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Abstract. We propose an approximation scheme to describe the dynamics of
the spin-boson model when the spectral density of the environment shows a
peak at a characteristic frequency � which can be very close (or even equal)
to the spin Zeeman frequency 1. Mapping the problem onto a two-state system
(TSS) coupled to a harmonic oscillator (HO) with frequency ω0, we show that
the representation of displaced HO states provides an appropriate basis to
truncate the Hilbert space of the TSS–HO system and therefore a better
picture of the system dynamics. We derive an effective Hamiltonian for the
TSS–HO system, and show it furnishes a very good approximation for
the system dynamics even when its two subsystems are moderately coupled.
Finally, assuming the regime of weak HO–bath coupling and low temperatures,
we are able to analytically evaluate the dissipative TSS dynamics.
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1. Introduction

As new experimental physics techniques allow us to reach minute length scales, and milestones
in control and precision of the performed experiments are achieved, the study of open quantum
systems has become one of the most prominent areas of modern physics. Moreover, both
fundamental and practical aspects of the systems under current investigation help to foment
a very broad interest in the area. On the fundamental side, the possibility of having a better
comprehension of how classical physics emerges from a quantum system or the realization of
very peculiar quantum mechanical states have attracted the interest of many researchers toward
the area. From the practical point of view, understanding the main mechanisms leading to the
loss of quantum coherence in such systems constitutes a key feature, and one of the major
challenges for the physical implementation of, for example, a quantum computer.

A very successful open quantum system which has been investigated to date is a two-state
system (TSS) coupled to a dissipative environment. Despite its simplicity, the TSS dissipative
dynamics is the paradigm of a wide variety of physical systems. Superconducting devices
containing Josephson junctions [1], few-electron semiconductor quantum dots [2] and two-level
atoms in optical cavities [3] are just few examples of systems whose low-energy level dynamics
can be, in general, captured by a dissipative TSS.

The most studied model of a dissipative TSS is the well-known spin-boson model [4],
where the TSS is linearly coupled to the coordinates of a bath of noninteracting oscillators. The
dissipative effects of the TSS phenomenological environment are determined by the spectral
density of the bath of oscillators [5], which, in general, is assumed to have a power-law behavior
at low frequencies. Since it seems that no general analytical solution can be obtained for such a
model, several approaches have been proposed to determine the time evolution of the dissipative
TSS. Those approaches basically belong to two distinct approximation schemes: one considers
a weak TSS–bath coupling in the low-temperature regime, and the other consists of performing
an expansion in the tunneling amplitude 1 of the TSS states. The first approach is commonly
implemented by either using path-integral methods [6] or the Born–Markov approximation (also
known as the Bloch–Redfield formalism) [7]–[9], where only the lowest order terms in the
TSS–bath coupling are taken into account for the TSS dissipative dynamics. The other scheme
has been shown to be a fair approximation especially in the regimes of strong damping and/or
high temperatures, and also employs path-integral methods within the so-called noninteracting
blip approximation (NIBA) as its main technique [4, 6].

An emerging problem in the area of dissipative TSSs is the one in which the bath effective
spectral density Jeff(ω) presents a pronounced peak (resonance) at a characteristic frequency �.
A typical example of such a case happens when the energy scale of the device used to detect
the state of the TSS is comparable to that of its own regime of operation. Since the device,
or ‘quantum detector’, also suffers from the dissipative effects of the environment, the TSS-
detector resonance constitutes an efficient channel for decoherence processes to take place. For
example, as the energy scale of superconducting qubits reaches the order of several gigahertz,
this mechanism shows up on these systems due to their coupling to the readout dc-SQUIDs
[10, 11]. In addition to the TSS-detector case, the presence of a structured bath with a sharp
peak has also been discussed in other pertinent contexts, e.g. electron transfer in biological
and chemical systems [12] and semiconductor quantum dots [13], to name just a few relevant
problems of this subject of growing interest.

