Divergent diagrams of folds and simultaneous
conjugacy of involutions

Solange Mancini
Departamento de Matematica, IGCE
Universidade Estadual Paulista
13500-230 Caixa Postal 178, Rio Claro, SP, Brazil

Miriam Manoel
Departamento de Matematica, ICMC
Universidade de Sao Paulo
13560-970 Caixa Postal 668, Sao Carlos, SP, Brazil

Marco Antonio Teixeira
Departamento de Matematica, IMECC
Universidade Estadual de Campinas
13081-970 - Campinas, SP, Brazil

Abstract

In this work we show that the smooth classification of divergent
diagrams of folds (fi,...,fs) : (R",0) — (R™ x --- x R",0) can be
reduced to the classification of the s-tuples (¢1,...,¢s) of associated
involutions. We apply the result to obtain normal forms when s < n
and {¢1,...,¢s} is a transversal set of linear involutions. A complete
description is given when s = 2 and n > 2. We also present a brief
discussion on applications of our results to the study of discontinuous
vector fields and discrete reversible dynamical systems.
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1 Introduction

The study presented here is contained in an area that reveals an important
connection between singularities of smooth mappings and dynamical systems,
with particular applications to discontinuous vector fields and to reversible
diffeomorphisms. We are interested in the smooth classification of divergent
diagrams

(f17--~7f8> : (an()) - (Rn X X Rn70)7

where each map-germ f; : (R",0) — (R",0) is a fold, i = 1,...,s. We dis-
cuss the relationship between the classification of divergent diagrams of folds
(f1,-..,fs) and the classification of the s-tuples (¢1, ..., @) of involutions as-
sociated with these diagrams, that is, s-tuples of germs of diffeomorphisms
i+ (R",0) — (R™0) such that ¢; o ¢; = Id, ¢; # Id and f; o p; = f;,
for i = 1,...,s. The concepts of equivalence for s-tuples of involutions and
for divergent diagrams in these classifications are given in Definition 2.2 and
Definition 3.1.

The problem of simultaneous behavior of diffeomorphisms has been treated
by many authors and several interesting results have been obtained in different
contexts. Among such results, we mention the Bochner-Montgomery Theorem
8], which is a well known and useful result about linearization of a compact
group of transformations around a fixed point. This theorem is preceded by the
remarkable work by Cartan [1]. In this direction, it is also worth mentioning
the work by Hermann [4]. On the other hand, there exists a vast literature on
divergent diagrams; we mention here Dufour [2]. In the present work, we treat
the problem of simultaneous conjugacy of involutions and its relationship with
the classification of divergent diagrams of folds.

For any two divergent diagrams of pairs of folds (topologically) equivalent
by (h, k1, ko), where h is a germ of diffeomorphism (homeomorphism) acting on
the source and ky, ko are germs of diffeomorphisms (homeomorphisms) acting
on each target, h realizes the equivalence of the pairs of involutions associated
with the corresponding diagrams. Also, the same h realizes a conjugacy of the
compositions of the involutions. Problems related to the topological stability
of pairs of involutions and applications to the study of divergent diagrams of
folds, discontinuous vector fields and reversible systems have been treated by
Teixeira in [10], [11], [12] and [13]. In [12], he studies pairs of involutions
on the plane with the help of their compositions. In [15] Voronin presents
a list of problems including the analytic classification of divergent diagrams
of pairs of folds and pairs of associated involutions on (C,0). This problem
is concerned with the following question: Let (fi,..., fs) and (g1,...,9s) be
divergent diagrams of folds on (R™,0) and let (¢1,...,¢s) and (¢, ..., 1) be
the s-tuples of involutions associated with each of the diagrams respectively.



Then, under what conditions the equivalence of (¢, ..., ¢s) and (¢, ..., 15)
implies the equivalence of (fi,..., fs) and (g1, ..., gs)? Under C%-equivalence,
this question is answered by Teixeira in [11] for the case s = n = 2 when the
fixed-point spaces of the involutions coincide.

The main results of this work answer the question above for the general
smooth case and give the classification for special pairs of involutions and
divergent diagrams of folds associated with them. In Section 3 we prove that
two divergent diagrams of folds on (R",0) are equivalent if, and only if, the
associated s-tuples of involutions are equivalent (Theorem 3.3). Following this
result, we have an invariant for the equivalence class of a divergent diagram
of folds (fi,...,fs), namely the trace of the linearization at the origin
d(pr0---0p,)(0) of the composition ;0 - -0p,, where the s-tuple (i1, ..., @y)
is associated with (fi,...,fs). In Section 4 we obtain normal forms when
s < nand {p1,...,ps} is a transversal set of linear involutions. We also
obtain in Theorem 4.4 and Theorem 4.5 the normal forms for the situation
where the set of involutions is transversal and generates an Abelian group,
the involutions not necessarily linear. In addition, we present in Section 5
a characterization of the orbits based on the parameters that appear in the
normal forms of Section 4. In Sections 6 and 7 we treat the transversal linear
cases for s = n =2 and s = 2, n > 3, respectively. We describe the partition
of the space of parameters whose elements correspond to the orbits in order
to obtain the classifications of pairs of involutions and of divergent diagrams
of folds associated with them (Theorem 6.2 and Theorem 6.4 for s = n = 2
and Theorem 7.3 and Theorem 7.4 for s = 2, n > 3). The normal forms show
that, up to equivalence, for almost all diagrams (f1, f2), the knowledge of the
invariant tr(p; o p9) determines the class of (fi, f2). Finally, in Section 8 we
summarize an interaction between discontinuous vector fields and divergent
diagram of folds (Subsection 8.1) and apply our results to discrete reversible
systems (Subsection 8.2).

