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In this paper we propose a construction procedure of a class of topological quantum
error-correcting codes on surfaces with genus g=2. This generalizes the toric
codes construction. We also tabulate all possible surface codes with genus 2-5. In
particular, this construction reproduces the class of codes obtained when consider-
ing the embedding of complete graphs K|, for s=1 mod 4, on surfaces with appro-
priate genus. We also show a table comparing the rate of different codes when
fixing the distance to 3-5. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3081056]

I. INTRODUCTION

Shor' showed that quantum computers can solve complex problems faster and more effi-
ciently, which at least, in principle, would not be possible with classical computers. Research on
the construction of quantum computers and quantum gates (quantum logical devices) is increasing
and several proposals have been presented. Two obstacles must be overcome to achieve the
practical implementation of a quantum computer: decoherence due to interactions of the quantum
system with the surrounding environment may destroy the quantum characteristic; and imperfec-
tion in quantum logic gates during the execution of a computation. However, these obstacles may
be cleverly overcome by the use of quantum error-correcting codes as has been previously shown
by a number of researchers.

In classical computation, errors may be corrected by using parity-check digits, a form of
redundancy. This is not possible in quantum computation due to the noncloning theorem. In
addition to that, there are other fundamental differences between classical and quantum informa-
tions that can be circumvented by means of quantum error correction theory, such as the existence
of phase-flip errors that do not occur classically and the disturbance of the quantum coherence
during syndrome measurement. Fortunately, there is a way out of this difficulty so that the con-
struction of quantum error-correcting codes, based on the properties of classical error-correcting
codes, is possible. A quantum error-correcting code may be viewed as a mapping of a
k-dimensional Hilbert subspace into a n-dimensional Hilbert space, where n > k. The k qubits to be
protected from errors are called logical qubits or encoded qubits, and the remaining n—k qubits are
the added redundancy.

The first quantum code was proposed by Shor.? It is a nine qubit quantum code capable of
correcting one arbitrary quantum error. Calderbank and Shor® showed that there are good quantum
error-correcting codes with good rate and greater error-correcting capabilities than Shor’s code.
Independently, Steane” proposed a construction yielding similar codes as those proposed by
Calderbank and Shor. This led to the class of codes known as CsS codes. Gottesman’ proposed a
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class of codes called stabilizer codes from which the previous codes are subclasses. The stabilizer
formalism is based on group theory. The main idea is that quantum states may be better described
by the operators that stabilize these quantum states.

A fundamental difference between bits and qubits is that the qubits may assume countless
distinct states called superpositions, which are linear combinations of |0) and |1). The superposi-
tion states are so fragile that a disturbance by the surrounding environment may destroy them. A
solution to this problem is to minimize the qubit interactions with the environment. However, the
construction of a functional machine with a large number of very isolated qubits is a difficult
problem.

An alternative solution is the topological quantum codes. The topological quantum error-
correcting codes (TQCs) or surface codes, introduced by Kitaev,” are a special type of stabilizer
codes. Each code in this class is associated with a tessellation of a surface (or a bidimensional
manifold). A well-known example of a TQC is the toric code proposed by Kitaev,® whose qubits
are in a one-to-one correspondence with the edges of the tessellation {4,4} of the flat torus. A
similar construction, however, in the projective plane RP?, is proposed in Ref. 7.

The central idea of TQC is to make the quantum states depend on topological properties of a
physical system due to the fact that topological properties are invariant under smooth degrada-
tions. Thus, the information stored in the topology of the system makes the system resilient to the
noise effects. This is a form of undertaking fault-tolerant quantum computation.

Another advantage of TQC is related to the locality of the stabilizer operators. Besides the
simplicity and the effectiveness of using these operators, each one of them is involved with a few
qubits in the code block. Since these qubits are close to one another, it is possible to realize
measurements using only a few quantum gates.8 These operators constitute a Hamiltonian with
local interactions, whose ground state coincides with the code subspace.6 These interactions con-
trol the intrinsic mechanism of protecting the encoded quantum states.

Within the class of topological codes, there is a subclass called homological codes, introduced
by Bombin and Martin-Delgado.9 In this work, homological quantum codes on surfaces of arbi-
trary genus is proposed, and the construction of such codes is based on graph theory. As a
consequence, the tools of homology group theory for graphs embedded on surfaces are strongly
used.

The aim of this paper is to propose a construction of TQCs on surfaces with genus g=2,
making use of the concepts of hyperbolic geometry. The motivation comes from the results shown
in Refs. 10 and 11, where the performance of a communication system using signal constellations
(digital modulation) in spaces with constant curvature K<0, or equivalently, on surfaces with
genus g =2, is better, in terms of the error probability, than the signal constellations in spaces with
constant curvature K=0. Since digital modulation may be viewed as a class of codes, we conjec-
ture that it is possible to construct more efficient quantum error-correcting codes on surfaces with
genus g=2.

Kitaev’s construction of toric codes is defined on an /X[ square tessellation of the torus, a
surface with genus g=1. The codes presented in this paper are constructed in a similar way as the
Kitaev toric codes, however, considering surfaces with genus g=2. Since these surfaces are
strongly related to hyperbolic geometry, several Euclidean geometric properties cannot be em-
ployed. To circumvent this problem we make use of the strong connection between hyperbolic
tessellation and plane models of surfaces as the fundamental mathematical concept to construct the
TQC codes on these surfaces.

This paper is organized as follows. In Sec. I, the basic notions and definitions of stabilizer
codes and TQC codes are reviewed. In Sec. III, we introduce the important definitions and
theorems of hyperbolic geometry for the purpose of this paper. In Sec. IV, the construction of
TQCs on surfaces with genus g =2 is proposed. In Sec. V, several tables showing the parameters
of the constructed codes are presented. In particular, the proposed construction reproduces the
results shown in Ref. 9, that is, the class of homological codes obtained by the embedding of
complete graphs K, with s=1 mod 4, on surfaces with appropriate genus.
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Part of this paper was presented in the IEEE Information Theory Workshop 2008 and pub-
lished in the proceedings of this event.'?

Il. TQCs

One way of characterizing quantum error-correcting codes is by employing the stabilizer
group S, that is, an Abelian subgroup of the Pauli group P,. The Pauli group is the tensor products
of the Pauli operators I, o,, o, and o, that is, P,= *{I,0,,0,, o.}®", where

1 0 0 1 0 -1 1 0
1= , O,= s Oy = . , O,= .
01 10 i 0 0 -1

A stabilizer code C associated with S is thus the simultaneous eigenspace, with eigenvalue +1,
of all the elements of S, i.e., C={|y): M|p)=|p)V M e S}.