Indeed, it has been shown [11, 14, 15] that the structure of the environment becomes
an essential feature of the dissipative TSS dynamics when its frequency is comparable to the
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bath resonance frequency �. Not only can the decay rates not be correctly determined by a
perturbative approach in the TSS–bath coupling, but such an approximation also fails to account
for the presence of additional resonances in the TSS dynamics. By using an exact mapping [12]
of the spin-boson problem with a structured environment onto that of a TSS coupled to a
single HO system with frequency �, which itself interacts with a bath of oscillators having
an Ohmic spectral density, several techniques have been applied to the investigation of the TSS
dissipative dynamics. When the single HO is strongly damped and/or coupled to a bath at high
temperatures, the NIBA has been employed to both TSS–HO weak [11] and strong [16] coupling
cases. On the other hand, the numerically exact method of the quasi-adiabatic propagator path-
integral (QUAPI) [11, 14], as well as a three-level system (3LS) Redfield theory, have indicated
the failure of the perturbative approaches in the HO–bath weak coupling and low-temperature
regimes.

In this work, we present an approximation scheme to describe the dynamics of the spin-
boson problem with a structured bath having a pronounced resonance at frequency �. Following
previous works [12]–[14], we map this problem onto a TSS coupled to a single HO with
frequency ω0. In order to obtain an appropriate effective Hamiltonian for the lowest-lying energy
states of the TSS–HO system, we show that the representation of displaced HO states whose
displacement depends on the TSS state, provides a better picture of the system dynamics, and
consequently the appropriate basis to truncate the Hilbert space of the TSS–HO system. We
show that the derived effective Hamiltonian furnishes a very good approximation for a vast
range of the physical parameters of the system even when the TSS and the HO are moderately
coupled close to the resonance. In addition, assuming the regime of weak HO–bath coupling
and low temperatures, we are able to analytically evaluate the dissipative TSS spin dynamics.

This paper is organized as follows. In section 2, we present the model for the system, and
derive the effective Hamiltonian using the approximation scheme proposed above. By varying
the physical parameters of the problem, we compare its predictions with: (i) an exact numerical
calculation (for which we found it to be sufficient to consider a N = 18 dimensional TSS–HO
Hilbert space); and (ii) the simple truncation of the TSS–HO Hilbert space. Section 3 contains
the results obtained for the TSS–HO dissipative dynamics assuming the regime of HO–bath
weak-coupling and low temperatures. Finally, in section 4, we present our concluding remarks.

2. The model

Our starting point for describing the TSS dissipative dynamics in the presence of a structured
environment is the spin-boson Hamiltonian [4],

Ĥ SB = −
h̄

2
1σ̂ x +

∑
k

h̄ωk b̂†
k b̂k + h̄σ̂ z

∑
k

ck(b̂
†
k + b̂k), (1)

where σ̂ i are the Pauli matrices and h̄1 represents the tunneling amplitude between the TSS
states.

The bath of oscillators, introduced by the canonical bosonic creation and annihilation
operators b̂†

k and b̂k , is assumed to have a spectral density Jeff(ω) showing a Lorentzian peak at
a characteristic frequency �.

It has been shown [12, 13] that the proposed problem can be mapped onto a system
comprising a TSS coupled to a single HO of frequency ω0, which itself interacts with a bath
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of oscillators having a spectral density J (ω) presenting a power-law frequency distribution.
The system Hamiltonian in this formulation is given by

Ĥ = −
h̄

2
1σ̂ x + h̄ω0â†â + h̄σ̂ z(gâ† + g∗â)

+
∑

k

h̄ωk b̂†
k b̂k + h̄(â† + â)

∑
k

λk(b̂
†
k + b̂k), (2)

where â† and â are the creation and annihilation operators of the single HO system, and g stands
for the TSS–HO coupling constant. If g is a real function, the TSS–HO coupling has the form
of a ‘σ̂ z-coordinate’ interaction. On the other hand, if g is a purely imaginary function, the
TSS–HO coupling becomes a ‘σ̂ z-momentum’ interaction.