2 Preliminaries

Definition 2.1 An involution is a germ of diffeomorphism ¢ : (R™,0) —
(R™,0) satisfying ¢ o o= Id.

Let Fix(p) denote the fixed-point set of ¢,
Fix(¢) = {z € (R",0) : p(z) = z}.

Definition 2.2 Two s-tuples (¢1,...,9s) and (Y1,...,10s) of involutions on
(R™,0) are said to be equivalent if there exists a germ of diffeomorphism
h of (R™,0) such that v¥; = hog;oh™, foralli=1,...,s.
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Note that in the situation of Definition 2.2 the germ of diffeomorphism h
satisfies

h(Fix(g;) = Fix(¢y), i=1,....s.

Consider a set G5 = {¢1,...,ps} of involutions on (R™,0) and let Ay =
[©1, ..., ps] denote the group generated by the ¢;’s. The next result follows
from Bochner-Montgomery Theorem in [8]:

Theorem 2.3 If A; is an Abelian group, then the s-tuple (pi,...,ps) is
equivalent to an s-tuple (11, ..., 1) of linear involutions.

It is an immediate consequence of Theorem 2.3 that any involution ¢ :
(R™,0) — (R™,0) is conjugate to a linear involution. This implies that Fix(y)
is locally diffeomorphic to a linear subspace of R"™; therefore, Fix(y) is a sub-
manifold in (R™,0). This also implies that one of the following holds: (a) ¢
is the identity Id; (b) if codim Fix(¢) = ¢ # 0, then ¢ is conjugate to the
canonical form

(1, ooy @) = (—X1, oo, =T, Tty - vy T (2.1)
Another basic concept for this work is the following:

Definition 2.4 A map-germ f : (R",0) — (R™,0) is a fold if it is A-equivalent
to the germ
U (@, a) (28 20, 1y, (2.2)

that is, there ezist germs of diffeomorphisms h and k of (R™,0) such that
f=kofloh™l

Definition 2.5 Given an involution ¢ on (R™,0) and a fold f : (R",0) —
(R™,0), we say that f is associated with @, or ¢ is associated with f, if ¢ #
Id and fop=f.

We now present some general results concerned with an involution and a
fold associated with it.

Proposition 2.6 Given a fold f : (R",0) — (R",0), there exists a unique
involution associated with f.

Proof. By Definition 2.4, there exist germs of diffeomorphisms h and k of
(R™,0) such that f = ko f®o h™l. Now, it is not difficult to show that there

exists a unique involution ¢° associated with f° namely ©°(zy,...,2,) =
(—x1, %9, ...,1,). Therefore, ¢ = hop’oh™! is the unique involution associated
with f.



From the proof of Proposition 2.6 above, for the involution ¢ associated
with the fold f we have that codim Fix(¢) = 1. In addition, it is easy to see
that

Fix(p) = 3(f),
where 3(f) denotes the singular set of f.

Proposition 2.7 Given an involution ¢ on (R™,0) with codim Fix(p) = 1,
there exists a fold f: (R™,0) — (R™,0) associated with ¢.

Proof. Being codim Fix(p) = 1, ¢ is conjugate to the involution ¢°,
O(z1,...,2n) = (—1,T9,...,2,). Let h be a germ of diffeomorphism of
(R™,0) such that o = ho®o h™!. The fold fY in (2.2) is associated with ¢°,
so the fold f = f%o h™1! is associated with ¢.

Remark 2.8 A fold associated with an involution ¢ is not uniquely deter-
mined. In fact, if f is a fold associated with ¢, then any fold g € L - f is
also associated with ¢, where L is the group of left equivalences. Corollary
2.11 below states that the set of all folds associated with ¢ is precisely the orbit
L-f.

For our purposes we have only to consider involutions ¢ on (R™,0) for
which codim Fix(¢) = 1, so this condition is assumed from now on.

Let i be a fixed integer, 1 < i < n. Consider the involution ) given
by &(x1,...,2,) = (T1,...,—T4,...,1,) and the fold [P, f2(xy,...,z,) =
(1,...,2%,...,x,), associated with ¢. Then:

i 7"

Lemma 2.9 A fold g : (R",0) — (R",0) is associated with &9 if, and only if,
g is L-equivalent to f?.

Proof. Suppose that g is a fold associated with 9. The equality g o ¢ = g
implies that the components of g are even in z;. So we can write

g(xy, ..., x,) = (l{;l(xl,...,x%,...,xn),...,kn(xl,...,x?,...,xn)) =

= (ko f)(x1,...,7,),

where k = (ki,...,k,). Now, since g is a fold, k is a germ of diffeomorphism.
Therefore, g is L-equivalent to f?. The converse is immediate.

The next proposition generalizes Lemma 2.9 above.



Proposition 2.10 Let ¢ be an involution on (R™,0), and let h be a germ of
diffeomorphism of (R™,0) such that p = ho)oh™t. Consider the fold f’oh™!
associated with . Then a fold g : (R™,0) — (R™,0) is also associated with ¢
if, and only if, g is L-equivalent to fP o h™L.

Proof. If g is a fold associated with ¢, then g o h is a fold associated with
Y. From Lemma 2.9 it follows that g o h is L-equivalent to f?, that is, g is
L-equivalent to f? o h~!. The converse is immediate.

More generally, we can rewrite the statement of Proposition 2.10 replacing
the fold f? o h™! by any fold f associated with ¢:

Corollary 2.11 Let ¢ be an involution on (R™0), and let f : (R",0) —
(R™,0) be a fold associated with ¢. Then a fold g : (R",0) — (R™,0) is also
associated with ¢ if, and only if, g is L-equivalent to f.

