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Abstract: Supercontinuum generation is demonstrated in a 5-cm-long 
water-core photonic crystal fiber pumped near water’s zero-dispersion 
wavelength. Up to 500-nm spectral width (evaluated at -20 dB from the 
peak) is achieved, while spectral widths were over 4 times narrower with a 
bulk setup at the same wavelength and peak power, and over 3 times 
narrower if the PCF was pumped away from the zero-dispersion 
wavelength. The supercontinuum generation mechanisms for bulk and 
waveguide setups are compared and tuning of the zero-dispersion 
wavelength via waveguide dispersion is theoretically investigated.  
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1. Introduction  

Ever since their first demonstration, photonic crystal fibers (PCFs) have been employed for a 
wide range of purposes, among which supercontinuum generation has so far proved to be one 
of the most successful. Supercontinuum generation has long been known and studied in bulk 
materials [1,2] (including water [2]) and in conventional fibers [3]. Nevertheless, a significant 
reduction in the required powers and/or pulse energies has been achieved with the use of 
solid-core PCFs [4,5]. In this case, the cladding microstructure can both confine light to 
wavelength-scale cores and substantially control chromatic dispersion [6]. The use of PCFs 
presenting small cores and zero dispersion near the pump wavelength has, thus, made 
supercontinuum sources available for a range of practical applications such as optical 
coherence tomography [7], frequency metrology [8] and telecommunications [9,10].  

On the other hand, liquid-filled PCFs have been studied in the last few years because the 
efficient light-sample interaction within the microstructure enables applications in fields such 
as sensing, spectroscopy and nonlinear optics [11-13]. In particular, the insertion of liquids in 
PCFs introduces new degrees of freedom with which nonlinear effects can be observed and 
controlled. The insertion of ethanol into the core of a hollow-core PCF, for example, has led 
to the observation of two Raman Stokes orders of this liquid [13]. The possibility of obtaining 
supercontinuum generation in a PCF whose core is filled with highly nonlinear liquids (CS2 
and nitrobenzene) has been recently theoretically studied [14]. The high nonlinear refractive 
indices of these liquids (2.2×10-15 cm2/W for CS2 [15]) and near-zero-dispersion pumping, 
obtained via waveguide dispersion engineering, contributes to efficient spectral broadening. 
Experimental supercontinuum generation in a toluene-core silica-cladding integrated 
waveguide has also been demonstrated [16]. However, in this case operation occurred in the 
normal dispersion region and the high cladding index limited the choice of the liquid.  

In this work, we experimentally demonstrate supercontinuum generation utilizing a PCF 
whose core was filled with distilled water through a selective hole filling process [17]. The 
choice of water, which presents a nonlinear refractive index (1.6×10-16 cm2/W [15]) an order 
of magnitude lower than that of CS2 is justified due to its widespread availability, ease of 
manipulation, low volatility (30× less volatile that CS2 at room temperature), and, most 
importantly, due to the fact that it presents a zero-dispersion wavelength of ~1066 nm [18]. A 
wide range of Q-switched and mode-locked lasers operate at this wavelength, facilitating 
supercontinuum generation. On the other hand, water absorption steeply increases with 
wavelength in the near infrared and has to be taken into account.  

Here, we compare the nonlinear spectral broadening obtained with two pump 
wavelengths: 800 nm and ~980 nm. While at the former water presents a lower attenuation 
coefficient (0.02 cm-1 against 0.51 cm-1 at ~980 nm [19]), at the latter water exhibits a lower 
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dispersion (-18 ps/(nm.km) against -71 ps/(nm.km) at 800 nm [18]). Results show the pump’s 
proximity to the zero dispersion wavelength by far compensates for the increased loss at ~980 
nm. In addition, we compare these results with supercontinuum generation in bulk water and 
show that the confinement provided by guidance both radically lowers the power required for 
nonlinear broadening and changes the supercontinuum formation dynamics. 