From the system Hamiltonian (2), one can observe that the dissipative effects of the
environment on the TSS dynamics occur only indirectly through the TSS–HO interaction. Thus,
in this formulation, it is clear that the TSS–HO coupling works as a dissipative channel for the
TSS. Such a channel can be enhanced or suppressed depending on how strongly coupled the TSS
and HO systems are. This depends not only on the strength of the coupling constant g, but also
on how far from resonance these two subsystems are. Indeed, if we assume a ‘σ̂ z-coordinate’
coupling, i.e. g = g∗, and an Ohmic spectral density J (ω),

J (ω) =
π

2

∑
k

λ2
kδ(ω − ωk) = κωe−ω/ωc, (3)

one can show [12] that the corresponding exact mapping between the Hamiltonians in (1)
and (2)3 occurs when the single HO has its frequency given by the Jeff(ω) resonance frequency
�, i.e. ω0 = �. Consequently, the peak in the effective spectral density of the bath ‘seen’ by
the TSS, Jeff(ω), can be interpreted as a manifestation of a definite resonance of one of the
environment degrees of freedom.

Recently, Westfahl et al [13] have demonstrated that a ‘σ̂ z-momentum’ TSS–HO coupling,
i.e. g = −g∗, with a power-law frequency dependence for J (ω) (J (ω) ∝ ωs), leads to a
significant change of the effective bath spectral density Jeff(ω) of the system Hamiltonian (1).
Although Jeff(ω) still shows a pronounced peak, featuring an approximated Lorentzian shape,
its characteristic frequency � does not match the single HO frequency ω0, i.e. � 6= ω0. Indeed,
investigating the dissipative effects, due to the spin–orbit mechanism, on the electronic spin
dynamics trapped in quantum dots, they have found that the characteristic resonance frequency
� predicted for the effective bath spectral density Jeff(ω) is, in general, shifted to a value much
lower than that of the single HO, � � ω0. In addition, they have shown that such a resonance
occurs in a frequency regime which can be, in principle, of the order of the Zeeman frequency
of the spin, raising concerns about the appropriate approach to correctly describe the dissipative
spin dynamics.

Thus, since the system Hamiltonian (2) is capable of describing the dissipative dynamics
of a TSS coupled to a variety of structured environments, from here onwards, we shall focus on
describing its features and properties. Unfortunately, despite its simplicity, the Hamiltonian (2)
cannot be analytically diagonalized. However, since our final goal is to determine the TSS
dissipative dynamics in the regime of low temperatures, h̄1 � kBT , we can concentrate on
determining its low-energy level spectrum. In addition, we are going to assume that the HO

3 Assuming a Lorentzian shape Jeff(ω) =
π
2

∑
k c2

kδ(ω − ωk) =
2αω�4

(�2−ω2)2+(2πκω�)2 for the spectral density of the
system Hamiltonian (1).
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Figure 1. (a) The four lowest levels of the TSS–HO system, as a function of
the tunneling frequency 1, for the moderate coupling case g = 0.3�, obtained
through: numerical calculation considering a N = 18 dimensional Hilbert space
(black solid curve); analytical solution after performing a simple truncation
of the HO Hilbert space (blue dot–dashed curve); and analytical solution of
the effective Hamiltonian derived, equation (8), in the HO displaced state
representation (DSR) (red dashed curve). (The ground state is taken having
E = 0.) (b) and (c) present the ω01 and ω02 frequency deviations, 1ω0i =

ω
ST,DSR
0i − ω

(N=18)

0i , for the simple truncation approximation and the effective
Hamiltonian equation (8), as a function of the TSS–HO coupling g (for the
resonance case 1 = �), and the tunneling amplitude 1 (assuming g = 0.4�).

dynamics is subject to weak dissipation, in such a way that its states are weakly perturbed by
the HO–bath coupling.

Under these considerations, in order to find a low-dimensional effective Hamiltonian for
the TSS–HO system, the natural procedure is to perform a truncation of the HO Hilbert space,
thus reducing the TSS–HO Hilbert space dimensionality. The simplest method of doing that
consists of considering only the ground, |0〉, and first excited, |1〉, states of the HO, leading to a
four-dimensional Hilbert space of the composite TSS–HO system.