3 Divergent diagram of folds

A diagram of map-germs of the type

(R",0)

/lj;/ (R",0)

(frrs fo) s (R?,0) —

[s
T o)

is called divergent diagram. In the space of these diagrams, the concept of
equivalence is given by the following definition:

Definition 3.1 Two divergent diagrams

(R™,0)

(R™,0)
9
R",0 / "
( )’ (gl,...,gs):<R”,0>/f]2'( )
w‘
(R",0)

(fi,---y fs) : (R™0)

N

(R™,0)

are equivalent if there exist germs of diffeomorphisms h,ky,... ks of (R™,0)
such that g; = k;o fyoh™!, foralli=1,...,s.
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We shall identify a divergent diagram

(R",0)

/j:;/ (R",0)

(frrs o) s (R?,0) —

1,
g

with the map-germ f : (R™,0) — (R"x...xR" 0), f(z) = (fi(x),..., fs(x)),
and maintain the notation (fi,..., fs) for f. Under this identification, the
equivalence given in Definition 3.1 corresponds to the action of a subgroup
of the group A of right-left equivalences, consisting of elements such that the
germ of diffeomorphism in the target is of product type, i. e., preserves the
product structure of R™ x ... x R™.

Our attention is addressed to divergent diagrams (f1,...,fs) : (R",0) —
(R™ x ... x R",0) where each f; : (R",0) — (R",0) is a fold, i =1,...,s.

Definition 3.2 Let oy, ..., s be involutions on (R™,0) and let (f1,..., [fs) :
(R*,0) — (R" x --- x R",0) be a divergent diagram of folds. We say that
(f1,..., fs) is associated with the s-tuple (1, ...,¢s), or (¢1,...,ps) is asso-
ciated with (f1,..., fs), if fi is a fold associated with ; for alli=1,...s.

In view of Proposition 2.6, for a given divergent diagram of folds (fi, ..., f),
there exists a unique s-tuple of involutions (¢, ..., ys) associated with it.

We now present the key result which establishes that the classification of
divergent diagrams of folds can be reduced to the classification of the associated
s-tuples of involutions.

Theorem 3.3 Let (f1,...,fs) be a divergent diagram of folds associated with
(o1, ..., s) and let (g1, ...,gs) be a divergent diagram of folds associated with
(1,...,0s). Then, (f1,...,fs) and (q1,...,gs) are equivalent if, and only if,
(p1,-.-,0s) and (Y, ..., 0s) are equivalent.

Proof. Suppose that (f1,..., fs) and (g1, ..., gs) are equivalent. By definition,
there exist germs of diffeomorphisms h, ki, ..., ks of (R™ 0) such that g; =
kio fioh ™ for all i = 1,...,s. So, the s-tuples of involutions (h o ¢; o
h=t ... hopsoh™!) is associated with (gi,...,gs). By the uniqueness just
mentioned above, it follows that ¢; = hop;oh™! foralli =1,...,s. Therefore,
(p1,-..,ps) and (1, ...,1,) are equivalent.



Conversely, suppose that there exists a germ of diffeomorphism h of (R™,0)
such that ¢ = hop;oh !, i=1,... s. Then, the divergent diagram of folds
(fioh™t, ..., fyoh™!) is associated with (i1, ...,1,). Hence, by Corollary 2.11,

(g1,...,9s) € (Lx...xL)-(fioh™ ... feoh™).

Therefore, (fi,..., fs) and (g1, ...,gs) are equivalent.

As a consequence of this result, for the case of divergent diagrams of folds
(f1,--, fs), we have that tr(d(pj0- - -0p,)(0)) is an invariant up to equivalence,
where (@1, ..., ps) is the s-tuple associated with (fi,..., fs).

4 Transversal sets of involutions

In this section we obtain normal forms for special classes of divergent diagrams
of folds. These are given in Proposition 4.3 and Theorem 4.5. We start with
a definition.

Definition 4.1 A set Gy = {¢1,...,s} of involutions on (R™,0), s < n,
is said to be transversal if Fix(y;) is transversal to Fix(¢;) at 0 for i # j
and codim N;_ ToFix(p;) = >"7_, codim Fix(y;), where ToFix(y;) denotes the
tangent space to Fix(y;) at 0.

The next result is essentially a result from Linear Algebra.

Proposition 4.2 Let Gy = {¢1,...,ps} be a transversal set of linear involu-
tions on (R™,0). Then (p1,...,ps) is linearly equivalent to (¢n,...,1s) such
that, for each v;, Fix(1;) is given by the equation x; = 0 and, therefore, 1; has
the form

Vi(xr, .. xn) = (1 +anmiy . .o, —Tiy oo, Ty + ;) (4.3)
for some constants a;;, 7 #1, 1 <j <n.

Proposition 4.3 Let Gs = {¢1,...,ps} be as in Proposition 4.2. Then any
divergent diagram of folds (fi1,. .., fs) associated with (1, ..., @s) is equivalent
to the diagram of folds (g1, ...,qs) associated with (Vn,..., 1), where 1; is
given by (4.3) and

ail 2
gi(xh.__,gjn):(xl—F?:Ci,...,CCi,...,l’n—i-—



Proof. For each 7,7 =1,...,s, consider the germ at zero of the isomorphism
h; of R™ given by
ail Qin

— Ty Ty e Ty — ——T4).

hi(I‘l,...,QS'n):(l'l— 9 9

We have ¢; = h; o ¢? o hi'. Moreover, the formula (4.4) defines the fold
gi = floh; !, which is associated with v;. Hence, by Theorem 3.3, (f1, ..., fs)
is equivalent to (g1, ..., gs).

The following two results give the normal forms for the case when a transver-
sal set of involutions generates an Abelian group, the involutions not being
necessarily linear.

