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Abstract. – We study the phenomenon of one-dimensional non-resonant tunneling through
two successive (opaque) potential barriers, separated by an intermediate free region R, by
analyzing the relevant solutions to the Schroedinger equation. We find that the total traversal
time does not depend not only on the barrier widths (the so-called “Hartman effect”), but also
on the R width: so that the effective velocity in the region R, between the two barriers, can
be regarded as practically infinite. This agrees with the results known from the corresponding
waveguide experiments, which simulated the tunneling experiment herein considered due to the
known formal identity between the Schroedinger and the Helmholtz equation.

Introduction. – It is known within quantum mechanics, with regard to the tunneling
processes, that the tunneling time —either evaluated as a simple “phase time” [1] or calculated
through the analysis of the wavepacket behaviour [2]— does not depend on the barrier width
in the case of opaque barriers. Such a phenomenon, sometimes called “Hartman effect” [3],
implies Superluminal and arbitrarily large (group) velocities v inside long enough barriers [2].
Experiments that may verify this prediction by, say, electrons are difficult. Luckily enough,
however, the Schroedinger equation in the presence of a potential barrier is mathematically
identical [4] to the Helmholtz equation for an electromagnetic wave propagating, e.g., down a
metallic waveguide along the x-axis: and a barrier height V bigger than the electron energy
E corresponds (for a given wave frequency) to a waveguide transverse size smaller than a
cut-off value. A segment of undersized guide does therefore behave as a barrier for the wave
(photonic barrier): So that the wave assumes therein —like an electron inside a quantum
barrier— an imaginary momentum or wave-number and gets exponentially damped along
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Fig. 1 – The non-resonant tunneling process, through two successive (opaque) potential barriers,
considered in this paper. We show that, far from resonances, the (total) phase time for tunneling
through the two barriers does depend neither on the barrier widths nor on the distance between the
barriers.

x, as a consequence. In other words, it becomes an evanescent wave (going back to normal
propagation, even if with reduced amplitude, when the narrowing ends and the guide returns to
its initial transverse size). Thus, a tunneling experiment can be simulated by having recourse
to evanescent waves (for which the concept of group velocity can be properly extended [5]).

And the fact that evanescent waves travel with Superluminal speeds has been actually
verified in a series of famous experiments. Namely, various experiments —performed since 1992
onwards by R. Chiao’s and A. Steinberg’s group at Berkeley [6], by G. Nimtz at Cologne [7],
by A. Ranfagni and colleagues at Florence [7], and by others at Vienna, Orsay, Rennes [7]—
verified that “tunneling photons” travel with Superluminal group velocities; in other words,
they confirmed, directly or indirectly, the occurrence of the Hartman effect.

Let us emphasize that the most interesting experimental setup, dealing with evanescent
waves, seems to be —however— the one comprehending two successive evanescence regions
(“classical barriers”), separated by a segment of normal region. For suitable frequency bands
—i.e., far from resonances— it was found that the total crossing time does not depend on the
length of the intermediate (normal) region: namely, that the beam speed along it is infinite.
The related experimental results [8] have been already confirmed by numerical simulations,
based on Maxwell equations only [9]. But they are so amazing that we want to check whether
they agree also with what is predicted by quantum mechanics in the analogous case of two
successive potential barriers.

In this note we are actually going to show that, for non-resonant tunneling trough two
successive, rectangular (opaque) potential barriers (fig. 1), the (total) phase time does depend
neither on the barrier widths nor on the distance between the barriers. In other words, far
from resonances the tunneling phase time, which does depend on the entering energy, can be
shown to be independent of the distance between the two barriers.