However, as depicted in figure 1, that approximation fails as soon as the condition of a
TSS–HO weak coupling, g � 1, ω0, is not satisfied. Comparing with a numerical calculation
performed by taking into account a N = 18 dimensional Hilbert space, we can see the system
Bohr frequencies ω01 and ω02 such that h̄ω01 ≡ E1 − E0 and h̄ω02 ≡ E2 − E0, where E0, E1 and
E2 respectively, correspond to the eigenenergy of the ground, first and second excited states,
can deviate circa 10% from the correct values, even for moderate TSS–HO couplings. Since we
expect a sharp resonance for the effective spectral density Jeff(ω), those deviations can easily
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lead to much larger errors when computing the TSS relaxation rates. Indeed, Thorwart et al [14]
report deviations for the relaxation rates of the order of ≈20% for the weak coupling case
g = 0.07, when performing the simple truncation of the HO Hilbert space.

The failure of the simple truncation of the HO Hilbert space for cases other than the
TSS–HO weak coupling, g � 1, �, was already expected, since it does not correctly take into
account the weight of the higher energy HO states in the spectral decomposition of the lowest
energy eigenstates of the Hamiltonian (2). As one can observe from the latter equation, the
TSS–HO interaction term has the net effect of inducing displacements of the HO in its phase
space {q, p}, hence leading to the mixing of the HO eigenstates of equation (2). So, the stronger
the TSS–HO coupling is, the more important the HO higher energy states become.

Therefore, in order to obtain a better picture of the lowest energy states of equation (2),
we have to perform the truncation of the HO Hilbert space in a representation where such an
effect is taken into account. In other words, it is the displaced harmonic oscillator states which
ought to be the appropriate basis where one should perform the reduction of Hilbert space of
the TSS–HO system.

The change of representation can be done by introducing the unitary HO displacement
operator D̂(α) = eαâ†

−α∗â, which is very well known in the context of coherent states [3]. There,
among several other implications, the parameter α is a c-number, such that the transformation
D̂†(α)â D̂(α) = â + α has the action of shifting the HO canonical position and momentum
operators by amounts proportional to Re(α) and Im(α), respectively. However, an important
feature of the Hamiltonian (2) is the fact that the displacements of the HO states depend on the
state of the TSS. Therefore, we are led to introduce the unitary transformation

D̂(s, σ̂ z) ≡ e(sâ†
−s∗â)σ̂ z , (4)

as the conditional displacement operator of equation (2). Here, we consider the displacement
parameter s as an ad hoc parameter of our model to be properly chosen in order to obtain the
best effective Hamiltonian possible.

Transformation (4) is very similar to what is known in the literature as the polaron
transformation [4, 6]. Indeed, if we had followed, by analogy, the choice made for the polaron
transformation, we would have obtained s = −g/ω0. Although it correctly diagonalizes the
Hamiltonian (2) when 1 = 0, this choice is expected to fail, as discussed in [17], when
the tunneling amplitude becomes appreciable, since from its analytical solution one obtains
ω01 → ∞, instead of ω01 → ω0, when 1 → ∞.

Thus, in order to make the best choice for the ad hoc parameter s, we have to carefully
observe which one would reflect the kind of dynamics we should expect for our TSS–HO
system. Performing the change of representation, H̃ ≡ D̂† Ĥ D̂, and truncating the HO Hilbert
space, one finds

H̃ TSS−HO = −
h̄

2
1̃σ̂ x

(
1 − 4|s|2ĉ†ĉ

)
+ h̄ω0ĉ†ĉ

+ h̄ĉ†
{
σ̂ z(g + ω0s) + iσ̂ ys1̃

}
+ h̄ĉ

{
σ̂ z(g

∗ + ω0s∗) − iσ̂ ys∗1̃
}

, (5)

where, in order to stress the fact that we are now working with a reduced Hilbert space, we have
defined the operators ĉ ≡ |0̃〉〈1̃| and ĉ†

≡ |1̃〉〈0̃|, in which |0̃〉 and |1̃〉 represent, respectively, the
ground and first excited states of the displaced HO. 1̃ represents the renormalized tunneling
amplitude due to the TSS–HO coupling, which is given by