Theorem 4.4 If G5 = {¢1,...,p0s} is transversal and As = [p1,...,ps] is
Abelian, then (o1, ..., @s) is equivalent to (¢Y, ..., %), where

Ny, .o mp) = (T1,. ooy =Ty Tn), GT=1,...,5. (4.5)

Proof. Since A; is Abelian, by Theorem 2.3, (¢1,...,¢s) is equivalent to
(@1, ..., Ps), with each @; linear. Since G, is transversal, then G = {@1, ..., @, }
is transversal, and using again the property of A; being Abelian we also have
Ay = [@1,...,Ps] Abelian. Now we can argue in two ways: One would be to
use the fact that A, is Abelian and deal with the normal forms (4.3). The
other, more direct, is to use the simultaneous diagonalization of commuting
operators. This result implies that we can assume that the linear involutions
©;’s have each diagonal matricial form. Finally, by using a permutation ma-
trix if necessary, (@1,...,®s) is equivalent to (¢9,...,¢?), where ¢? is given
by (4.5).

From Theorem 3.3 and Theorem 4.4 we get the following;:

Theorem 4.5 If G, is transversal and Ay is Abelian, then any divergent di-
agram of folds (f1,..., fs) associated with (p1,...,ps) is equivalent to the di-
vergent diagram of folds (f2,..., f2), where

e, zn) = (21,02, . x,), i=1,...,s.

5 Characterization of orbits
In this section we characterize the orbits of divergent diagrams of folds

(fi,--y fs): (R",0) — (R™ x --- x R™ 0) associated with s-tuples (¢1, ..., ¥s)
of linear involutions on (R™,0) when the set G5 = {¢1,...,ps} is transversal.
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According to Theorem 3.3 and Proposition 4.3, it suffices to characterize the
orbits of the s-tuples (¢1,...,1s), where 1); is as (4.3). This is given in the
following result:

Proposition 5.1 Consider the s-tuples of transversal linear involutions

(1ys -y 0s,) and (¢, ..., Vs, ), where
Vi (1, ..., 20) = (T1 + @iy .., =T, ., Ty + Qi Ty),

wib(xla s 7xn) = (33'1 + bilxh R o P ) + bznxz)a

foralli=1,...,s. Then (Y1,,...,%s,) and (Yn,,...,1%s,) are equivalent if,
and only if, there exists an invertible matrix

051
(0] 0 0
0 .
o = s (5.6)
63—0—1 Vs+1,2 Vs+1,s /Gs—l—l,s—l—l T ﬁs—i—l,n
6n Tn2 Tns ﬁn,s-ﬁ-l ﬁnn

such that oy =1 and if 1 <14,57 <s,1i# j, then

a{,
bij = EZ%‘- (5:7)
If 5+1§]§n7 then
by = —20; + Z%'kalk + Z Pjkai, (58)
k=2 k=s+1

and for s+1<j7<n and 2<1i<s,
1 5 n
bij = a_i((;ja“ — 24 Y et Y Bikai)- (5.9)
k=2, ki k=s+1

Proof. The s-tuples (¢1,,...,%s,) and (¢q,,...,1s,) are equivalent if, and
only if, there exists a germ of diffecomorphism h of (R™,0) such that

¢ib =ho @Z)ia o h_l. (510)

By taking the derivatives at zero we can assume that h is linear. It is now
straightforward that the linear diffecomorphism has matrix of the form (5.6).
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The fact that a; can be taken to be 1 follows from the property that if h
satisfies (5.10), then for any nonzero constant a, ah also satisfies (5.10).

In the next two sections we use Proposition 5.1 above to obtain normal
forms for the pairs of transversal linear involutions on (R"™,0), so s = 2 and
n > 2. Let us observe that when n > s, the relations (5.7) to (5.9) show that
the partition of the parameter space R*™~1 that characterizes the orbits of the
s-tuples (11, - - -, 1b5) projects onto the partition of the parameter space R3(s=1)
determined by the orbits of the s-tuples (¢, - -, ¢5) of involutions on (R?,0),
with

Gi = Ts01;0 L, (5.11)

where t4(21,...,25) = (21,...,25,0,...,0) and 7s(y1, ..., yn) = (Y1, .-, Ys)-
For this reason, we first study the case s = n = 2 (Section 6), which is the key
for the analysis of the cases s =2, n > 3 (Section 7).

We have already obtained normal forms for the Abelian case even in the
nonlinear context (Theorem 4.4). However, in the following two sections we
state the results including pairs of transversal linear involutions generating an
Abelian group for completeness. In fact, the Abelian case appears naturally
in our procedure to derive the normal forms.

6 The case s = n =2

In this section we apply the results of Sections 4 and 5 to the pairs (¢, p2)
of transversal linear involutions on (R? 0). In Subsection 6.1 we present the
normal forms for these pairs of involutions and in Subsection 6.2 the normal
forms for the divergent diagrams of folds associated with them. As we shall
see, almost all normal forms depend on one parameter, namely the trace of
the composition ¢; o 9. This fact is applied in Section 8 in the discussion of
reversible diffeomorphisms.

6.1 Normal forms of pairs of involutions

We start by considering only pairs of involutions (y,1) as in (4.3) and
describing the orbits on the plane (a1, as;1) of parameters that appear in these
pairs. For this particular case of s = n = 2 we can easily explicit the partition
of this plane determined by the orbits. More precisely, following the notation
of Section 5, we consider the pairs (¢1,,9,) and (¢1,,¢s,), where

Y1, (2, y) = (—2,y + arpw),
¢2a <x7y) = (‘T + a1y, _y)

11



and
%b(% y) = (—$, Yy + 6121')7

wa (l’, y) = (ZL‘ + b?lya _y)'

From (5.7) we have that (¢1,,19,) and (¢1,,1s,) are equivalent if, and only if,
there exists a nonzero constant « such that

bi2 = aag
1

by = —ag.
o

Therefore, the required partition of the plane (ajz,as;) is given in Fig.1. Each
orbit determines either a hyperbole, or an axis minus the origin or the origin
itself. The origin corresponds to the group Ay = [¢)1, 99] being Abelian.

ay

I
=7

Figure 1: Partition of the plane (a12,a91) determined by the orbits of the pairs of
involutions (11, 12).