2. Experimental setup 

The experimental setup is shown in Fig. 1. 60-fs pulses with a repetition rate of 1 kHz from an 
optical parametric amplifier (OPA) were coupled into ~5 cm of a PCF, the hollow core of 
which was filled with distilled water. Light from the OPA first passed through a longpass 
filter, which removed undesired spectral components, and a variable neutral-density filter. The 
beam was subsequently focused onto the PCF with a 20× objective and collected at the output 
with a 40× objective. Prior to the experiment, the 40× objective was used to image the fiber 
output in a CCD camera to ensure that a large fraction of light propagated through the core 
and that the fundamental mode was predominantly excited. For this mode, the PCF waveguide 
dispersion is expected to be small compared with the material dispersion (see section 4). The 
camera was then replaced with a second 20× objective that coupled the beam into a 
multimode fiber connected to an optical spectrum analyzer (OSA). Measurements were made 
with the OPA operating both at 800 nm and 980 nm.  
 
 
 
 
 
 
 
 
 
 

Fig. 1. Experimental setup used for obtaining supercontinuum generation in a water-core PCF 
and SEM image of the PCF’s cross-sectional profile. 

 
The cross section of the PCF used in the experiments is also shown in Fig. 1 and consists 

of a 10.7-μm-diameter core and a cladding microstructure with a pitch of ~2.2 μm and a hole 
diameter of ~1.9 μm. The high cladding air-filling fraction (~70%) means that the cladding 
effective index is sufficiently low to ensure light is guided through total internal reflection in 
the water core. The power coupled into the PCF was estimated by measuring the PCF output 
power, taking into account water’s attenuation and neglecting all other possible loss sources. 
The estimated coupled peak (average) power was varied from 90 kW to 1.45 MW (~6 μW to 
~92 μW) with the neutral-density filter. The spectral width of input pulses (measured at -20 
dB from the peak) was ~65 nm. 

A control experiment was undertaken with the water-filled PCF replaced with an air-core 
PCF. Light was then coupled into the thin glass layer between the core and the 
microstructured cladding and any spectral broadening analyzed. Although this case leads to 
propagation conditions that significantly differ from those of the water-core PCF, it may give 
an indication of the achievable spectral broadening induced by surface modes in the filled-
PCF case. In addition, the water-core PCF results were compared with those of an equal setup 
but with the fiber replaced with a ~7-cm-long bulk cell filled with distilled water, and the 
input and output objectives replaced with 10-cm and 15-cm focal length lenses respectively.  

3. Results and discussion 

Figure 2 shows a comparison of the spectra obtained at 800 nm and 980 nm with the water-
core PCF and three different coupled peak powers between 90 kW and 940 kW. Figure 2(a) 
shows the spectra for an 800-nm pump. It is apparent that only a moderate nonlinearity-driven 
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broadening takes place, with a maximum achieved width of 140 nm (at -20 dB from the peak). 
Figure 2(b) depicts the spectra obtained with a 980-nm pump. As the coupled power is 
increased, the spectrum significantly broadens, evolving into a supercontinuum. At a power of 
940 kW a ~460-nm-wide spectrum (at -20 dB) is observed. In fact, the transmission spectrum 
over 5 cm of water [19] (also plotted in Fig. 2) indicates that the spectral expansion toward 
long wavelengths is stopped by the steep increase of water absorption near 1200 nm, limiting 
the obtained width. It is noted that the control experiment undertaken with the air-core PCF 
yielded a maximum spectral width of ~150 nm (with 980-nm pumping). In the water-core 
PCF experiment, the contribution of silica to spectral broadening is expected to be even 
smaller, as most light travels through the core. 
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Fig. 2. PCF output spectra with 800-nm (a) and 980-nm (b) pumping for launched peak powers 
of 90 kW (red) 470 kW (blue) and 940 kW (black). Vertical arrows indicate the pump 
wavelengths; dashed curves: transmission spectrum over 5 cm of water [19].  