Each operator M € S is a Pauli operator. If S has n—k generators, then the dimension of C is
2k, that is, C encodes k qubits. The generators of S can be viewed as the parity-check operators of
a quantum code, in the same way as the generator polynomial of the dual code and its shifts may
be viewed as the parity-check matrix of a classical code. Since the stabilizer S is an Abelian
subgroup of P,, the operators of P, which do not commute with every M €S map C into its
orthogonal complement, and so are detectable errors. However, there are many elements of P,, that
commute with every M e § which do not belong to S. Operators with this characteristic preserve
the coding space, by not acting trivially on it, although they may corrupt the information. The code
distance is given by the least weight of E € P,, such that £ commutes with every M e S but does
not belong to S.

To achieve error-correcting operation in a stabilizer code the eigenvalues of the stabilizer
generators should be measured. The eigenvalue of each M e S is (=1)/M®) where f W(E) is 0 if
M commutes with E or 1 if M anticommutes with E, whenever E € P,,. This provides the error
syndrome. If the code is nondegenerate, then each error has a distinct syndrome, and consequently
the syndrome points out the errors. However, if the code is degenerate, then there are distinct
errors yielding the same syndrome. Therefore, the set of degenerate errors is pointed out. In both
cases, we have to apply the error operator to fix the state. More information on stabilizer codes
may be found in Refs. 13 and 14.

The TQCs are defined as follows.

Definition 1: Let M be a compact surface and {p,q} a tessellation (see Sec. IV) of M with E
edges, V vertices, and F faces. Given a vertex v € V and a face f € F, we define the operators A,
as the tensor product of o, corresponding to each edge having v as the common vertex and the
operators B/ as the tensor product of o, corresponding to each edge forming the border of the face
f- ATQC C with length n=|E|, with stabilizer S={A,|v € V}U{B/|f € F}, encodes k=2g qubits (if
the surface has no border) and its distance is d=min{d, '}, where & denotes the code distance in
the tessellation {p,q}, whereas & denotes the code distance in the dual tessellation {g, p}.

Example 1: The toric codes with parameters [[2/?,2,[]] are a class of TQCs whose qubits are
in a one-to-one correspondence with the edges of the tessellation {4,4} of the [ X [ regular polygon,
that is, the flat torus, see Fig. 1. In this tessellated region there are 2/> edges or, equivalently, n
=2/? qubits. The stabilizer operators of this class of codes are associated with each vertex and each
face of the tessellation, such that a nonzero operator (o, or o) acts on the four qubits directly
connected to the vertex or face in consideration, whereas the identity operator acts on the remain-
ing qubits. Thus, the toric code consists of the space which is fixed by these operators. The
dimension of C is 4, that is, C encodes k=2 qubits. The distance of the toric code is given by the
minimum number of edges in the tessellation contained either in the shortest homologically non-
trivial cycle (see Sec. IV D) of the tessellation or in the shortest homologically nontrivial cycle of
the dual tessellation. Since a homologically nontrivial cycle is an edge path in the tessellation that
cannot be shrunk to a face, it follows that on the flat torus, the shortest homologically nontrivial
cycle corresponds exactly to the orthogonal axis of the tessellation, see Fig. 2. It follows from this
that d=1.
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FIG. 1. {4,4} tessellation drawn on the torus.

We would like to emphasize some main aspects of Kitaev’s construction.

* The parameters n and k of the code are defined as n=|E| and k=2g, where |E| denotes the
number of edges of the tessellation. The number of encoded qubits is related to the number
of the essential cycles of the surface. Two essential cycles (meridian and parallel) exist in the
case of the torus.

* Another important aspect of this construction is the definition of the stabilizer operators,

Al} = ® U{C, Bf= ® O'é,
JEE, i eEf
where E, denotes the set of edges having v as the common vertex and E; denotes the set of
edges forming the border of f. These operators are the generators of the stabilizer group.
Thus, the code is given by C={|y):A,|p)=[4). Blp=[p)Vv.f}.

* A homologically trivial cycle bounds a region that may be tiled by the fundamental region of
a tessellation, whereas a homologically nontrivial cycle may not be the border of any region,
see Fig. 2. The distance of toric codes is defined as the minimum between the number of
edges in a smallest homologically nontrivial cycle of the tessellation and of the dual

o --1--

FIG. 2. The cycles C and C’ are homologically trivial cycles on the tessellation and dual tessellation, respectively. The
cycles ¢ and ¢’ are homologically nontrivial cycles on the tessellation and on the dual tessellation, respectively.
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tessellation.® In the torus case, the smallest homologically nontrivial cycle on an [ X/ square
tessellation coincides with the orthogonal axes of the tessellation. The same occurs with the
dual tessellation. Therefore, d=I.

e Toric codes detect [—1 errors and correct |(I—1)/2] errors. These codes do not reach the
quantum Hamming bound.

* As above, the usual scheme for error correction used by the stabilizer codes is brought forth
by the measurement of the syndrome. In the case of toric codes the syndrome is highly
ambiguous due to the code being fourfold degenerated. However, Kitaev suggested an error
correction at the physical level by employing a Hamiltonian

_EAS_EBP' (1)
s p

Since the operators A, and B, commute, the Hamiltonian is diagonalized. Note that the
ground state of the Hamiltonian coincides with the subspace protected by the code. Since the
difference between the eigenvalues of A, and By is equal to 2, all excited states are separated
by an energy gap greater than or equal to 2.5 Thus, they may be distinguished and corrected.

 Kitaev showed that the toric codes may be implemented by particles called anyons. These
particles exist only in a bidimensional world and have the necessary mathematical properties
for the implementation of the toric codes.’

lll. HYPERBOLIC GEOMETRY

Since our goal is to generalize Kitaev’s code construction by use of surfaces with genus g
=2, it follows that the geometry to be considered is the hyperbolic geometry. Therefore, in this
section we revise some basic concepts of hyperbolic geometry necessary for the development of
this paper. For a thorough revision of this subject, we refer the reader to Refs. 15 and 16.

We consider as models of the hyperbolic geometry the upper-half plane, H>={z e C:Im(z)
>0}, and the Poincaré disk, D*={z e C:|z]<1}. The border of H? is given by dH>=R U{c} and
the border of D? is dD*={z € C:|z|=1}. Both are called circle at infinity.