Let us observe that each pair (¢1,15), with Ay non-Abelian, is equivalent
to (¢1,12), where ¥1(z,y) = (—z,y + G127) and Ya(z,y) = (r + a1y, —y),
with a unique representative point (@i, az;) either on an arbitrary fixed point
of the ajp-axis (distinct from the origin) or on an arbitrary fixed line parallel
to this axis in the plane (a2, as1). We choose

N N W() if as =0
(@12, 21) _{ (2 + tr(ehy o), 1) if ai 0. (6.12)

For the second choice we use the equality

12091 = 2 + tI‘(Q/)I O lpg)

These ideas are schematically represented in Fig.2.
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/// \\\(Z’ftf(%’% )1)
ﬁ (s

Figure 2: The point (1,0) and the points of the horizontal thick line represent all
the orbits of pairs (11, 12) of involutions that generate a non-Abelian group.

8

Remark 6.1 Two pairs (11, 19) and (1[)1, 222) with orbit representatives out of
the ayo-azis on the plane of Fig.1 are equivalent if, and only if, the composi-
tions ¥y o 1y and Yy o 1y are conjugate. In fact, the mecessity follows from
the definition of the equivalence of pairs of involutions; the sufficiency follows
directly from the discussion above.

This characterization of orbits has important applications to reversible sys-
tems as discussed in Section 8.

We now have that
asn =0& Im(1/12 — Id) = FlX(lp1>

Furthermore, the equality Im(¢»,—Id) = Fix(¢1) and the number 2+tr(z;01)2)
are invariant under linear simultaneous conjugacy. Therefore, Proposition 4.2
together with (6.12) gives the following theorem:

Theorem 6.2 Let (o1, p2) be a pair of transversal linear involutions on (R, 0).
Consider the group Ay = [¢1, pa].
(a) If Ay is Abelian, then (1, 2) is equivalent to the canonical pair (o9, ©9),
where

pi(@,y) = (—z,y),  ¥h(r.y) = (z,—y). (6.13)
(b) Suppose now that Ay is non-Abelian. If Im(py — Id) = Fir(¢1), then
(1, p2) is equivalent to (11, 19), where

wl(l’7y) = (—ZE,y+Jf), &2<x7y) = (l’, _y> (614)
If Im(po — Id) # Fiz(py), then (1, p2) is equivalent to (11,1),), where

Ui, y) = (=2, y + 2+ tr(pr o @o))x), oz, y) = (x+y,—y). (6.15)
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The corollary below is the corresponding to the result presented in Re-
mark 6.1 for general pairs of transversal linear involutions.

Corollary 6.3 Two pairs (¢1,p2) and (@1, P) of transversal linear involu-
tions on (R?,0), with Im(ps — Id) # Fiz(p1) and Im($y — Id) # Fir(py) , are
equivalent if, and only if, the compositions ©1 0 Yo and p1 0 Py are conjugate.

6.2 Normal forms of divergent diagrams of folds

In this subsection we present the classification of divergent diagrams of folds
(fi, f2) : (R*,0) — (R* x R?,0)

associated with pairs (¢1, 2) of transversal linear involutions on (R?,0). This
classification is obtained via the classification of pairs of involutions presented
in the previous subsection and is given by the following theorem:

Theorem 6.4 Let (fi1, f2) : (R%0) — (R* x R?,0) be a divergent diagram of
folds associated with a pair (@1, p2) of transversal linear involutions on (R?,0).
Consider the group Ay = [¢1, pa].

(a) If Ay is Abelian, then (fy1, f2) is equivalent to the canonical diagram (f?, f3),
where

Rlay) =y, fley) = (9. (6.16)
(b) Suppose Ay non-Abelian. If Im(py — Id) = Fiz(py), then (fi, f2) is
equivalent to (g1, go) with

0(9) = oy +30), oaley) = (4°) (617)

If Im(pe — Id) # Fiz(er), then (f1, f2) is equivalent to (g1, go) with

9(9) = (g (14 Sl 09)0), galesy) = (4 3u07). (6.18)

Proof. It is a consequence of Proposition 4.3 and Theorem 6.2.

As we have already remarked, the number tr(y; o ¢5) is an invariant for
the equivalence class of (f1, f2). It is now a consequence of Theorem 6.2 that
this invariant determines, up to equivalence, the class of almost all diagrams
of folds. This is the result below:

Corollary 6.5 Let (fi, fa) and (fl,fg) be two divergent diagrams of folds
on (R?,0) associated with pairs of transversal linear involutions (p1, ) and
(1, P2), respectively, such that Im(py, — Id) # Fia(e1) and Im($y — Id) #
Fir(@y). Then (fi, f2) and (f1, f2) are equivalent if, and only if, tr(py o @y) =
tr(610 @2).
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7 The cases s=2,n>3

In this section we obtain a generalization of the results of Section 6, that is,
we give normal forms for the pairs of transversal linear involutions on (R™,0),
n > 3, and the normal forms for the divergent diagrams of folds associated
with these pairs. Let us recall that for n = 2 almost all normal forms depend
on one parameter, namely the trace of the composition of the two involutions.
One can notice that the same goes for n > 3. However, we have now an
interesting bifurcation phenomenon with respect to the n —2 new coordinates.

7.1 Normal forms of pairs of involutions

As before, to obtain the normal forms for the non-Abelian case we first consider
pairs of linear involutions of the type (4.3). This is given in the next Propo-
sition, whose proof relies on the description of the orbits on the parameter
space.