1̃ ≡ 1e−2|s|2 . (6)
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Without dissipation, the TSS–HO system should evolve in time in such a way that there
would be a persistent exchange of a quantum of energy between the two subsystems. Such
a dynamical behavior has a precise analogue in the problem of absorption (emission) of a
single photon by (from) an atom placed in an optical cavity. There, the fundamental tool for the
study of the system dynamics is the so-called Jaynes–Cummings (JC) Hamiltonian. Inspecting
equation (5), one can see that the choice

s ≡ −
g

ω0 + |1̃|
(7)

led us to the same form as a JC Hamiltonian. It worth noting that one could use a variational
calculation to determine the value of the parameter s for the polaron transformation equation (4).
Indeed, by minimizing the free energy of the system using the Bogoliubov–Peierls bound, Silbey
and Harris [18] could determine a transcendental equation for s. For the unbiased case and
T = 0, that leads to a very similar renormalized tunneling amplitude to that found in equation (6)
(cf equation (103) in the review [19]).

Assuming 16 04, the effective Hamiltonian in the HO displaced state representation
(DSR) obtained using equation (7) in (5) reads

H̃ DSR ≡ −
h̄

2
1̃σ̂ x

(
1 −

4|g|
2

(ω0 + |1̃|)2
ĉ†ĉ

)
+ h̄ω0ĉ†ĉ

+
2h̄|1̃|

ω0 + |1̃|
(gĉ†σ̂

(x)
− + g∗ĉ σ̂ (x)

+ ), (8)

where we have introduced the ladder operators for the spin x−component, σ̂
(x)
± =

1
2(σ̂ z ∓ iσ̂ y)

5.
The Hamiltonian (8) can be diagonalized analytically, yielding eigenenergies given by

E0 ≡ −
h̄

2
˜|1|, E3 ≡

h̄

2
|1̃|

{
1 −

4|g|
2

(ω0 + |1̃|)2

}
+ h̄ω0 (9)

and

E1,2 ≡
h̄

2

2ω0 −
E3 + E0

h̄
∓

√(
E3 − E0

h̄
− 2ω0

)2

+
16|g|21̃2

(ω0 + |1̃|)2

 . (10)

The analysis of the obtained eigenenergies Ei , equations (9) and (10), reveals that the
Hamiltonian (8) provides the correct results for certain limits of the parameters of equation (2),
namely: (1) as ω0 → ∞, we obtain ω01 → |1|; (2) for |1| → ∞, we have ω01 → ω0; and for the
resonant case 1 = ω0, with g � 1, ω0, we find ω01 ≈ ω0 − g and ω02 ≈ ω0 + g. Moreover, as
one can see from figure 1, the resulting Hamiltonian (8) gives a very good approximation of our
problem for a vast range of the physical parameters 1 and g. In fact, the largest deviations we
have found considering the parameters illustrated in figure 1 were 1ω01 ≈ 0.07% and 1ω02 ≈

0.6%. It is worth noting that, when performing the simple truncation, this level of agreement
can only be met for the ground and first excited states if we consider a N = 8 dimensional
Hilbert space. Indeed, for a N = 6 dimensional Hilbert space we found: 1ω

(N=6)

01 ≈ 201ωDSR
01

4 For the case 1> 0, the last term of equation (8) becomes (gĉ†σ̂
(x)
+ + g∗ĉσ̂ (x)

− ), reflecting the fact that the state
|+〉 has the lowest Zeeman energy.
5 The ladder σ̂

(x)
± operators obey the usual commutation relations: [σ̂ x , σ̂

(x)
± ] = ±2σ̂

(x)
± and [σ̂ (x)

+ , σ̂
(x)
− ] = σ̂ x .

Their action on the eigenstates of σ̂ x are given by: σ̂
(x)
+ |−〉 = |+〉 and σ̂

(x)
− |+〉 = |−〉, with (σ̂

(x)
+ )2

= (σ̂
(x)
− )2

= 0.
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and 1ω
(N=6)

02 ≈ 31ωDSR
02 , while for the case N = 8 we obtained: 1ω

(N=8)

01 ≈ 1.31ωDSR
01 and

1ω
(N=8)

02 ≈ 0.341ωDSR
02 .