The space H? with the metric

Vdx® + dy?
y

ds =

is known as hyperbolic or Lobachevski plane.
There exists an isometry f:H?—ID? given by

+1

fl2) =

whose metric induced by f is a metric in D?. This allows us to work in either model according to
the necessity.
Thus, D2, with the metric

[2dw|
=W’

ds =
1

is also the hyperbolic plane.

Since Poincaré disk is a bounded subset of the Euclidean plane, this model is more convenient
for the visualization of the hyperbolic plane. On the other hand, the upper-half plane model allows
us to make use of the Cartesian coordinates in the calculus.

Let o:[a,b]—H? be a piecewise differentiable path. Then the hyperbolic length of o is
defined by
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dz

bl dr
h(a):L Wdt.

The hyperbolic distance between any two given points z,w € H? is given by d(z,w)=inf h(o),
where the infimum is considered over the set of all paths o connecting z to w in H2.

Definition 2: Geodesics are paths with the least hyperbolic length joining two distinct points.

Any two points z,w € H? may be connected by a unique geodesic, and the hyperbolic distance
between them is equal to the hyperbolic length of the unique geodesic that connects them. Geo-
desics in H? are semicircles and straight lines both orthogonal to the real axis R, whereas the
geodesics in D? are segments of Euclidean circles orthogonal to dD? and its diameters."

The hyperbolic angle between two geodesics in H? with intersection point z is the (Euclidean)
angle between the tangent vectors to the geodesics.

The Gauss—Bonnet theorem shows that the hyperbolic area of a hyperbolic triangle depends
only on its angles. Recall that the sum of the internal angles of a hyperbolic triangle is less than
.

Theorem 1: (Gauss—Bonnet) Let A be a hyperbolic triangle with internal angles «, B, y. Then
the area of A is given by

mA)=m—a-pB-7y.

The next definitions are important due to the fact that the edge pairings of a regular hyperbolic
polygon (plane model of surfaces, see Sec. IV A) is realized by the elements of a Fuchsian group.
Consider the multiplicative group of the 2 X 2 real matrices,

)

A= ,

c d

with a,b,c,d € R and det(A)=1. This group is known as the unimodular group and it is denoted
by SL(2,R).

A Moébius transformation is a mapping T:C— C defined by T(z)=(az+b)/(cz+d), where
a,b,c,d e R such that ad—bc=1. The projective special linear group, denoted by PSL(2,R), is
the multiplicative group of Mobius transformations, equivalently, PSL(2,R)=SL(2,R/(*1,)).

The group PSL(2,R) is a subgroup of the group of all isometries of H?, denoted by I som(H?).
Consequently, any transformation in PSL(2,R) takes geodesic into geodesic. Furthermore, Mobius
transformations are conformal transformations, that is, they preserve angles. From this it follows
that the hyperbolic area is invariant under all transformations in PSL(2,R).

Definition 3: A Fuchsian group is a discrete subgroup of PSL(2,R).

Consider a metric space X and a group G of homeomorphisms of X. We say that a group G
acts properly discontinuously in X if the G-orbit of any point x € X, G(x)={T(x): T e G}, is locally
finite. Fuchsian groups are characterized in the following theorem.

Theorem 2: (Reference 15) I'CPSL(2,R) is a Fuchsian group if and only if I" acts properly
discontinuously on H?.

Definition 4: Let X be a metric space and I' a group of homeomorphisms acting properly

discontinuously on X. A closed subset FCX with nonempty interior is called a fundamental region
of I' if

()  UTF)=X,
Te F~ _
(i) int FNT(int F)=@, VYTel-{Id},

where int F is the set of interior points of F.

The family {T(F):T e I'} is called a tessellation of X.
The area of a fundamental region, if finite, is a numeric invariant of the group.
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Let T be a Fuchsian group and z; € H? such that T(z;) #z, for all T e I'\{id}, then D, (I')
={ze N?:d(z,7,)=d(z,T(z,)), VT € T’} is a fundamental region of I, called the Dirichlet region.

IV. CONSTRUCTION OF TQCs

To generalize the toric code construction we consider compact surfaces with genus g=2. The
construction of these codes consists in selecting a regular hyperbolic polygon (plane model P’ of
the surface) and its possible tessellations {p,q}.

Before considering the plane models of surfaces and the associated tessellations, we review
some basic topological concepts. For a thorough revision of this subject we refer the reader to
Refs. 17 and 18.

A hyperbolic polygon P’ with p' edges, or a p’-gon, is a convex closed set consisting of p’
hyperbolic geodesic segments. The intersection of two geodesics is called vertex of the polygon. A
p’-gon whose edges have the same length and the internal angles are equal is called a regular
p'-gon.

A regular tessellation of the Euclidean or hyperbolic plane is a covering of the whole plane by
regular polygons, all with the same number of edges, without superposition of such polygons,
meeting completely only on edges or vertices. We denote a regular tessellation by {p,q}, where ¢
regular polygons with p edges meet in each vertex. In particular, if p=qg the tessellation is said to
be self-dual.

The regular hyperbolic polygon, denoted by P’ (plane model of the surface), is the polygon
associated with the fundamental region of the tessellation {p’,q'}, that is, P’ is a polygon with p’
edges where ¢’ polygons with p’ edges meet in each vertex. On the other hand, the tessellation
{p.q} of P’ has as fundamental region a regular hyperbolic polygon, denoted by P, with p edges
where g polygons with p edges meet in each vertex. The area of these two polygons are related by
Eq. (4).

An important topological invariant that we use in this paper is the Euler characteristic. Given
a compact region X, we may tessellate this region with a finite number of a given polygon. The
Euler characteristic of X, denoted by x(X), is given by

x(X)=V-E+F,

where V denotes the number of vertices of this tessellation, £ denotes the number of edges, and F
denotes the number of faces (that is, the number of polygons). Another way of establishing the
Euler characteristic is by use of the genus g of X, and so x(X) is given by

x(X)=2-2g.

Note that, in the case of a regular tessellation, if we count the g edges in each one of the V
vertices, we have counted each edge of the tessellation twice. Analogously, if we count all the p
edges corresponding to the border of each one of the F faces of the tessellation, we have counted
each edge of the tessellation twice. Therefore, the following equalities hold:

qV=2E=pF. (2)

For example, if we consider only one face of the tessellation, that is, a polygon P with p edges,
then F=1, V=p/q, and E=p/2.

