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Abstract
In a recent paper (Denny 2002 Eur. J. Phys. 23 449–58), entitled ‘The
pendulum clock: a venerable dynamical system’, Denny showed that in a
first approximation the steady-state motion of a weight-driven pendulum clock
is shown to be a stable limit cycle. He placed the problem in a historical
context and obtained an approximate solution using the Green function. In
this paper we obtain the same result with an alternative proof via known issues
of classical averaging theory. This theory provides a useful means to study
a planar differential equation derived from the pendulum clock, accessible to
Master and PhD students.

1. Introduction and statement of the results

For students, weight-driven pendulum clocks provide an interesting, practical and historically
important dynamical system to be considered. In a nice paper, Denny [3] showed that in a
first approximation the steady-state motion of a weight-driven pendulum clock is shown to be
a stable limit cycle. He obtains an approximate solution using the Green function. Here we
obtain the same result with an alternative proof via the averaging theory.

The linearized equation of the pendulum with friction and escapement is

θ̈ + bθ̇ + ω2θ ≈ 1

�t
p(t, θ̇ ), (1)

where b is the friction coefficient and the right-hand side of this expression is the escapement.
We expect small pendulum amplitudes for grandfather clocks, <5, and so the linear
approximation is a very good one. The function p(t, θ̇) represents the (angular) momentum
transferred to the pendulum by the escapement mechanism, during the short time interval �t .
It can be written as

p(t, θ̇ ) =
{
k̄+δ(t) if θ̇ > 0,

k̄−δ(t) if θ̇ < 0,
(2)
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and

δ(t) =
{

1 if |t − 2nπ/ω| < �t/2,

0 otherwise,

where �t > 0 is a small parameter, k̄+ > 0, k̄− < 0 and the dot denotes derivative with respect
to the time t. For more details on this linearized equation of the pendulum, see [5].

Roughly speaking, our first concern is to bring the above system to the standard form
x′(t) = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), where ε indicates a small parameter, and F0, F1

and F2 are 2π -periodic maps in the variable t. At this step, it is possible from the averaging
method to show the existence of periodic solutions of the system under convenient conditions
on the functions F0, F1 and F2.

We point out that the method of averaging is a classical and matured tool that provides a
useful means to study the behaviour of nonlinear dynamical systems under periodic forcing.
The method of averaging has a long history that starts with the classical works of Lagrange
and Laplace who provided an intuitive justification of the process. The first formalization
of this procedure was given by Fatou in 1928 [4]. Very important practical and theoretical
contributions in the averaging theory were made by Krylov and Bogoliubov [6] in the 1930s
and Bogoliubov [1] in 1945. We refer to the book of Sanders and Verhulst [9] for a general
introduction of this subject. Of particular note, formulae for the average of time-periodic
vector fields are presented. The principle of averaging has been extended in many directions
for both finite- and infinite-dimensional differentiable systems. Here we are interested in
its extensions for studying the periodic orbits of the differential systems which are near the
integrable ones; see for instance the works of Malkin [7] and Roseau [8]. In section 2 we
present a summary of the results on the averaging theory for studying periodic orbits that we
need for studying the steady-state motion of a weight-driven pendulum clock.

Our main result is the following.

Theorem 1. The differential equation

θ̈ + b̄θ̇ + ω2θ = 1

�t
p(t, θ̇ ), (3)

where the function p(t, θ̇ ) is given in (2), for �t > 0 sufficiently small has a stable limit cycle
which tends to the periodic orbit

k̄+

bπ
sin(ωt) if b̄ ω > 0, − k̄−

bπ
sin(ωt) if b̄ ω < 0,

when �t → 0.

Theorem 1 is proved in section 3. In section 2 we recall the basic results on the averaging
theory that we need for proving it.

2. Basic results

We consider the problem of the bifurcation of T-periodic solutions from the differential system

x′(t) = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (4)

with ε = 0 to ε �= 0 sufficiently small. Here, the functions F0, F1 : R × � → R
n and

F2 : R × � × (−ε0, ε0) → R
n are C2 functions, T-periodic in the first variable and � is an

open subset of R
n. One of the main assumptions is that the unperturbed system

x′(t) = F0(t, x) (5)
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has a submanifold of periodic solutions. A solution of this problem is given using the averaging
theory. For a general introduction to the averaging theory see for instance the book of Sanders
and Verhulst [9].

Let x(t, z) be the solution of the unperturbed system (5) such that x(0, z) = z. We write
the linearization of the unperturbed system along the periodic solution x(t, z) as

y′ = DxF0(t, x(t, z))y. (6)

In what follows we denote by Mz(t) some fundamental matrix of the linear differential
system (6).

We assume that there exists an open set V with Cl(V ) ⊂ � such that for each z ∈ Cl(V ),
x(t, z, 0) is T-periodic, where x(t, z, 0) denotes the solution of the unperturbed system (5)
with x(0, z, 0) = z. The set Cl(V ) is isochronous for the system (5), i.e. it is a set formed only
by periodic orbits, all of them having the same period. Then, an answer to the problem of the
bifurcation of T-periodic solutions from the periodic solutions x(t, z, 0) contained in Cl(V ) is
given in the following result.