Phase time evaluation. – Let us consider the (quantum-mechanical) stationary solution
for the one-dimensional (1D) tunneling of a non-relativistic particle, with mass m and kinetic
energy E = h̄2k2/2m = mv2/2, through two equal rectangular barriers with height V0 (V0 >
E) and width a, the quantity L − a ≥ 0 being the distance between them. The Schrödinger
equation is

− h̄2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = E ψ(x) , (1)

where V (x) is zero outside the barriers, while V (x) = V0 inside the potential barriers. In
the various regions I (x ≤ 0), II (0 ≤ x ≤ a), III (a ≤ x ≤ L), IV (L ≤ x ≤ L + a) and V
(x ≥ L + a), the stationary solutions to eq. (1) are the following:
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ψI = e+ikx + A1R e−ikx ,

ψII = α1 e−χx + β1 e+χx ,

ψIII = A1T

[
eikx + A2R e−ikx

]
,

ψIV = A1T

[
α2 e−χ(x−L) + β2 e+χ(x−L)

]
,

ψV = A1T A2T eikx ,

(2a)

(2b)

(2c)

(2d)

(2e)

where χ ≡ √
2m(V0 − E)/h̄, and quantities A1R, A2R, A1T, A2T, α1, α2, β1 and β2 are the

reflection amplitudes, the transmission amplitudes, and the coefficients of the “evanescent”
(decreasing) and “anti-evanescent” (increasing) waves for barriers 1 and 2, respectively. Such
quantities can be easily obtained from the matching (continuity) conditions:


ψI(0) = ψII(0) ,

∂ψI

∂x

∣∣∣∣
x=0

=
∂ψII

∂x

∣∣∣∣
x=0

,

(3a)

(3b)



ψII(a) = ψIII(a) ,

∂ψII

∂x

∣∣∣∣
x=a

=
∂ψIII

∂x

∣∣∣∣
x=a

,

(4a)

(4b)




ψIII(L) = ψIV(L) ,

∂ψIII

∂x

∣∣∣∣
x=L

=
∂ψIV

∂x

∣∣∣∣
x=L

,

(5a)

(5b)




ψIV(L + a) = ψV(L + a) ,

∂ψIV

∂x

∣∣∣∣
x=L+a

=
∂ψV

∂x

∣∣∣∣
x=L+a

.

(6a)

(6b)

Equations (3)-(6) are eight equations for our eight unknowns (A1R, A2R, A1T, A2T, α1,
α2, β1 and β2). First, let us obtain the four unknowns A2R, A2T, α2, β2 from eqs. (5) and (6)
in the case of opaque barriers, i.e., when a is large enough (and χ not too small) so that one
can assume that χa → ∞:



α2 −→ eikL 2ik

ik − χ
, (7a)

β2 −→ eikL−2χa −2ik(ik + χ)
(ik − χ)2

, (7b)

A2R −→ e2ikL ik + χ

ik − χ
, (7c)

A2T −→ e−χae−ika −4ikχ

(ik − χ)2
. (7d)

Then, we may obtain the other four unknowns A1R, A1T, α1, β1 from eqs. (3) and (4).
Again in the case of large enough barriers (and χa → ∞), one gets:



α1 −→ 2ik

ik − χ
, (8a)

β1 −→ e−2χa(k − iχ)
sin k(L − a)

χ
A , (8b)

A1R −→ ik + χ

ik − χ
, (8c)

A1T −→ e−χae−ikLA , (8d)
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where
A ≡ 2χk

2χk cos k(L − a) + (χ2 − k2) sin k(L − a)
(9)

results, incidentally, to be real.
At this point, by applying the well-known definition of phase time (see, for instance,

refs. [1–3]), we can derive that the tunneling time

τph
tun ≡ h̄

∂ arg
[
A1TA2Teik(L+a)

]
∂E

= h̄
∂

∂E
arg

[ −4ikχ

(ik − χ)2

]
=

= h̄
∂

∂E
arctan

[
k2 − χ2

k χ

]
=

1
h̄χ

2m

k
, (10)

while depending on the energy of the tunneling particle, does not depend on L + a (being it
actually independent both of a and of L).