A. Plane models of surfaces

In this subsection we show that the hyperbolic polygon P’ has a twofold characteristic: it is
used to construct surfaces by edge-pairing identifications, and it is a fundamental region for
groups.

A compact topological surface M may be obtained from a polygon P’ by pairwise edge
identifications, once the length and angle conditions are satisfied.
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The pairwise edge-identification operation is formally defined as an oriented edge-pairing
transformation. An oriented edge-pairing transformation of a hyperbolic polygon P’, with equal
length edges, is an isometry y# Id of an orientation preserving isometry group I', taking an edge
s of P’ to another edge y(s)=s" of P'. Furthermore, y~! € I'\{Id} takes y(s)=s' to s. Thus, we say
that the edges s and s’ are paired. If s is identified with s’ and s’ is identified with s”, then s is
identified with s”. Such a chain of identifications may also occur with vertices, and so we call a
maximal set {v|,v,, ...,v;} of identified vertices a vertex cycle.

An edge pairing of P’ defines an identification space Sp:. This identification space has a
distance function agreeing with the hyperbolic distance for sufficiently small regions in the interior
of P’, making it a hyperbolic surface when the angles of each vertex cycle adds up to 2.

Note that the number of edges of P’ is even, since the edges are identified in pairs. If P’ is a
2-gon, then there are only two possibilities for edge identification. One of them yields a sphere and
the other one the projective plane. Similarly, if P’ is a 4-gon, the possible edge identifications give
a sphere, projective plane, torus, or Klein bottle, and these surfaces can be realized geometrically
as Euclidean surfaces. All other compact surfaces can be realized geometrically as hyperbolic
surfaces.

It can be shown that any topological surface Sp: not homeomorphic to a sphere is homeomor-
phic to a surface Sp+ for which P* has a single vertex cycle. Thus, we can assume that P’ has a
particularly simple edge pairing. Therefore, any compact surface can be realized geometrically, see
Ref. 17.

According to the Killing—Hopf theorem (see Ref. 17) any complete and connected hyperbolic
surface is of the form H?/T", where I acts properly discontinuously on H?, that is, I' is a Fuchsian
group.

From the Killing—Hopf theorem, since Sp: is complete, that is, each line segment in Sp, can be
extended indefinitely, we may express Sp: as a quotient S?/T", R2/T", or H?/T. It can be shown that
Spr is complete if P’ is compact, see Ref. 17. Thus, identification spaces of compact polygons may
be realized by geometric surfaces.

On the other hand, a compact surface S*/T", R?/T, or H?/T is the identification space of a
polygon in the corresponding geometry. The spherical (S*/T") and the Euclidean (R?/T) are the
simplest cases among the identification spaces.

The hyperbolic surfaces H?/T" obtained as identification spaces of polygons are those for
which I is finitely generated. Since I is generated by edge-pairing transformations and a polygon
P’ has only finitely many edges, I' is finitely generated when P’ is a fundamental region for I'.
The converse is true, it suffices to construct a polygonal fundamental region for a given finitely
generated T'.

Thus, a compact hyperbolic surface H?/T" is the identification space of a polygon if the
polygon is a fundamental region for I'. A necessary and sufficient condition for a polygon to be a
fundamental region is the following.

Edge and Angle conditions (Reference 17). If a compact polygon P’ is the fundamental region
for an orientation preserving isometry group I of S* (sphere surface), R* (Euclidean plane), or H?
(hyperbolic plane).

(1) For each edge s of P' there exists a unique edge s’ of P' such that s'=%y(s) , for yel .
(i)  Given edge pairings of P, for each set of the identified vertices, the sum of the angles has
to be equal to 2 . This set is a vertex cycle.

Theorem 3: [Poincaré (Reference 17)] A compact polygon P’ satisfying the edge and angle
conditions is a fundamental region for the group I' generated by the edge-pairing transformations
of P', and I is a Fuchsian group.

For surfaces with a Fuchsian group I' the structure of the fundamental region P’ is provided
by the presentation of I', that is, the generators of I', denoted by a;,b;,a,,b,,... ,ag,bg, with a
defining relation, also known as the “word of a surface,” albla]le1 Y ,agbga;b; =e, with e
being the identity of T", so that the Fuchsian group is a discrete group of transformation preserving
this “word.”
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1. Topological classification of surfaces

All geometric surface is of the form S%/I", R?/T", or H?/T, thus the problem of classifying
surfaces is replaced by the problem of classifying groups I'. One way of distinguishing hyperbolic
surfaces is to make use of topology. Surfaces may be distinguished topologically by its genus.

It is known that a compact topological surface may be obtained as an identification space Sp/
of a polygon P’, and if P’ is not homeomorphic to S%, then P’ may be chosen to have a single
vertex cycle. We use this fact to classify the nonspherical surfaces Sp: by showing that all such
surfaces are obtainable from the normal form polygons. The surfaces with different normal forms
are nonhomeomorphic.

Orientable surfaces are such that any two directly opposite identified edges in the border of P’
are used to define a normal form polygon.

We denote the identified edges in the border of P’ by the same letter, for example, a. When
the edges are directly opposite, we denote them by a,a™".

In the normal form each compact orientable surface is homeomorphic to an identification
space Sp: of a polygon P’ with border of the form aa™' or alblajlbjl yen- ,agbga;b;. In the first
case, Sp: is said to be of genus 0, in the latter case Sp/ has genus g. The genus g can be informally
defined as the number of “handles” or “holes” because each segment azil),-a[_ll)i"1 in the border of P’
gives rise to a handle. The genus is the invariant which distinguishes topologically the surfaces. A
more detailed construction of the normal form can be found in Ref. 17.

2. Geometric classification of surfaces

When constructing geometrically orientable surfaces in the normal form, any surface of genus
0 becomes a sphere (elliptic), any surface of genus 1 becomes a torus (Euclidean), and surfaces of
genus =2 become g-tori (hyperbolic). Conversely all compact orientable hyperbolic surfaces are
of genus =2, or equivalently, its Euler characteristic is a negative even number.

