous spontaneous localization of the wave function
(CSL model) in an attempt to solve the quantum measurement problem [10,11].

In this paper we extend an analogy we developed before [12] between the CSL model
and enhanced diffusion, by exploring the similarities between the CSL modified Schrödinger
equation and the KPZ, Burgers equations. The next section establishes an analogy between
the KPZ and the CSL models, which provides a dictionary we use throughout the paper
to move from one system to another and which allows us to introduce a Reynolds number
for the CSL model. In the third section we develop the stochastic picture underlying our
beable interpretation of the CSL model and connect it with the Burgers equation through the
velocity field. This enables us to introduce the intermittency corrections and a Fokker-Planck
equation (FPE) corresponding to the stochastic equation for the CSL model. An analysis
of this system of equations allows us to introduce a time scale characterizing the dominance
of enhanced diffusion over the standard (Wiener) diffusion. The fourth section presents our
conclusions.

A dictionary for KPZ, Burgers and CSL. – The CSL model modifies the Schrödinger
equation by introducing a multiplicative noise in the evolution of the wave function. In one
dimension, the evolution equation in the Stratonovich form for a free particle of mass M is
given by

∂ψ(x, t)
∂t

=
{
iν
∂2

∂x2
− λ+√

γ

∫
dzw(z, t)G(x− z)

}
ψ(x, t), (6)

where w(z, t) is a white noise, so that 〈w(z, t)〉 = 0 and 〈w(z, t)w(z′, t′)〉 = δ(z − z′)δ(t− t′),
and

G(x− z) =
√
α

2π
exp

[
−α (x− z)

2

2

]
(7)

characterises the localization of the wave function. The diffusion constant ν is equal to h̄/2M
and γ is related to the localization scale 1/

√
α and the frequency of collapse λ as γ = λ

√
4π/α.
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These parameters are chosen in such a way that the new evolution equation does not give differ-
ent results from the usual Schrödinger unitary evolution for microscopic systems with few de-
grees of freedom, but when a macroscopic system is described there is a fast decay of the macro-
scopic linear superpositions which are quickly transformed into statistical mixtures [10,13].

The above-modified Schrödinger equation is similar to eq. (5) in the imaginary time. From
this analogy the noise term may be written as φ(x, t) = 2ν

√
γ

∫
dzw(z, t)G(x−z), which gives

the following correlation function:

〈φ(x, t)φ(x′, t′)〉 = 4ν2λδ(t− t′) exp
[
−α (x− x

′)2

4

]
. (8)

Comparing this equation with eq. (4), we identify the injection length scale ∆ with
√
2/α

and the injected energy ε with 2ν2αλ and can then obtain the Reynolds number for the CSL
model by using the relation [5]: Re = (ε∆4/ν3)1/3, which gives Re = (8λ/αν)1/3. For large
Reynolds number we are in the domain of fully developed turbulence, which in the CSL case
corresponds to a quantum system undergoing frequent collapses as λ is large.

The analogy between turbulence and the CSL model also provides a clarification regarding
the issue of energy non-conservation in the original model for the collapse of the wave function
proposed by Ghirardi, Rimini and Weber (GRW) [13]. The celebrated Kolmogorov analysis
of 1941 (K41) [14] identifies ∆ as the scale at which energy ε is injected into the system and a
much smaller scale ld at which energy is dissipated. For distances r such that ld � r � ∆, we
have what is called the inertial regime, where energy is transferred to ever smaller length scales.
The analogous result for the collapse model has that the energy is injected at the localization
scale 1/

√
α, which in turn is much larger than the atomic scale. In the framework of the

collapse model, energy non-conservation coming from the collapse has always been discussed
in terms of the magnitude of the effect itself and the constants were chosen in such a way
as to make it a hardly observable effect at all. Here we stress, in analogy with turbulence,
that the system does not gain energy indefinitely, for the energy injected in the collapse will
be dissipated at the atomic scale. The disparity of scales is such that this fact was naturally
unnoticed by the proponents of the collapse model.

Developing the analogy. – We have recently analysed the CSL model from a microscopic
point of view [12]. In order to do so we used Vink’s treatment [15], which shows that two
alternative interpretations of quantum mechanics that treat position as a classical concept, the
causal interpretation due to Bohm [16] and the stochastic interpretation due to Nelson [17],
are actually particular cases of Bell’s “beable” interpretation. The beable interpretation [18]
is an attempt by Bell to treat physical quantities that exist independently of observation and
therefore can be assigned well-defined values. His approach used fermion number, a discrete
quantity, and Vink extended it to any observable that takes discrete values on small scales.
One starts from the equation for the probability density Pm(t) on a given basis

∂tPm =
∑

n

Jmn, (9)

where the source matrix Jmn is given by

Jmn(t) = 2Im{〈ψ(t)|Om〉〈Om|H|On〉〈On|ψ(t)〉}. (10)

From a stochastic point of view, the probability distribution of Om values satisfies the
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master equation
∂tPm =

∑
n

(TmnPn − TnmPm), (11)

where Tmndt is the transition probability for jumps from state n to state m.
To reconcile the quantum and stochastic views we equate (9) and (11):

Jmn = (TmnPn − TnmPm), (12)

with Tmn ≥ 0 and Jmn = −Jnm.
There is great freedom to find solutions of eq. (12). Bell chooses a particular one for

n �= m,
Tmn =

{
Jmn/Pn , Jmn > 0 ,
0 , Jmn ≤ 0 .