This result does not only confirm the so-called “Hartman effect” [2, 3] for the two opaque
barriers —i.e., the independence of the tunneling time from the opaque barrier widths— but it
does also extend such an effect by implying the total tunneling time to be independent even of
L (see fig. 1). This might be regarded as a further evidence of the fact that quantum systems
seem to behave as non-local; but is has a more general meaning, being it associated with the
properties of any waves (and, in fact, something very similar happens also, e.g., with electro-
magnetic waves: see below). It is important to stress once more that the previous result holds,
however, for non-resonant (nr) tunneling: i.e., for energies far from the resonances that arise in
region III due to interference between forward and backward travelling waves (a phenomemon
quite analogous to the Fabry-Pérot one in the case of classical waves). Otherwise it is known
that the expression for the time delay τ near a resonance is rather larger: for example, for a
Gaussian resonance at Er with half-width Γ, it would be τ = h̄Γ[(E − Er)2 + Γ2]−1 + τnr.

Discussion. – The tunneling-time independence from the width (a) of each one of the
two opaque barriers is itself a generalization of the Hartman effect, and might be a priori
understood —following refs. [4, 6]— on the basis of the reshaping phenomenon which takes
place inside a barrier.

With regard to the even more interesting tunneling-time independence from the distance
L− a between the two barriers, it may be understood on the basis of the interference between
the waves coming out of the first barrier (region II) and traveling in region III and the waves
reflected from the second barrier (region IV) back into the same region III.

Such an interference has been shown [2] to cause an “advancement”, i.e., an effective accel-
eration of the forward-traveling waves, even in region I: Namely, going on to the wavepacket
language, we noticed in refs. [2] that the arriving wavepacket does interfere with the reflected
waves that start to be generated as soon as the packet forward tail reaches the first barrier
edge: In such a way that, already before the barrier, the backward tail of the initial wavepacket
decreases —because of destructive interference with those reflected waves— at a larger degree
than the forward one. This simulates an increase of the average speed of the entering packet;
hence, the effective (average) flight-time of the approaching packet from the source to the
barrier does decrease.

So, a reshaping and “advancement” of the same kind (inside the barriers, as well as to
the left of the barriers) may qualitatively explain why the tunneling-time is independent of
the barrier widths and of the distance between the two barriers. Phenomena of this kind,
actually, do not seem to be at variance with Special Relativity, as has already been discussed
in a number of papers (cf., e.g., refs. [9] and [5], and refs. therein). It remains impressive,
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nevertheless, that in region III —where no potential barrier is present, the current is non-zero
and the wave function is oscillatory— the effective speed (or group-velocity) is practically
infinite(1). After some straightforward but rather bulky calculations, one can moreover see
that the same effects (i.e., the independence from the barrier widths and from the distances
between the barriers) are still valid for any number of barriers, with different widths and
different distances between them.

Finally, let us recall that the known similarity between photon and (non-relativistic) par-
ticle tunneling [2, 4, 10, 11] implies that our previous results hold also for photon tunneling
through successive “barriers”: For example, for photons in the presence of two successive band
gap filters, like two suitable gratings or two photonic crystals. Experiments should be easily
realizable; while indirect experimental evidence seems to come from papers such as [12].

Let us also repeat that the classical, relativistic (stationary) Helmholtz equation for an
electromagnetic wavepacket in a waveguide is known to be formally identical to the quantum,
non-relativistic (stationary) Schroedinger equation for a potential barrier(2); so that, for in-
stance, the tunneling of a particle under and along a barrier has been simulated [2,4,7–11,13]
by the traveling of evanescent waves along an undersized waveguide. Therefore, the results of
this paper are to be valid also for electromagnetic wave propagation along waveguides with a
succession of undersized segments (the “barriers”) and of normal-sized segments. This con-
firms the results obtained, within the classical realm, directly from Maxwell equations [9,13],
as well as by the known series of “tunneling” experiments performed —till now— with mi-
crowaves (see refs. [7] and particularly [8]).
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