Let M=H?/T" be a compact hyperbolic surface. M can be realized as the identification space
Spr of a convex polygon P’ (the Dirichlet region for the group I'). The area of this polygon is a
geometric property distinguishing such surfaces. In fact, let P’ be a polygon with p' edges, or a
p’-gon, that is, the fundamental region of the tessellation {p’,q'}. From the Gauss—Bonnet theo-
rem, the area of M is given by

(M) = w(P")
,< 2 211')
spA\To T
p q

,(77(17’61’ —219’—261’))
=p =
p'q

=—2w<p—,—p—+ 1):—277(V—E+F)
q 2

=—2mx(S)=-2m(2 - 2g)

=4m(g-1), 3)

where V=p'/q' and E=p'/2.

The procedure being proposed for the construction of TQCs takes into consideration polygons
P’ of the type 4g-gon ({4g,4g}) as the plane models of the corresponding surfaces. In these
polygons the edge-pairing transformations are defined differently from the usual normal form,
y:8—S8, by Y(s;) =512, Where S={sy,...,54,} is the set of edges of P’, i=1,2,...,4g, and the
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FIG. 3. Edge-pairing transformation y(s;) =55,

sum of the subscripts of s is realized modulo 4g. An isometry vy realizes the pairings of opposite
edges of P’, see Fig. 3. The selection of these edge-pairing transformations leads to a code
distance having the greatest hyperbolic distance between the identified edges of P’. Since p’
=q'=4g, the unique cycle of vertices obtained from these edge-pairing transformations has the
sum of the internal angles equal to (p'/q')(27) =2, and so satisfying the necessary and sufficient
conditions for P’ to be a fundamental region for the group of these edge-pairing transformations
I.

We call the attention to the fact that, for each fixed value of g, polygons different from
{4g,4g}, for example, {4g+2,2g+1}, {8g—4,4}, {12¢g—6,3}, generate surfaces with the same
genus. For example, the Klein group (see Ref. 17) is a surface of genus 3. The Klein group is a
14-gon ({14,7}) in the hyperbolic plane where the edges are connected by the relation s,;,;—> $5;.6,
and the sum of the subscripts of s is realized modulo 14 (Fig. 4). Note that, since this 14-gon

FIG. 4. Klein group - a 14 - gon with tessellation {7,3}.
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satisfy Poincaré’s theorem, it is a fundamental region for I', where T is the group consisting of the
edge-pairing transformations. Theoretically, any polygon which generates a compact surface can
be employed in the construction of such codes. Nevertheless, not all of these polygons with this
property satisfy Poincaré’s theorem when considering the opposite edge pairings. Hence, among
all these possibilities the 4g-gons are chosen as those achieving the greatest minimum distance of
the code.

B. Tessellation {p, g}

Similarly to Kitaev’s construction, we shall determine all possible tessellation {p,q} of the
polygon P’. For this purpose we have to find the solutions of equation

u(P") = nsu(P), 4)

where the hyperbolic tessellations must satisfy the following constraint (p—2)(g—2)>4. In (4)
u(P') denotes the area of the polygon P’ associated with the fundamental region of the tessella-
tion {p’,q’'}, u(P) denotes the area of the polygon associated with the fundamental region of the
tessellation {p,q}, and n, is a positive integer. Note that, given a tessellation {p,q}, the dual
tessellation {g,p} has to satisfy the same previous conditions.

The tessellations obtained as the solutions of Eq. (4) are, in fact, all the possible tessellations
of P' because they satisfy the following theorem.

Theorem 4: (Reference 19) Let M be a closed surface and let p,q,V,E,F be positive integers
such that

V—E+F=y(M), (5)

pF=2E=qV. (6)
Then the following hold.

e Existence. There exist a {p,q}-pattern on M consisting of F p-sided faces, E edges, and V
vertices each of valence ¢; except when M is the projective plane, {p,q}={3,3}, V=F=2, and
E=3.

» Geometrization. A {p,q}-pattern on M can be made geometric.

* Classification. A {p,q}-pattern on the sphere or projective plane is unique. For all other
closed surfaces M the {p,q}-patterns on M are classified by conjugate classes of subgroups
isomorphic to the fundamental group of M in the extended (p,q,2)-triangle groups of
Schwarz.

As an example, consider the Klein group. It is a 14-gon and it may be tiled with a set of 24
identical regular heptagons or alternatively with a set of 56 equilateral triangles. These two
tessellations are dual to each other, in the sense that the vertices of one tessellation correspond to
the faces of the other. That is, the 14-gon is tiled by the tessellation {7,3} and by its dual tessel-
lation {3,7}. Observe that the area of the 14-gon is equal to the area of the 24 heptagons or the area
of the 56 equilateral triangles.

From Eq. (3) and the Gauss—Bonnet theorem, Eq. (4) may be written as

2pr
477(g—1)=nf{(p—2)77—7]. (7)
Hence, the number of faces of the tessellation {p,q} of P’ is given by
4q9(g-1)
ny=— (8)

pg-2p-2q°
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C. Operators and parameters

As in Kitaev’s construction, given a vertex v of the tessellation, the vertex operator acts
nontrivially on the g qubits having v as the common vertex and the identity operator acts on the
remaining qubits, that is, A,=® ;. Evo{r, where E, denotes the set of edges having v as the common
vertex. Similarly, given a face f of the tessellation, the face operator acts nontrivially on the p
qubits forming the border of this face, and the identity operator acts on the remaining qubits of the
tessellation, that is, Bi=®; Efo'é, where E; denotes the set of edges forming the border of f.
Therefore, the code is given by C={|):A )= . By =) Vv, f}.

From Eq. (4), we have that n; is the number of faces of the tessellation {p, ¢} of P'. Since each
edge of this tessellation belongs simultaneously to two faces, we have n=nyp/2 edges or qubits.

The operators A, and B, are the stabilizer operators of this code. Besides being Pauli opera-
tors, A, and B, are mutually commutative. Furthermore, each edge belongs either to the border of
two faces or have two vertices as end points, which implies that each edge is counted twice when
considering the product of all the vertex or face operators. Thus,

[TA,=1 and []B,=1. 9)
v f

Each vertex and face operator can be expressed as the product of the others such operators. We
conclude from this fact that there are n,—1 independent face operators and n,—1 independent
vertex operators, where n, is the number of vertices of the tessellation {p, g} of P’. Thus, we have
ns+n,—2 generators of the stabilizer group. Consequently, the number of qubits to be encoded is
k=n—(ns+n,=2).

Note that the number of vertices of the tessellation coincides with the number of faces of the
dual tessellation, then n,=np/q. From (7), we have

2(2g-2)=np-2n,~ 2nf2,
q

23_2=”f§ _”f_”flé’

2g-2=n-n;—ny,

2g=n-ng—n,+2.