Proposition 7.1 Consider the pair (Y1,19) of transversal linear involutions
on (R",0), n > 3, given by

wl(.fCl, e ,:r;n) = (-l’l,l'g =+ a12x1,3 + a13L1,...,Tp + CLlniUl),

Yo(x1,. .., xn) = (X1 + an %2, —T2, T3 + Q23T2, . . ., Ty + A2, T2),

with Ay = [th1, 1] non-Abelian, i.e., aly + a3, # 0. o
(a) Suppose aisas; # 4. If agy = 0, then (¢q1,19) is equivalent to (¢q,1q),
where

@El(fﬁl,...,l'n): (_x17$2+x17x37"'7xn)a
- 7.19
Uo(wy, ..., xn) = (1, —T2,T3,...,Tp). ( )

If ag # 0, then (Y1,1,) is equivalent to (11, 12), where

@/21(%,-.-,%): (=21, 29 + (4 —n+ tr(yy 0 Pa))x1, T3, ..., T0),
Vo(xy, ..., xn) = (T1+ To, — T2, T3, ..., Ty).

(b) Suppose arzaz = 4. If (ag, ..., a2,) = =52 (a3, ..., a1n), then (P1,1) is
equivalent to (¢r,1s), where

(7.20)

w:l(xl,...,xn): (—x1, 29 + 421,23, .. ., Tp),
o1, ... xn) = (T1 + X2, —T2,T3,...,Zy).

If (ags, ..., a2,) # =3 (aus, ..., a1,), then (Y1,12) is equivalent to (Y1,9),
where

(7.21)

Ur(an, . a) = (=21, 00+ 42y, 25, ),

7.22
o1, ... xn) = (21 + Xo, —Xo, T3 + Lo, Ty, ..., Ty). ( )

15



Remark 7.2 Let us observe that
12091 — 4 —n -+ tI‘(Q/Jl O w2>
This equality is used to present the normal forms (7.20).

Proof of Proposition 7.1. Let (¢1,,19,) be a pair of transversal linear
involutions on (R",0), where

Y1, (21, .., n) = (=21, 22 + biaxy, 3 + bi3xy, . .., Ty + b1n21)

Yo, (1, .., Tn) = (21 + bonT2, —T2, T3 + basxa, ..., Ty, + bopxa).

From Proposition 5.1, (¢1,15) and (¢1,,19,) are equivalent if, and only if,
there exists an invertible matrix

1 0 0 - 0
0 o O - 0
H = 03 73 Bz -+ [P
On, Tn ﬁnS Tt ﬂnn
such that
b2 = aags
bo1 = éam?
and, for 3 < 7 < n,
by = —20; +7vja2 + > ps Bjrauk

boj = (0021 — 275 + D _p_y Bjazk)-

For o # 0 fixed, let L, : R?»~* — R?"~* denote the linear operator defined
by

La(ag, PN ,571,’}/3, e ,’}/n) = (—2(53 + Y312, - - - _2577, + Yn@12,
é(dgagl — 2’)/3), cey i(énaﬂ — 2’}%))

And, for each linear isomorphism 3 : R"? — R""2 let v,5 denote the vector
1
Vag = (ﬁ X aﬁ)((alg, SN aln), (CL23, R ,agn)) & Rn_Q X Rn_2 = RQn_4.
With the notation above, (¢1,12) and (¢1,,1s,) are equivalent if, and only
if, (512, 621) = (aalg, éagl) and (blg, c >b1n; b23, R ,bgn) € Im(Tvaﬁ o La) for

some « # 0 and some isomorphism 3, where T, , : R*"™* — R**™* is the
translation in the v,g-direction.
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Let us notice that L, is an isomorphism if, and only if, aj2a21 # 4. So we
now study all the orbit types by analysing first the case ajsas; # 4 and then
the case aj2a9; = 4.

(a) Suppose that aizas # 4. In this case, Im(T,, , 0 Ly) = R**~* for any o # 0
and any isomorphism (. Then (i1, 1)2) is equivalent to (¢4,,s,) if, and only
if, (¢1, ¢2) is equivalent to (¢1,, ¢2,), where these two last pairs of involutions
on (R?,0) are given by (5.11):

d1(x1, 22) = (—x1, To + a1221),

¢2(l’1, $2) = ($1 + a912, —132)
and
b1, (1, T2) = (=11, T2 + b1a11),

¢2b($1,$2) = (131 + bo129, —ﬁz).

From (6.12), we have the normal forms (7.19) and (7.20).

(b) Suppose now that ajsas; = 4. In this case, for each a # 0, dim Im(L,)

=n—2, and (ug,...,Up 2,Up_1,-..,U2,4) € Im(L,) if, and only if,
(Un—1, . Usn—a) = 52 (u1,...,up_2). Hence, given an isomorphism 3, we

have that ve.g € Im(L,) if, and only if, (ags,...,a2,) = =52 (a13, ..., a1n).
Then:

o If (ags,...,as,) = =3 (a1s, ..., a1,), then vos € Im(L,) and, therefore,
Im(T,,,0 La) = Im(L,), for any isomorphism 3. The normal form (7.21)
is obtained by taklng (blg, bgl) = (4, 1) and (blg, . ,bln, b23, . ,bgn) =

(0,...,0,0,...,0).

o If (as,...,a2,) # =5 (aus, ..., a1,), then vag ¢ Im(L,) for any isomor-
phism £, and Ug Im(T,,,0 Ly)= R*"~* - Im(L,,). The normal form (7.22)
is obtained by taking (b12,b21) = (4,1) and (b3, ..., b1n, bog, ..., boyn) =
0,...,0,1,...,0).