Finally, defining the states |±〉 as the eigenstates of σ̂ x , σ̂ x |±〉 = ±|±〉, the eigenstates of
the Hamiltonian (8) can be written in the form

|e0〉 ≡ |−, 0̃〉, |e3〉 ≡ |+, 1̃〉, |e1〉 ≡ A|+, 0̃〉 + B|−, 1̃〉 (11)

and

|e2〉 ≡ −B|+, 0̃〉 + A|−, 1̃〉, (12)

where, A ≡ (E0 + E2)/

√
(E0 + E2)2 + 4|g|21̃2h̄2/(ω0 + |1̃|)2 and B2

= 1 − A2.
The eigenstates |e1,2〉, equations (11) and (12), reveal the hybridization process occurring

between the TSS and HO states due to their coupling. Indeed, if g = 0, i.e. the case of a
decoupled TSS–HO system, the eigenstates of equation (8) are simple tensor product of the
TSS and HO eigenstates (A = 1). Nevertheless, as one increases the coupling g, the system
eigenstates become more hybridized. At the resonance condition, ω0 = 1, the eigenstates |e1,2〉

become nearly the maximally entangled TSS–HO states, with A ≈
1

√
2
(1 + O(g)).

3. Dissipative dynamics

The evaluation of the dissipative TSS dynamics can be described, for a weak HO–bath coupling
and low temperatures, using the Redfield equations [6]

˙̃ρnm(t) = −iωnmρ̃nm(t) −

∑
k,l

Rnmkl ρ̃kl(t), (13)

where the matrix elements ρ̃nm ≡ 〈n|ρ̃|m〉 are taken using the eigenstates of equation (8), and
the Redfield tensors are given by Rnmkl = δlm

∑
r 0

(+)

nrrk + δnk
∑

r 0
(−)

lrrm − 0
(+)

lmnk − 0
(−)

lmnk , with

0
(+)

lmnk = h̄−2

∫
∞

0
dte−iωnk t

〈H̃I,lm(t)H̃I,nk(0)〉, (14)

0
(−)

lmnk = h̄−2

∫
∞

0
dte−iωlm t

〈H̃I,lm(0)H̃I,nk(t)〉, (15)

where H̃I(t) = eiH̃Rt/h̄ H̃ Ie−iH̃Rt/h̄ is the interaction Hamiltonian in the interaction picture, and
the brackets represent thermal averages over the bath degrees of freedom. Here, we denote H̃ R

and H̃ I as the bath and HO–bath interaction Hamiltonians obtained from equation (2) under the
transformation presented in the last section. The full Hamiltonian now reads

H̃ = H̃ DSR +
∑

k

h̄ωk b̂†
k b̂k +

(
ĉ† + ĉ −

2Re(g)

ω0 + |1̃|
σ̂ z

) ∑
k

h̄λk(b̂
† + b̂k), (16)

where the second and third terms on the rhs of this equation are, respectively, H̃ R and H̃ I.
It is worth noting that the term proportional to Re(g) in H̃ I, equation (16), represents a
correction naturally introduced by the scheme proposed, and leads to an effective interaction
between the TSS and bath mediated by the TSS–HO coupling. Had we followed the simple
truncation approximation, such a term would not be present in the system dynamics. We have
seen that this term can represent a non-negligible correction to the system–bath interaction,
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since it can reach fractions of few per cent of the latter, e.g. for g = 0.1, 1 = ω0 = 1, we find
‖2Re(g)/(ω0 + |1̃|)‖/‖ĉ† + ĉ‖≈ 0.1.

In order to be able to analyze the resonance case, ω0 = 1, as pointed out in [14], we have
to go beyond the two-level approximation when using the Redfield equations (13). Indeed, since
a two-level approximation is not capable of taking into account the hybridization of TSS–HO
states, it fails to present the additional resonances of the TSS dynamics. Thus, considering a
three-level system, one can determine the expectation value of σz, σz = Tr(ρ̂(t)σ̂ z), as

σz(t) ≈ 2Re (A〈e0|ρ̃|e1〉 − B〈e0|ρ̃|e2〉) . (17)

Performing the secular approximation [7], we can neglect the terms Rnmkl of ρ̃nm for which
ωnm 6= ωkl . This led us to the following set of coupled differential equations:

˙̃ρ01 ≡ 〈e0|
˙̃ρ|e1〉 ≈ iω01ρ̃01 − γ1ρ̃01 − γ2ρ̃02, (18)

˙̃ρ02 ≡ 〈e0|
˙̃ρ|e2〉 ≈ iω02ρ̃02 − γ3ρ̃01 − γ4ρ̃02, (19)

where γ1 = R0101, γ2 = R0102, γ3 = R0201, and γ4 = R0202. Assuming that J (ω) is a regular
function in the complex plane, we can analytically evaluate the Redfield rates, obtaining

Re 0
(+)

lmnk = (h̃lm h̃mk)J (|ωnk|)
e−β h̄ωnk/2

sinh(β h̄|ωnk|/2)
, (20)

Im 0
(+)

lmnk = −
2

π
(h̃lm h̃mk)P

∫
∞

0
dω

J (ω)

ω2 − ω2
nk

(
ω − ωnk coth

(
βh̄ω

2

))
(21)

where h̃lm ≡ 〈l|(ĉ† + ĉ −
2Re(g)

ω0+|1̃|
σ̂ z)|m〉. In addition, using the relation 0

(−)

knml = (0
(+)

lmnk)
∗, we can

determine the Redfield tensors Rnmkl in terms of the rates 0
(+)

lmnk .
From equations (17)–(19), we find the spectral decomposition of σz as

ω± =
ω01 + ω02

2
+ i

(γ1 + γ4

2

)
±

√(
ω01 − ω02

2
+

i

2
(γ1 − γ4)

)2

− γ2γ3, (22)

where Re(ω±) are the main oscillation frequencies of the σz dynamics, and Im(ω±) gives their
respective damping rates.

Figure 2 presents a typical time evolution for σz for the resonant case using equation (22).
Once again, by comparing it to the dynamics presented by a larger Hilbert space, N = 18,
we can verify a very good agreement of the results obtained using the scheme developed in
section 2. As one can observe, the TSS dynamics presents a rich structure, with the presence
of two main oscillation frequencies, which are due to the TSS–HO resonance. These results
corroborate those obtained in [11, 14, 15].

4. Conclusions

In conclusion, we presented and discussed a new approximation scheme to describe the
dynamics of the spin-boson model with a structured environment. We studied the proposed
problem by exploring its exact mapping onto that of a TSS coupled to a single HO of
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Figure 2. σz(t) dissipative dynamics for the resonant case, 1 = ω0, computed
for an Ohmic spectral density, equation (3), with κ = 0.02, ωc = 101 and
temperature kBT = 0.1h̄1. We assumed a σz-coordinate TSS–HO coupling, with
constant coupling given by g = 0.31. Two main oscillation frequencies ω±,
equation (22), are observed in the dynamics, reflecting the hybridization of
the TSS–HO states. Solid and dotted lines represent, respectively, the N = 18
dimensional Hilbert space and our N = 4 truncated space in the DSR.

frequency ω0, which itself interacts with a bath of oscillators. We showed that, in order to
find a low-dimensional effective Hamiltonian for the TSS–HO system, the representation of
displaced HO states, DSR, provides an appropriate basis to truncate its Hilbert space. For
that, we defined a conditional displacement operator, where the shifting of the HO system was
dependent on the state of the TSS. In so doing we needed to introduce an ad hoc displacement
parameter s which should be chosen in such a way that the best effective Hamiltonian could be
obtained. Invoking the physics of an atom–cavity system, we chose the parameter s such that
the effective Hamiltonian had a Jaynes–Cummings form. By comparing our numerical results
with those considering a larger Hilbert space, we showed that, in fact, the derived effective
Hamiltonian gives an excellent approximation of the original problem for a vast range of
its physical parameters even when the TSS and the HO are moderately coupled close to the
resonance. Actually, we showed that in order to achieve the same level of precision of the low-
dimensional DSR model one needs to at least double the dimensionality of the Hilbert space of
the system within the simple truncation approximation. Finally, assuming the regime of weak
HO–bath coupling and low temperatures, we were able to analytically determine the dissipative
TSS dynamics using a 3LS Redfield theory.
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