By discretising Schrödinger’s equation, Vink shows that this choice leads to

Tmn =
[S(an)]′

Ma
δn,m−1, (13)

where use was made of the polar form of the wave function ψ = ReiS/h̄. This term considers
only transitions between neighboring sites. Adding to Tmn the solution of the homogeneous
equation derived from eq. (12):

T o
mn ∝ exp

[
−

[
m− n− 2σln(Pm/Pn)

4(m− n)
]2

/2σ

]
, (14)

one introduces transitions between more distant sites.
The combination of eqs. (13) and (14) leads to the following equation for the particle

position
ẋ = v(x, t) + (βσa2)

1
2 η(t), (15)

where β is a free parameter, η(t) is a white noise, such that 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′)
and

v(x, t) =
[
(βσa2)

1
R(x, t)

∂R(x, t)
∂x

+
1
M

∂S(x, t)
∂x

]
. (16)

Equation (15) coincides with Nelson’s stochastic equation with βσa2 = 2ν. A similar
equation was obtained in our analysis of the microscopic dynamics of the CSL model. This
is so because the new terms in the source matrix Jmn coming from the modified Schrödinger
equation (6) do not contribute to the displacement dx [12].

The connection between the CSL (beable) equation and the Burgers equation is now
straightforward. In imaginary time S(x, t) = 0 and v = 2ν(∇R)/R, which, replacing R by
Z together with the transformation x → −x, corresponds to the Hopf-Cole transformation.
The velocity then satisfies the Burgers equation if we assume the relation between the random
force and the random potential without the minus sign f = ∇φ (a point that was already
noticed by Garbaczewski et al. [19]).

To simplify the following calculations, the Hamiltonian is set equal to zero as done in [20,
21]. The normalised solution of the modified Schrödinger equation is easily obtained:

φ(x, t) =
ψ(x, t)
||ψ|| =

1
||ψ|| exp[−λt] exp

[√
γ

∫ t

0

dt′
∫
dzG(x− z)w(z, t′)

]
ψ(x, 0). (17)
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By choosing the initial wave function as a single Gaussian

ψ(x, 0) =
1

(2π∆x)
1
4
exp

[
− (x− 〈x〉)2

4∆x

]
× (18)

× exp

 i
h̄


 (x2

2 − x〈x〉)
√
∆x∆p− h̄2/4

∆x
+ 〈p〉x





 ,

where ∆x = 〈x2〉−〈x〉2 and 〈x〉 is the mean value of x (the same is valid for p), the stochastic
differential equation for position is

ẋ = DS + 2ν
√
γ

{∫ t

0

dt′
∫
dzw(z, t′)[−α(x− z)]G(x− z)

}
+
√
2νη(t). (19)

This equation describes the evolution of the position of a tracer in a turbulent medium.
The first term on the right-hand side describes a single free particle deterministic evolution
and we choose DS as a short notation for the term derived from the initial wave function

DS = [2ν∇RS(x, 0)/RS(x, 0) + ∇SS(x, 0)/M ] = [〈x〉 − x][ν/∆x −
√
∆x∆p− h̄2/4/M∆x] +

〈p〉/M . The two other terms describe the stochastic processes. The last term corresponds to
a Brownian diffusion and the second one is responsible for the t3 behavior of the mean-square
displacement, which is the same time dependence obtained by Richardson in his pioneering
studies of turbulence [22]. Notice that the coefficient of 〈x2〉 corresponds to the injected energy
2αλν2 as expected from hydrodynamical turbulence [23] and coincides with the result in the
previous section.

Moreover, the time dependence and nonlocal character of the second term on the r.h.s. of
the equation above are in accordance with the concept of Lévy walk as introduced by Shlesinger
et al. [24] when studying the phenomenon of enhanced diffusion. The basic difference between
the more familiar Lévy flight [25] and Lévy walk is that for the latter, although the walker
visits all sites visited by the flight, the jumps do not occur instantaneously, but there may
be a time delay before the next jump. By introducing time, Shlesinger et al. obtained an
integral transport equation involving a scaled memory which is nonlocal in space and time.
Contrary to the infinite mean-square displacement obtained in a Lévy flight, the solution of
such transport equation leads to a finite mean-square displacement such as the one obtained
by Richardson.

From eq. (19), it follows that momentum satisfies

ṗ = 2Mν
√
γ

∫
dzw(z, t)[−α(x− z)]G(x− z). (20)

The stochastic process for momentum derives from the introduction of the random potential
in the modified Schrödinger equation, which in turn is responsible for the localization of the
wave function. This process vanishes when the GRW parameters go to zero.