Therefore, the number of encoded qubits is k:n—nf—nv+2:2g, and the dimension of the code C
is 2%8=4s.

Substituting n,=2n/p in (8), and for each tessellation {p,q}, the asymptotic code rate k/n is
given by k/n— (pq—2p—2q)/pq when g— oo,

D. Code distance

Before defining the distance of this class of codes, we have to introduce some concepts from
homology theory. For that we refer the reader to Ref. 20. 1-chain is an application that fixes an
element of 7, either to each edge of the tessellation or to the set of all edges that are fixed to the
value of 1 by this application. Analogously, O-chain and 2-chain are defined as the corresponding
applications that fix an element of 7, to the vertices and to the faces of the tessellation, respec-
tively.

The border of a face is the sum of its edges, and the border of an edge is the sum of its two
vertices. For example, let vy,v,v, be the vertices of a triangle, the border of the edge that joins
v to v; is defined by d(vy,v,)=v,—v,, whereas the border of the face of this triangle is defined by
Nvgy,v1,02)=0(vg,v1)+d(v,vs)+(v,,00). Thus, a cycle may be defined as a chain whose border
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/4
\/9

\a

w/4g

/49

FIG. 5. Hyperbolic length (2a) of the minimum geodesic of P’.

is trivial. A cycle is said to be homologically trivial if it may be written as the border of a 2-chain.
Otherwise, the cycle is called homologically nontrivial.

Remember that the distance of a stabilizer code is the weight of the minimal-weight Pauli
operator that preserves the code subspace and acts nontrivially within the code subspace. In terms
of a toric code, the distance is the number of edges of the tessellation contained in the shortest
homologically nontrivial cycle either on the tessellation or on the dual tessellation.®

For TQC on surfaces of genus g=2, the distance is similar to the distance of a toric code. We
are looking for the shortest homologically nontrivial cycle either on the tessellation or on the dual
tessellation.

We call the attention to the fact that the shortest homologically nontrivial cycle in a p’-gon is
given by the geodesics of least length that connect the identified edges of P’. In terms of the edges
of the tessellation of P’, the shortest homologically nontrivial cycle is an edge path that is closest
to the geodesic with shortest length. Thus, the code distance is the minimum number of edges
between the shortest homologically nontrivial cycle of the tessellation and the shortest homologi-
cally nontrivial cycle of the dual tessellation.

From the elements of hyperbolic trigonometry, it is possible to determine the distance between
the edge pairings of P’. This distance, denoted by d,, is the hyperbolic length of the orthogonal
geodesic common to this two edges (Fig. 5), and it is given by

cos(/4g) ] (10)

dy,=2a=2 arccosh{ -
sin(7r/4g)

This equation is obtained from the relation cosh a sin S=cos « (see Ref. 16), where in this case
a=LB=m/4g.

Since the minimum distance of the TQC, denoted by drqc, is a function of the number of
edges of the tessellation {p,q} of P’, we derive a lower bound on this distance as the ratio of d,
by the edge length /(p,q) of the fundamental region of the tessellation {p,q}, that is, dyqc
=d,/1(p,q), where the edge length of the tessellation is given by

cos>(/q) + cos(2/p)

I(p,q) = arccosh (11)

sin?(/q)

This expression may be obtained by the cosine rule, that is, cosh c=(cos acos 3
+cos y)/sin a sin B, where ¢ corresponds to the edge of the tessellation {p,q} (Fig. 6).
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FIG. 6. Edge length (c) of the tessellation {p,q}.

Since the values of I(p,q) are invariant, due to the type of identification considered (opposite
edge pairings), it follows that d,/I(p,q) — % when g— . Note that, n=np/2— o~ when g— .
However, the ratio k/dyqc does not necessarily go to infinity when g — o because dpqc increases
more rapidly than &, and k is not bounded.

V. TABLES OF TQCs

The lower bound d,,/l(p,q) on the minimum distance of a TQC on a surface with genus g
depends on the selection of the tessellation {p,q} of P’. The smallest the hyperbolic edge length
of the fundamental region of the tessellation is the greater will be the lower bound.

From (4) or (8) we may determine all possible tessellations {p,q} of P’. Although we have an
extensive list of possible codes, we tabulate the most important TQCs on surfaces with genus 2-5.

TABLE 1. Tessellations and parameters of the TQCs for g=2 and

d,=3.057 14.
.4t ny Up,q) d,/l(p.q) [[nsk7dTQC]:|
{3,7} 28 1.0906 2.8033
{7,3} 12 0.5663 5.3989 [[42,4,3]]
{3.8} 16 1.5286 2
{8,3} 6 0.7270 4.2049 [[24.,4.2]]
{3,9} 12 1.8551 1.6480
{9,3} 4 0.8192 3.7319 [[18,4,2]]
{3,10} 10 2.1226 1.4403
{10,3} 3 0.8792 3.4773 [[15.,4,2]]
{3,12} 8 2.5534 1.1973
{12,3} 2 0.9516 3.2125 [[12,4,2]]
{4,5} 10 1.2537 2.4384
{5,4} 8 1.0613 2.8806 [[20,4,3]]
{4,6} 6 1.7628 1.7343
{6,4} 4 1.3170 2.3214 [[12,4,2]]
{4.8} 4 2.4485 1.2486
{8,4} 2 1.5286 2 [18,4,2]]
{5,5} 4 1.6850 1.8144 [[10,4,2]]
{6,6} 2 2.2924 1.3336 [[6,4,2]]
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TABLE 1I. Tessellations and parameters of the TQCs for g=3 and d,
=3.9833.

p.at ny I(p.q) dy/l(p.q) [[”,k»dTQc]]