Proposition 7.1 gives normal forms of pairs of transversal linear involutions
on (R™,0), n > 3, based on conditions on pairs of the form (4.3). We can now
explicit the bifurcation mentioned in the beginning of this section. It occurs
when

as1
a0 =4 and (ags,...,a2,) = ——(a13,...,a1n),

2

corresponding to the normal form (7.21).
As pointed out in Remark 7.2, we have that

12091 = 4 —n+ tI‘("{/JI ¢ w2> (723)

17



We now observe that
a =0<& Im(wg — ]d) C FlX(@Z)l) (724)

and, if 12091 = 4,

(ass, - . ., azm) = _;‘21 (@13, .. a1n) < Im(y; — Id) = Im(¢ — Id). (7.25)

The right-hand side of the three statements above are invariant under linear
simultaneous conjugacy. With this fact we can rewrite Proposition 7.1 in terms
of conditions on general pairs of transversal linear involutions. Then we have:

Theorem 7.3 Let (o1, ¢2) be a pair of transversal linear involutions on (R™,0),
n > 3. Consider the group Ay = [p1, ¢a].

(a) If Ay is Abelian, then (1, 2) is equivalent to the canonical pair (99, ©Y),
where

oy, . x) = (—21,To, T3y, T0), O @1, x) = (21, T, T3, - . ., Ty).
(7.26)

(b) Let now As be non-Abelian. We have to consider two cases:

(b1) Suppose that tr(p1 o ps) # n. If Im(py — Id) C Fiz(pq), then (o1, p2) is

equivalent to (V1,109) given in (7.19). If Im(py — Id) ¢ Fin(py), then (o1, o)

is equivalent to (11, 102) given by

w:l(xl, e ,:E'n) = (—.I'l,iCQ + (4 —n-+ tT(gOl e} @2))%1,1‘3, RN ,.fEn),
Yoy, ... xy) = (21 + To, —To, T3, ..., Tp).

(b2) Suppose that tr(pi0pa) =n. If Im(p1 —1d) = Im(pa —1d), then (1, 2)
is equivalent to (1,12) given in (7.21). If Im(ypy — Id) # Im(ps — Id), then
(1, p2) is equivalent to (11, 19) given in (7.22).

(7.27)

7.2 Normal forms of divergent diagrams of folds

We now move on to the diagrams of folds. The classification theorem is as
follows:

Theorem 7.4 Let (f1, f2) : (R",0) — (R" x R™,0) be a divergent diagram of
folds associated with a pair (1, p2) of transversal linear involutions on (R™,0),
n > 3. Consider the group Ay = [p1, ¢a].

(a) If Ay is Abelian, then (f1, f2) is equivalent to the canomnical diagram (f?, f3),
where

f{)(xl, S (x%,fﬂg,l'g, ey T), fQO(xl, S (xl,xg,xg, ey ).
(7.28)
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(b) Let Ay be non-Abelian.

(b1) Suppose that tr(ypy o wa) # n. If Im(py — Id) C Fiz(vr), then (fi, fo) is
equivalent to (g1, g2) with

(a2 1
g1z, ..., x,) = ($1,$§+§$1,$3,-..,$n), (7.29)
g?(l'la'-wxn) = ($1,$2,$37...,$n).

If Im(pe — Id) ¢ Fiz(p1), then (fi, f2) is equivalent to (g1, g2) with

gi(z1,...,x,) = (91:%,362—1—%(4—n—i—tr(gplogog))xl,wg,...,xn),
91, .., mn) = (T + 329,23, 23, ..., Tp).

(b2) Suppose that tr(py o @s) =n. If Im(py —Id) = Im(ps — 1d), then (f1, f2)

is equivalent to (g1, 92), with

(7.30)

G121, ... mn) = (22,200 + 221,23, ...,T0),
g1, .. ) = (21 + 320,23, 23, ..., Tp).

If Im(py — Id) # Im(py — Id), then (f1, f2) is equivalent to (g1, g2) with

(7.31)

gl(-rb"'axn): ($%7[E2+2$1,I’3,...,$n),

g2(x1, .. xy) = (21 + %xg,xg,atg + %:pg,m, ceey Tp).

(7.32)

8 Divergent diagrams of folds, pairs of involu-
tions and dynamical systems

The works in [9], [11], [14] show the usefulness of the tools of singularities
of mappings in the study of the dynamics of smooth vector fields near the
boundary of a manifold. In [11] it is also discussed the classification of sin-
gularities of discontinuous vector fields by means of the theory of singularities
of mappings and a strong relationship between such systems and divergent
diagrams of mappings is established. In Subsection 8.1 we explicit this rela-
tionship with attention to diagrams of pairs of folds associated with pairs of
transversal involutions. An application of our results to discrete reversible sys-
tems is presented in Subsection 8.2. It is interesting to note that, in a special
situation, divergent diagrams of folds turn out to be a link between the study
of discontinuous vector fields and the study of reversible diffeomorphisms.

8.1 Discontinuous vector fields

In this subsection we elaborate the idea of how our main results can be applied
as a first step towards the classification and the dynamics of a special class of
discontinuous vector fields.
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Let Z be a germ of a vector field on (R™™,0) given by

| X(z1,. . mpg), iy >0
Z(‘Tl,...,$n+1) - {Y($1,~~-7$n+1); if In+1<0,

where X and Y are germs of smooth vector fields on (R™™'0), with
X(0),Y(0) # 0. This means that Z can have discontinuities on the hyperplane
H={x e R"; z,,,=0 }. We recall that the orbits passing through points
of H follow the Filippov’s rule [3].