The FPE corresponding to eq. (19), which is a stochastic differential equation with a
colored noise introduced by v(t), is obtained as done in [26] and is equal to

∂P (x, p, t)
∂t

= −〈p〉
M

∂P (x, p, t)
∂x

+

+


 h̄

2M
∂2

∂x2
+

√
h̄3αλ

2M
∂2

∂x∂p
+
h̄2αλ

4
∂2

∂p2


P (x, p, t). (21)



26 EUROPHYSICS LETTERS

A nice feature of our model is to obtain the above phase-space equation of evolution.
Differently from Richardson [24], we started from purely theoretical arguments and took into
account the discontinuous nature of the particle velocity.

A) I n t e rm i t t e n c y c o r r e c t i o n s. Having eqs. (19) and (20), we can now proceed to
obtain the Mandelbrot intermittency corrections [27] to Richardson’s law. In order to do so,
we replace a white noise in time by an affine one [28] called fractional Brownian noise:

〈w(z, t)w(z′, t′)〉 = tA−1δ(t− t′) δ(z − z′), (22)

which gives for the anomalous diffusion term [12]

〈x2(t)〉 ∼ tA−1+3. (23)

This corresponds to one of the intermittency corrections obtained by Shlesinger et al. [24]
provided we identify A − 1 with 3µ/(4 − µ), where µ = E − df , E being the Euclidean
dimension and df the fractal dimension.

For the momentum variable the nonwhite noise gives

〈p2〉 ∼ tA, (24)

which leads to the scaling relation obtained by Shlesinger et al. [24] for the root-mean-square
velocity.

B) T im e s c a l e s. Neglecting the deterministic term in eq. (19), we find the mean-square
displacement 〈x2〉:

〈x2〉 = 2νt+ 2
3
αλν2t3, (25)

which has two contributions: the usual Brownian one, coming from the η(t) term, and the
enhanced diffusion [12], arising from the multiplicative noise in the modified Schrödinger
equation. Comparison of these two terms allows us to determine the time scale beyond which
the enhanced diffusion dominates over the Brownian one:

tenh >

√
3
αλν

. (26)

Using the GRW parameters [13]: α = 1010 cm−2, λ(micro) = 10−16 s−1, λ(macro)
= 107 s−1, M(micro) = 10−23 g, M(macro) = 1 g, we estimate the time scale, which is
approximately 2.4× 105 s, independently of the macro or microscopic nature of the system.

A second time scale is given by the characteristic collapse time, which is of the order of
λ−1. For a microscopic system, enhanced diffusion (t ∼ 2.4 × 105 s) manifests itself even
before collapse occurs (t ∼ 1016 s), opening an interesting window for experimental tests of
this scenario, which would help to put stricter bounds on the parameters of the GRW/CSL
models [29].

Conclusions. – In this article we found further points of contact between turbulence and
the CSL model, identifying the CSL counterparts of important quantities in turbulence, such
as the Reynolds number and the injected energy.

A microscopic stochastic picture for the CSL model allowed us to show that the velocity
field of the tracer satisfies the Burgers equation.

Finally, a study of the different time scales governing enhanced and Brownian diffusion
indicates that there is a region of parameter space of the CSL model amenable to experimental
test, an investigation we plan to follow in a forthcoming publication.
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[5] Mézard M., J. Phys. IV, 8 (1998) Pr6-27.
[6] Halpin-Healy T. and Zhang Y. C., Phys. Rep., 254 (1995) 215.
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[8] Diósi L., Phys. Lett. A, 105 (1984) 199.
[9] Gisin N. and Percival I. C., J. Phys. A, 25 (1992) 5677.

[10] Ghirardi G. C., Pearle P. and Rimini A., Phys. Rev. A, 42 (1990) 78.
[11] Pearle P., Phys. Rev. A, 48 (1993) 913.
[12] Santos L. F. and Escobar C. O., Phys. Rev. A, 60 (1999) 2712.
[13] Ghirardi G. C., Rimini A. and Weber T., Phys. Rev. D, 34 (1986) 470.
[14] Kolmogorov A., C.R. Acad. Sci. USSR, 30 (1941) 301.
[15] Vink J. C., Phys. Rev. A, 48 (1993) 1808.
[16] Bohm D., Phys. Rev., 85 (1952) 166; 180.
[17] Nelson E., Phy. Rev., 150 (1966) 1079.
[18] Bell J. S., Phys. Rep., 137 (1986) 49.
[19] Garbaczewski P., Kondrat G. and Olkiewicz R., Phys. Rev. E, 55 (1997) 1401.
[20] Pearle P., Tales and Tails and Stuff and Nonsense, quant-ph/9805050.
[21] Squires E. J., Phys. Lett. A, 157 (1991) 453.
[22] Richardson L. F., Proc. R. Soc. London, Ser. A, 110 (1926) 709.
[23] Hentschel H. G. E. and Procaccia I., Phys. Rev. A, 27 (1993) 1266.
[24] Shlesinger M. F., West B. J. and Klafter J., Phys. Rev. Lett., 58 (1987) 1100.
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