(3,7} 56 1.0906 3.6526
(7,3} 24 0.5663 7.0347 [[84,6,4]]
(3.8} 32 1.5286 2.6059
(8,3} 12 0.7270 5.4788 ([48,6,3]]
(3,9} 24 1.8551 2.1472
{9,3} 8 0.8192 4.8625 [[36,6,3]]
{3,10} 20 2.1226 1.8767
{10,3} 6 0.8792 4.5307 ([30.6.2]]
(3,12} 16 2.5534 1.5600
{12,3} 4 0.9516 4.1857 [[24.6.2]]
(3,14} 14 2.8982 1.3744
{14,3} 3 0.9928 4.0123 [[21,6,2]]
{3,18} 12 3.4382 1.1585
{18,3} 2 1.0359 3.8453 [[18.6.2]]
{4,5} 20 1.2537 3.1771
(5,4} 16 1.0613 3.7533 ([40,6,4]]
{4,6} 12 1.7628 2.2597
(6,4} 8 1.3170 3.0246 [[24,6,3]]
{4.8} 8 2.4485 1.6269
(8.4} 4 1.5286 2.6059 [[16.6.2]]
{4,12} 6 3.3258 1.1977
{124} 2 1.6629 2.3954 [[12.6.2]]
{5,5} 8 1.6850 2.3640 [[20,6,3]]
{5.6} 6 2.1226 1.8767
{6.5} 5 1.8764 2.1228 [[15.6.2]]
{5.10} 4 3.2338 1.2318
{10,5} 2 2.1226 1.8767 [[10.6.21]
{6,6} 4 2.2924 1.7376 [[12.6.2]]
{6.9} 3 3.1614 1.2600
{9.6} 2 2.4887 1.6006 [[9.6.21]
{8,8} 2 3.0571 1.3030 [8.6.21]

These are shown in Tables I-IV. The parameters considered in these tables are the tessellation
{p.q}, the number of faces of the tessellation, ny, the edge length of the tessellation, I(p,q), the
lower bound on the code distance, drqc=[d)/l(p.q)], and the parameters of the code [[n,k,drqc]l
where n denotes the number of qubits, k the number of encoded qubits, and drgc the minimum
distance of the code.

The best lower bounds achieved by the code distance are associated with the tessellations {3,7}
and {7,3}. The minimum distance of this code is given by the minimum between d,,/1(3,7) and
d;/1(7,3). Consequently, the tessellation {3,7} will limit the minimum distance of the resulting
code. Unfortunately, this code has low rate. On the other hand, the tessellation {4,5} and its dual
{5,4} have, in general, the same minimum distance. As a consequence, the code generated by the
tessellation {4,5} and its dual is the best code in terms of achieving a greater minimum distance
while having a good rate. The self-dual tessellations, although having a good rate, achieve smaller
values on the code distance. On the other hand, the codes defined by self-dual tessellations have
smaller computational complexity, and as shown by Kitaev,® these codes may be implemented by
use of anyons.

The distance of the toric codes grows by increasing the edge length of the flat torus, whereas
the distance of the surface codes with genus g=2 grows by increasing the genus of the surface.
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TABLE III. Tessellations and parameters of the TQCs for g=4 and d,

=4.596.
.4 ny I(p,q) dy/l(p.q) [[Vl,k,d'chH
{3,7} 84 1.0906 4.2144
{7,3} 36 0.5663 8.1165 [[126,8,5]]
{3,8} 48 1.5286 3.0067
{8,3} 18 0.7270 6.3215 [[72,8,4]]
{3,9} 36 1.8551 2.4775
{9,3} 12 0.8192 5.6104 [[54,8,3]]
{3,10} 30 2.1226 2.1653
{10,3} 9 0.8792 5.2276 [[45,8,3]]
{3,12} 24 2.5534 1.8000
{12,3} 6 0.9516 4.8295 [[36,8,2]]
{3,15} 20 3.0486 1.5076
{15,3} 4 1.0070 4.5639 [[30,8,2]]
{3,18} 18 3.4382 1.3367
{18,3} 3 1.0359 4.4368 [[27.8,2]]
{3,24} 16 4.0374 1.1384
{24,3} 2 1.0638 4.3204 [[24,8,2]]
{4,5} 30 1.2537 3.6658
{5,4} 24 1.0613 4.3306 [[60,8,4]]
{4,6} 18 1.7628 2.6073
{6,4} 12 1.3170 3.4899 [[36,8,31]
{4,7} 14 2.1408 2.1469
{7,4} 8 1.4491 3.1717 [[28,8,31]
{4,8} 12 2.4485 1.8771
{84} 6 1.5286 3.0067 [[24,8,2]]
{4,10} 10 2.9387 1.5640
{10,4} 4 1.6169 2.8424 [[20,8,2]]
{4,12} 9 3.3258 1.3819
{12,4} 3 1.6629 2.7639 [[18,8,2]]
{4,16} 8 3.9225 1.1717
{16,4} 2 1.7073 2.6919 [[16,8,2]]
{5,5} 12 1.6850 2.7277 [[30,8,3]]
{5,10} 6 3.2338 1.4212
{10,5} 3 2.1226 2.1653 [[15,8,2]]
{6,6} 6 2.2924 2.0049 [[18,8,3]]
{6,12} 4 3.7556 1.2238
{12,6} 2 2.5534 1.8000 [[12,8,2]]
{8.,8} 3 3.0571 1.5034 [[12,8,2]]
{10,10} 2 3.5796 1.2839 [[10,8,2]]

As mentioned in Secs. IV C and IV D, the asymptotic rate is k/n=(pg—2p—2q)/pq and
drgc— % when g— o,

In Table V we display codes with distances d=3, 4, and 5 for genus g=1, 2, 3, 4, and 5, and
we compare their code rates. Observe that there are TQCs whose encoding rates are better than the
toric codes, when the distance is fixed. Moreover, the effective rate of the code derived from the
tessellations {4,5} and {5,4} when g=2, that is [[20,4,3]], is the same as the rate of the perfect code
[[5,1,3]] (g=0) and of the code [[10,2,3]] (g=1) obtained in Ref. 9. Note that there exist TQC
codes with distance d=5 only on surfaces with genus g=4.

As previously mentioned, our construction reproduces the results shown in Ref. 9, that is, the
family of codes with parameters
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TABLE 1V. Tessellations and parameters of the TQCs for g=5 and d,