 
The comparison between 800-nm and 980-nm pumping confirms that, as in solid-core 

PCF supercontinuum generation [5], pumping near the zero-dispersion wavelength (ZDW) is 
crucial to obtaining a large spectral broadening. In the water-core PCF it is remarkable that 
the low dispersion at 980-nm by far compensates for the 25-fold increase in attenuation 
coefficient relative to 800 nm, yielding a spectrum that is 3 times broader at that wavelength. 
Some insight on the initial dynamics of the spectral broadening at both wavelengths can be 
gained through a quantitative comparison of the parameters that evaluate the relative 
importance of nonlinearity, dispersion and attenuation during pulse propagation, namely: the 
nonlinear length (LNL), the dispersion length (LD) and the effective length (Leff), respectively 
[20]. The values for these parameters are the following for 800 nm and 980 nm, respectively: 
LNL: 7.30×10-2 cm and 6.00×10-2 cm; LD: 41.4 cm and 110 cm; Leff: 4.75 cm and 1.81 cm. The 
fact that LNL<<L<<LD (with L being the fiber’s physical length) for both wavelengths 
indicates that, indeed, noticeable spectral broadening is expected before the pulses get 
excessively long. At 980 nm it is seen that Leff is considerably shorter than L, indicating that 
the nonlinear dynamics practically ceases after the first third of the PCF. The higher 
dispersion at 800 nm yields a value for LD that is 2.6 times shorter than that for 980 nm. 
However, as a drastic spectral broadening takes place, these parameters are only valid for the 
initial dynamics, explaining the much narrower spectrum for 800 nm pumping. Note that one 
could be tempted to explain, as in solid-core PCFs, the spectra of Figs. 2(a) and 2(b) as a 
result of instantaneous self-phase modulation and of soliton formation followed Raman-
induced self-frequency shift, respectively. However, the Raman shift in water is much higher 
(~3000 cm-1) than that of silica (440 cm-1) and the optical Kerr nonlinearity exhibits a 0.7-ps 
exponential decay [21], affecting the analogy with the dynamics in solid-core PCFs. For a 
detailed investigation of the supercontinuum dynamics a numerical simulation is under way. 

Figure 3 shows a comparison between the continuum generated in the PCF and in the 
bulk setup with identical launched powers, and both for 800-nm and 980-nm pumping. Figure 
3(a) shows the results for 800-nm pumping and 0.94-MW launched peak power. The output 
spectral width (at -20 dB) is 75 nm in bulk, which is approximately half the width obtained 
with the PCF (140 nm) and marginally larger than the spectral width of the input pulses. The 
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results for 980-nm pumping and 1.45-MW launched peak power are depicted in Fig. 3(b). In 
this case the widths with the bulk and PCF setups are 120 nm and 500 nm respectively (i.e. an 
over 4× broader spectrum with the PCF). The latter is the broadest width achieved in this 
work. A further increase in input power led to water evaporation, which can be avoided if 
both fiber tips are attached to water-filled cuvettes.  
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Fig. 3. PCF output spectra with 800-nm and 0.94-MW launched peak power pumping (a) and 
with 980-nm and 1.45-MW launched peak power pumping (b) for water-core PCF (top) and 
bulk water (bottom) samples.  

Table 1. Summary of the spectral widths (at -20 dB) obtained in water with the tested pump wavelengths and 
configurations, for a 0.94 MW peak power (except for *:  1.45 MW peak power). 

Wavelength (nm) Bulk PCF 

800 75 nm 140 nm 

980 120 nm* 460 nm (500 nm*) 

 

It is evident from Fig. 3 that the spectral broadening is significantly larger in the PCF, 
which can be attributed to the confinement provided by the waveguide. In the PCF, light is 
confined to an area comparable to that of the core (~80 µm2) over the whole ~5-cm length. In 
contrast, in the bulk setup the beam area at focus can be estimated to be ~800 µm2 (at ~1 μm 
and assuming a 1/e2 collimated beam diameter of 4 mm), which is kept nearly constant only 
over a length compared to the confocal parameter (~1.6 mm). These two parameters cannot be 
simultaneously minimized, which means that changing the focusing lens will not result in a 
considerable improvement of these values. Note that self-focusing can be neglected at the 
used power levels. If we define a LNL parameter for the bulk setup using the beam area at 
focus, its value is 6 mm, which is larger than the confocal parameter and indicates that little 
spectral broadening is, indeed, expected. Significant (at least a few percent) energy transfer 
from the pump to the continuum in bulk water usually requires peak powers of hundreds of 
megawatts or even a few gigawatts (with ~100-fs pulses) [22]. 