Consider the following generic situation: Let ¢ — vx(0,¢) and ¢ — 7y (0, )
be the orbits of X and Y passing through 0. Assume that vx(0) = vy (0) = 0,
m(1x(0)) = (1 (0)) = 0, m(y%(0)) < 0 and w(75(0)) > 0, 7 being the
canonical projection of R"*! onto z,,,-axis. Assume also that associated with
X (resp. Y), there exists a codimension-one smooth submanifold Mx (resp.
My) in (H,0) defined by the points of H where X (resp. Y) is tangent to H.
Suppose that Mx and My are transversal at 0.

Now X (resp. Y) induces around 0 on H a smooth diffeomorphism ¢x
(resp. ¢y ) defined as follows: If (z1,...,2,,0) € My, then px(z1,...,2,,0) =
(x1,...,2,,0); otherwise, @x(x1,...,2,,0) is the point different from
(1, ...,2,,0) where the orbit of X passing through (z1,...,x,,0) meets H.
Similarly, we define ¢y. We observe that ¢x and ¢y are involution on (H,0).

Let Hx and Hi be any cross sections of X and Y at 0, respectively. For
each p € (H,0), there exists a unique ¢t = ¢(p) in (R, 0) such that the orbit
t — vx(p,t) of X through p meets Hyx at a point ¢ = vx(p,t(p)). Analogously,
there exists a unique ¢ = #(p) in (R, 0) such that the orbit t — 7y (p,t) of Y’
through p meets Hi+ at a point § = vy (p,t(p)). So we can define the divergent
diagram

fX (H)Jfa 0)
(Fx. fy) : (H,0) -

%f‘

where fx(p) = ¢ and fy(p) = . We notice that the singular set 3(fx) (resp.
Y(fy)) and My (resp. My) coincide. By taking charts, we can suppose that
H = Hy = Hy = R" so that this diagram gives rise to a diagram of folds
associated with the pair (¢x, py) of involutions defined above.

(Hy,0)
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8.2 Reversible diffeomorphisms

Given an involution ¢ on (R" 0), we say that a germ of diffecomorphism F :
(R™,0) — (R",0) is ¢-reversible if

gooF:Fflogo.

The presence and importance of reversing symmetry has been recognized since
the early days of dynamical systems by Birkhoff (for more details, see [7]).
Note that for any two involutions ¢; and ¢ on (R™,0), the composition F' =
©1 0 (g is pq-reversible. Conversely, a germ of diffeomorphism F with an
involutory reversing symmetry ¢; can always be written as the composition of
two involutions:
F=@iop.

As a consequence, some authors have addressed the study of F' = ¢ o ¢y to
the study of the pair of involutions (1, ¢2). For example, this is the approach
used by Jacquemard and Teixeira in [6].

Here there is a point we want to remark: For any two pairs of involutions
(p1,p2) and (@1, 92) that are equivalent, the compositions ¢ o ¢ and @7 0 9y
generate conjugate reversible systems. The converse of this property does not
hold in general. For example, if we take

Sol(mlu"wx’n) — <_'T17I27"’7'rn>7

SDQ(xla'-‘?xn) = (I’l—’—CLI'Q,—I'Q,fL'g,--.,xn),
and 3

901(1.17"'71.?1) == (:Ul +bl’2,—x2,x3,...,$n),

@2(1’17 ce ,l’n) = (—.Il - (a + b)$2,$2, Ce ,l’n>,
with @ # 0 and arbitrary b, then the compositions are equal, but (¢, p2)
and (1, p2) are not equivalent, according to Theorem 6.2 for n = 2 and
Theorem 7.3 for n > 3.

So we may ask what kinds of restrictions the study of the pair (¢1, ¢2) can
impose to the study of the dynamics associated to the composition ¢ o vs.
The classification theorems just mentioned above reveal that, up to equiva-
lence, there is no restriction for almost all pairs (@1, ¢2) of transversal linear
involutions. In fact, almost all normal forms are characterized by tr(p; o ¢s).

Now we present the description of reversible linear diffeomorphisms on the
plane given by the composition of involutions that occur in Corollary 6.3. First
we observe that any rotation Ry of angle 6, 6 € [0,27), can be written as the
composition of two reflections. For 6 # 0,7, if Ry is the composition of two
linear involutions, then these are necessarily reflections.

Suppose that F'is a linear diffeomorphism given by the composition of two
involutions, F' = ; 0p9, with (41, p2) in the conditions of Corollary 6.3. Since
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det(F) =1, then —2 < tr(F') < 2 if, and only if, F' is conjugate to a rotation.
Now, by Theorem 6.2, the pair (¢1, ¢2) is represented by the point (2+tr(F),
1) on the horizontal line a; = 1 of Fig.2, that is, we can assume that the
involutions are given by

e1(z,y) = (—z,y + 2+ tr(F)z),  palz,y) = (z +y,—y).

Then, it follows that —2 < tr(F) < 2 gives the segment on this line of the
pairs equivalent to pairs of reflections. If tr(F) > 2 or tr(F) < —2, then F
corresponds to a linear hyperbolic ¢;-reversible diffeomorphism.

One last remark on this subject is concerned with a geometrical interpre-
tation of the equivalence between two pairs of transversal planar reflections
with respect to the fixed-point lines of the reflections. Recall that if ¢; and
o are reflections, then the anticlockwise angle from the line Fix(p9) to the
line Fix(p1) is half the angle 6 of rotation Ry = ¢ 0 ps. So we can conclude
that two pairs of transversal planar reflections are equivalent if, and only if,
the angles between the lines of fixed point of each pair are equal.

The study of the planar case leads to a similar analysis of linear reversible
diffeomorphisms F' = @1 0p, on R, n > 3, where (¢1, 2) is a pair of transver-
sal linear involutions. In fact, all normal forms given by Theorem 7.3 except
(7.22) are suspensions of the normal forms given by Theorem 6.2.
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