Theorem 2 (Perturbations of an isochronous set). We assume that there exists an open and
bounded set V with Cl(V ) ⊂ � such that for each z ∈ Cl(V ), the solution x(t, z) is T-periodic;
then we consider the function F : Cl(V ) → R

n

F(z) = 1

T

∫ T

0
M−1

z (t, z)F1(t, x(t, z)) dt. (7)

(a) If there exists a ∈ V with F(a) = 0 and det((dF/dz)(a)) �= 0, then there exists a
T-periodic solution ϕ(t, ε) of the system (4) such that ϕ(0, ε) → a as ε → 0.

(b) If all the eigenvalues of (dF/dz)(a) have a modulus different from 1, then for |ε| > 0
sufficiently small the corresponding periodic solution ϕ(t, ε) of the system (4) is hyperbolic
and of the same stability type of the singular point as the singular point a of the averaged
differential system x′(t) = F(x).

For a shorter proof of theorem 2 see the corollary 1 of [2]. In fact this result goes back to
Malkin [7] and Roseau [8].

3. Proof of theorem 1

Without loss of generality we take

b̄ = εb, ε = �t, k̄+ = εk+, k̄− = εk−, ω > 0, (8)

in the differential equation (3).
Denoting by x = θ and y = θ̇ the differential equation (3) becomes the differential system

ẋ = y, ẏ = −ω2x − ε by + q(t, y), (9)

where

q(t, y) =
{
k+δ(t) if y > 0,

k−δ(t) if y < 0,

with

δ(t) =
{

1 if |t − 2nπ/ω| < ε/2,

0 otherwise.
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Figure 1. The functions δ(t) and δε(t).

We work with the differential system (9) but instead with the discontinuous function δ(t)

with the smooth function δε(t) defined in figure 1, such that

lim
ε→0

δε(t) = δ(t).

In this way the system (9) with the function δε(t) satisfies the assumptions of theorem 2. We
compute the function F(z) of the system (9) with the function δ(t) as the limit of the function
Fε(z) of the system (9) with the function δε(t) when ε → 0. We must note that the Poincaré
map of both systems for δ(t) and δε(t) are smooth, because in the first case it is the composition
of smooth functions, and in the second by the general results on ordinary smooth differential
equations.

For ε = 0 the differential system (9) becomes

ẋ = y, ẏ = −ω2x. (10)

Now we apply theorem 2 to the differential equation (9) taking n = 2 and

x = (x, y),

F0(θ, x) = (y,−ω2x),

� = R
2,

z = (x0, y0).

(11)

Clearly the differential equation (10) is T = 2π/ω-periodic in the variable t. Moreover this
equation for ε = 0 has all its solutions x(t, z) = (x(t, z), y(t, z)) 2π/ω-periodic and given by

x(t, z) = x0 cos(tω) +
y0

ω
sin(tω),

y(t, z) = y0 cos(tω) − x0ω sin(tω).

(12)

The V and z of theorem 2 are

V = {(x, y) ∈ R
2 : 0 < x2 + y2 < ρ},

for some real number ρ > 0, and z = (x0, y0) ∈ V .



On the limit cycle of a pendulum clock 1253

For the function F0 given in (11) and the periodic solution (x(t, z), y(t, z)) given in (12),
the 2 × 2 fundamental matrix M(θ) of the differential equation (6) such that M(0) is the
identity is given by

M(θ) =
⎛
⎝ cos(tω)

1

ω
sin(tω)

−ω sin(tω) cos(tω)

⎞
⎠ .

We remark that for the system (10) the fundamental matrix does not depend on the particular
periodic solution (x(t, z), y(t, z)), i.e. it is independent of the initial condition z. Therefore,

M−1(θ) =
⎛
⎝ cos(tω) − 1

ω
sin(tω)

ω sin(tω) cos(tω)

⎞
⎠ .

Since all the assumptions of theorem 2 are satisfied, we must study the zeros in V of the
function F(z), where F is given by (7). More precisely, we have

lim
ε→0

Fε(z) = F(z)

=
∫ 2π

ω
− ε

2

ε
2

M−1(t)

(
0

εby(t, z)

)
dt +

∫ 2π
ω

+ ε
2

2π
ω

− ε
2

M−1(t)

(
0

εby(t, z) + k±

)
dt,

with k+ if y0 > 0 and k− if y0 < 0. Therefore,

F(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
−1

2
bx0,−1

2
by0 +

k+

π
sin

(εω

2

))
if y0 > 0,

(
−1

2
bx0,−1

2
by0 +

k−
π

sin
(εω

2

))
if y0 < 0.

There is a unique solution of F(z) = 0, namely

(x0, y0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0,

2k+

b π
sin

(ε ω

2

))
≈

(
0,

ε ωk+

b π

)
if b ω > 0,

(
0,−2k−

bπ
sin

(εω

2

))
≈

(
0,−εωk−

bπ

)
if b ω < 0.

(13)

Since the determinant of (dF/dz) (x0, y0) at solution (13) is b2π2/ω2 �= 0, from
theorem 2(a) it follows that the differential system (9) has a periodic orbit (x(t), y(t)) which
tends to the periodic solution (12) with (x0, y0) given by (13) when ε → 0, i.e which tends to

k̄+

b π
sin(ωt) if b̄ ω > 0, − k̄−

bπ
sin(ωt) if b̄ ω < 0, (14)

when ε → 0.
The eigenvalue of (dF/dz) (x0, y0) at solution (13) is −b π/ω with multiplicity 2.

Therefore, by theorem 2(b) we obtain that the periodic solution which tends to (14) when
ε → 0 is a stable limit cycle. Hence theorem 1 is proved.
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