=5.0591.
.4t ny Up,q) d,/1(p.q) [[",k’dTQc]]
{3,7} 112 1.0906 4.6390
{7,3} 48 0.5663 8.9343 [[168,10,5]]
{3,8} 64 1.5286 3.3097
{8,3} 24 0.7270 6.9585 [[96,10,4]]
{3,9} 48 1.8551 2.7272
{9,3} 16 0.8192 6.1757 [[72,10,3]]
{3,10} 40 2.1226 2.3835
{10,3} 12 0.8792 5.7543 [[60,10,3]]
{3,12} 32 2.5534 1.9813
{12,3} 8 0.9516 5.3162 [[48,10,2]]
{3,14} 28 2.8982 1.7456
{14,3} 6 0.9928 5.0959 [[42,10,2]]
{3,18} 24 3.4382 1.4714
{18,3} 4 1.0359 4.8838 [[36,10,2]]
{3,22} 22 3.8576 1.3115
{22,3} 3 1.0570 4.7861 [[33,10,2]]
{3,30} 20 4.4944 1.1257
{30,3} 2 1.0765 4.6998 [[30,10,2]]
{3,54} 18 5.6828 0.8902
{54,3} 1 1.0918 4.6336 [[27,10,2]]
{4,5} 40 1.2537 4.0352
{5,4} 32 1.0613 4.7670 [[80,10,51]
{4,6} 24 1.7628 2.87
{6,4} 16 1.3170 3.8415 [[48,10,3]]
{4,8} 16 2.4485 2.0662
{8,4} 8 1.5286 3.3097 [[32,10,3]]
{4,12} 12 3.3258 1.5212
{12,4} 4 1.6629 3.0424 [[24,10,2]]
{4,20} 10 4.3785 1.1555
{20,4} 2 1.7275 2.9286 [[20,10,2]]
{5,5} 16 1.6850 3.0025 [[40,10,4]]
{5,6} 12 2.1226 2.3835
{6,5} 10 1.8764 2.6961 [[30,10,3]]
{5,10} 8 3.2338 1.5644
{10,5} 4 2.1226 2.3835 [[20,10,2]]
{6,6} 8 2.2924 2.2069 [[24,10,3]]
{6,7} 7 2.6293 1.9241
{7.,6} 6 2.3884 2.1182 [[21,10,2]]
{6,9} 6 3.1614 1.6003
{9.,6} 4 2.4887 2.0328 [[18,10,2]]
{6,15} 5 4.2104 1.2016
{15,6} 2 2.5827 1.9588 [[15,10,2]]
{7,14} 4 4.1520 1.2185
{14,7} 2 2.8982 1.7456 [[14,10,2]]
{8.,8} 4 3.0571 1.6548 [[16,10,2]]
{12,12} 2 3.9833 1.2701 [[12,10,2]]

[E))-2e-e]]

when considering the embedding of complete graphs K, for s =1 mod 4, on surfaces with appro-
priate genus.
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TABLE V. Codes with distances d=3,4 and d=5.

Distance Genus Tessellation kin
d=3 1 {4,4} 2/18
Ref. 9 2/10

2 3,7} 4/42

{4,5} 4/20

3 {3,8} 6/48

{3.9} 6/36

{4,6} 6/24

{55} 6/20

4 {3,9} 8/54

{3,10} 8/45

{4,6} 8/36

{47} 8/28

{5,5} 8/30

{6,6} 8/18

5 {3,9} 10/72

{3,10} 10/60

{4,6} 10/48

{4,8} 10/32

{5.6} 10/30

{6,6} 10/24

d=4 1 {4.,4} 2/32
Ref. 9 2/17

3 {3,7} 6/84

{4.5} 6/40

4 {3.8} 8/72

{4,5} 8/60

5 {3,8} 10/96

{5,5} 10/40

d=5 1 {44} 2/50
Ref. 9 2/26

{3,7} 8/126
5 {3.7} 10/168

{4,5} 10/80

s

Indeed, substituting n;=s=1 mod 4, p=s—1, and k=2g=(2)—2(s—1) in (11), we conclude
that g=s—1. Hence, resulting in a self-dual tessellation {p,q}={s—1,s—1}, whenever s
=1 mod 4. As a consequence, the same class of codes shown in Ref. 9 is obtained. Table VI
illustrates some of these codes.

Maximum Distance Separable quantum codes with parameters [[(2g+2),2g,2]], for g
=2,3,4,5,..., are shown in each one of the tables. Note that the majority of the codes, for each
£=2,3,4,5 has minimum distance of 2. Note also that for each g, these are all the possible codes
that may be constructed.

An inherent property of these TQCs is that they provide unequal error protection to each
logical qubit |0) and |1), except when considering self-dual tessellations.

V1. CONCLUSIONS

One important aspect of the TQCs is that they are able to correct errors in a physical level,
instead of the usual syndrome procedure. In this paper we hope to have shed some light in the way
of constructing TQCs by aggregating to the inherent topology of these codes the corresponding
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TABLE VI. Some codes with the same parameters as those in Ref. 9.

s 8 ng .4t d, I(p.q) d,/l(p,q) [[n.k,drOC]]
9 10 9 {8,8} 6.4674 3.0571 2.1155 [[36,20,3]]
13 27 13 {12,12} 8.4601 3.9833 2.1239 [[78.54,3]]
17 52 17 {16,16} 9.7716 4.596 2.1261 [[136,104,3]]
21 85 21 {20,20} 10.7546 5.0591 2.1258 [[210,170,3]]
25 126 25 {24,24} 11.5419 5.4328 2.1245 [[300,252,3]]

geometry of the surfaces with genus g =2. From the concepts of hyperbolic geometry it is possible
to generalize the notion of an associated polygon to a tessellation and the definition of the code
distance in such surfaces.

The proposed construction enables us to find any topological code on compact surfaces of
genus g =2 with simple and fast calculations. Some of these codes have good distance and rate,
whereas others codes do not. However, we would like to emphasize that the general construction
procedure of these codes leads to codes having inherent unequal error protection. In addition, yield
codes with better encoding rates than the toric codes, when the distance is fixed. Like the toric
codes, these TQC codes are quasiperfect.

It is possible to find classes of good codes, that is, codes with good rates and distances, among
the constructed codes. For example, the class shown in Ref. 9 and reproduced by the proposed
construction.

Kitaev showed that it is possible to implement TQC in self-dual tessellations by using anyons
through string operators. This also applies to the codes constructed in this paper from self-dual
tessellations. However, since many of the tabulated codes do not belong to self-dual tessellations,
it remains an open question which type of particle could be used in the implementation of such
codes.

Regarding future work, as suggested by the Area Editor, we mention: (a) In Ref. 3 good
quantum error corrections codes were proved to exist. However, the topological version of this
result is lacking, and only constructions with k/n— finite in the large n limit (physical qubits
=n) are known; (b) since hyperbolic geometry has been introduced for TQC such that orientable
and nonorientable surface codes can be treated on equal footing, it remains an interesting issue of
topological codes for qubits g=2 in nonorientable surfaces. For qudits with ¢ >2, it is not known
how to construct such nonorientable codes due to the existence of the Torelli group. Any way out
to this problem would be very valuable.
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