At this point, it is worth pointing out that, although grouped under the common name of 
supercontinuum generation, the origins of the drastic spectral broadening are significantly 
different in bulk and waveguide setups. Several authors contributed to the understanding of 
the supercontinuum dynamics in bulk [23-25] and fiber [5] samples pumped with 
femtosecond lasers. In bulk, it is well accepted that the continuum results from self-phase 
modulation resulting from an optical shock wave created by space-time focusing and self-
steepening [24]. Chromatic dispersion is show to increase the threshold for self-focusing and, 
thus, for continuum generation [24,25]. In contrast, waveguide continuum generation 
(including that reported here) employs much lower powers, for which self-focusing is 
negligible. In this case, self-phase modulation, stimulated Raman scattering and chromatic 
dispersion are the main generation mechanisms [5]. To the best of our knowledge, this is the 
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first time that supercontinuum generation in water is reported in the latter regime and that 
water’s dispersion is exploited to maximize spectral broadening.  

The comparison between the spectral widths obtained here with the two pump 
wavelengths and with bulk and PCF setups is summarized in Table 1. It is apparent that both 
near-ZDW pumping and waveguide confinement are crucial for supercontinuum generation. 

4. Water-core PCF dispersion tuning 

The experimental results presented in the previous section show the importance of pumping 
near the ZDW to achieve the widest spectrum. In this context and to examine the possibility of 
shifting this wavelength via the fundamental-mode waveguide dispersion of practical PCF 
designs, we theoretically evaluated the net chromatic dispersion of a number of commercially 
available hollow-core PCFs [26], the cores of which are filled with water. All PCFs studied 
were designed for photonic bandgap guidance and have nominal air-filling fractions of >90%. 
The method described in [27] was used for the evaluation and water’s refractive index 
dependence on wavelength is modeled through equation 12 of [18]. The obtained ZDWs are 
plotted in Fig. 4 as a function of the core diameter. The monotonic ZDW increase suggests 
that the core diameter is, indeed, the dominant waveguide dispersion parameter. It is seen that 
with readily-available PCFs it is possible to tune the ZDW down to 885 nm, meaning that 
Ti:Sapphire pumping is viable and that the ZDW can be placed at a region of lower 
attenuation. Note that the fiber used in the experiments could not reliably be modeled, as the 
observed cladding hole deformations are not compatible with the used method. Nevertheless, 
Fig. 4 shows that the ZWD is ~1 μm for the commercial 10-μm core diameter PCF.  
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Fig. 4. ZDW as a function of core diameter for commercial PCFs [26] with water-filled cores. 

5. Conclusion 

Supercontinuum generation was obtained for the first time in a water-core PCF, allowing for 
the study of this important phenomenon in a regime that was previously unavailable for water. 
The material dispersion of the liquid was exploited to maximize the spectral broadening. At a 
maximum input peak power of 1.45 MW the spectrum stretched from ~600 to ~1140 nm, 
being limited by water’s attenuation spectrum. Due to both the high light confinement over a 
long length and water’s low dispersion at the pump wavelength (~980 nm), the 
supercontinuum generated in the PCF was ~4 times broader than that obtained in a typical 
bulk setup pumped at same wavelength and power and utilizing a ~7-cm cell. Pumping near 
the zero-dispersion wavelength was shown to be crucial and an 800-nm pump resulted in a 
spectral width of only ~140 nm. Zero-dispersion tuning in water-core PCFs was theoretically 
demonstrated via selection of appropriate commercially available hollow-core PCFs. 
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